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Background: Exploring the potential biological relationships between heart failure with
preserved ejection fraction (HFpEF) and concomitant diseases has been the focus of
many studies for the establishment of personalized therapies. Hypertension (HTN) is the
most common concomitant disease in HFpEF patients, but the functional connections
between HFpEF and HTN are still not fully understood and effective treatment strategies
are still lacking.

Methods: In this study, tandem mass tag (TMT) quantitative proteomics was used to
identify disease-related proteins and construct disease-related networks. Furthermore,
functional enrichment analysis of overlapping network modules was used to determine
the functional similarities between HFpEF and HTN. Molecular docking and module
analyses were combined to identify therapeutic targets for HFpEF and HTN.

Results: Seven common differentially expressed proteins (co-DEPs) and eight
overlapping modules were identified in HFpEF and HTN. The common biological
processes between HFpEF and HTN were mainly related to energy metabolism.
Myocardial contraction, energy metabolism, apoptosis, oxidative stress, immune
response, and cardiac hypertrophy were all closely associated with HFpEF and
HTN. Epinephrine, sulfadimethoxine, chloroform, and prednisolone acetate were best
matched with the co-DEPs by molecular docking analyses.

Conclusion: Myocardial contraction, energy metabolism, apoptosis, oxidative stress,
immune response, and cardiac hypertrophy were the main functional connections
between HFpEF and HTN. Epinephrine, sulfadimethoxine, chloroform, and prednisolone
acetate could potentially be effective for the treatment of HTN and HFpEF.

Keywords: hypertension, heart failure with preserved ejection fraction, molecular docking, modular, therapeutic
prediction
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INTRODUCTION

Heart failure with preserved ejection fraction (HFpEF), which is
a complex syndrome characterized by a normal left ventricular
ejection fraction and abnormal diastolic function, accounts
for more than 50% of heart failure (HF) patients (Pieske
et al., 2019). Current therapies for HFpEF include strategies
to manage the coexisting conditions, reduce symptoms, and
treat volume overload when necessary (Redfield, 2016). Although
there has been much progress in HFpEF-related research,
an effective strategy for HFpEF treatment has not yet been
established (Gazewood and Turner, 2017). Compared with
heart failure with reduced ejection fraction (HFrEF), HFpEF
is heterogeneous, and drugs effective against HFrEF are not
suitable for HFpEF (Graziani et al., 2018). Thus, a complete
clinical phenotypic classification of HFpEF, including tiology,
concomitant diseases, and risk factors, is required. Furthermore,
exploring the underlying biological functions involved in the
different types of HFpEF will help develop personalized therapies
and precision medicines for HFpEF (Borlaug, 2020; Ge, 2020).

Patients with HFpEF that are diagnosed with hypertension
(HTN) and coronary heart disease are regarded as having
vascular-related HFpEF (Ge, 2020). Studies have shown that
HTN is the most common complication in patients with
HFpEF, but the biological relationship between HTN and
HFpEF is still not fully understood (Tadic et al., 2018). In
addition, studies have suggested that HTN is an additional
risk factor for HFpEF (Dunlay et al., 2017). HFpEF and
HTN share many common pathogeneses, such as dysfunction
of cardiac autonomy, imbalance of the renin-angiotensin-
aldosterone system, and excessive oxidative stress. In addition,
some underlying biological mechanisms play an important role
in the transition from HTN to HFpEF. For example, hypertension
leads to diastolic dysfunction and concentric remodeled left
ventricular decompensation, resulting in HFpEF (Drazner, 2011;
Heinzel et al., 2015; Messerli et al., 2017; Nwabuo and Vasan,
2020). In addition, HTN also activates chronic inflammation
and increases collagen deposition, further exacerbating left
ventricular dysfunction (Paulus and Tschöpe, 2013). Studies
have reported that myocardial contractile dysfunction, right
ventricular dysfunction, arterial stiffness, ventricular-arterial
coupling, and microvascular dysfunction could increase the risk
of HFpEF in patients with HTN (Hicklin et al., 2020). However,
in clinical trials, drugs such as angiotensin-converting enzyme
inhibitors, angiotensin II receptor blockers, diuretics, and beta-
blockers, which showed beneficial effects against common
pathogeneses of HFpEF and HTN, did not produce significant
positive effects in patients with HFpEF (Kjeldsen et al., 2020).
Therefore, further research is needed to explore the potential
biological relationships between HFpEF and HTN.

Disease network construction provides a solution to explore
the relationships between diseases (Le and Pham, 2017),
where modules of disease-related networks are responsible
for various features of the diseases. Functional enrichment
analysis of the overlapping modules reflects the functional
links among related diseases (Dean et al., 2017). For example,
using this method, a previous study showed that the negative

regulation of transcription from RNA polymerase II promoter
RNA and the negative regulation of apoptotic processes are
overlapping biological functions among type-2 diabetes mellitus,
prostate cancer, and chronic myeloid leukemia (Liu et al.,
2019). Furthermore, another study showed that atherosclerosis,
cholesterol homeostasis, plasma lipoprotein particle remodeling,
and oxidative stress responses are common risk factors for stroke
and coronary heart disease (Zhang et al., 2014).

The Dahl salt-sensitive (DS) rat model has been implemented
for the study of HFpEF (Cho et al., 2017). Toward that,
DS rats diagnosed with HTN or HFpEF were analyzed using
proteomics. Cytoscape software and STRING platforms were
used to construct a disease network. Modules of the disease
network were divided using Molecular Complex Detection
(MCODE). Gene Ontology (GO) enrichment analysis was
performed to identify the significant functions and pathways
of overlapping modules found in the Database for Annotation,
Visualization, and Integrated Discovery (DAVID). Molecular
docking and module analyses were combined to contribute to the
development of personalized therapies and precision medicines
for HFpEF and HTN treatment. A flowchart of the research
design is shown in Figure 1.

MATERIALS AND METHODS

Animals and Experimental Protocols
Specific pathogen-free 6-week-old male DS rats (weight: 160–
180 g; Certificate No. 2016-0006) were obtained from the Charles
River Animal Laboratory (Beijing, China). Rats were housed in
groups of six rats per cage under controlled conditions (12 h
dark/light cycle, temperature: 20–24◦C, relative humidity: 40–
60%, dB ≤ 60) and with free access to water and food. After
a week of adaptation, the rats were randomly divided into the
following three groups: the HTN group (8% NaCl chow for
7 weeks, n = 6), the HFpEF group (8% NaCl chow for 11 weeks,
n = 6), and the control group (0.3% NaCl chow for 7 or 11 weeks,
n = 12). All experiments were reviewed by the Animal Ethics
Committee of the Shandong University of Traditional Chinese
Medicine (Ethics No. SDUTCM2018071501).

Tissue Collection
The rats in the HTN and HFpEF groups were euthanized after
7 and 11 weeks of the high-salt diet (HSD), respectively, and
the rats in the control group were randomly sacrificed after 7
or 11 weeks of the control diet. Pentobarbital (20 mg/kg, i.p.)
was used for anesthesia in rats, and the left ventricle (LV) was
collected from each rat and stored at−80◦C.

Tandem Mass Tag-Labeled Quantitative
Proteomics
Twelve LV samples [HTN group n = 3, HFpEF group n = 3,
control group (euthanized at 7 weeks) n = 3, control group
(euthanized at 11 weeks) n = 3] were collected for TMT
quantitative proteomics. Previous studies reported that data
with three samples in each group could reliably be statistically
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FIGURE 1 | Flowchart of the research design. Deciphering the protein networks and modular connections, and targeting precision medicines for HFpEF and HTN
using TMT quantitative proteomics and molecular docking analyses.

analyzed (Maitiabola et al., 2020; Yan et al., 2020). The tissue
was removed from the refrigerator at −80◦C, ground into
powder, and quickly transferred to a centrifuge tube pre-cooled
with liquid nitrogen. PASP protein lysate (100 mM ammonium
bicarbonate, 8 M urea, pH 8) was added to the liquid nitrogen,
shaken, mixed, and ultrasonicated in an ice water bath for
5 min, followed by centrifugation at 12,000 rpm for 15 min at
4◦C. Then, the supernatant was collected, 10 nM dithiothreitol
was added, and the mixture was incubated at 56◦C for 1 h.
Then, iodoacetamide was added and the reaction was allowed
to proceed for 1 h in the absence of light. Next, four volumes
of pre-cooled acetone were used for precipitation, followed by
centrifugation at 12,000 rpm for 15 min at 4◦C, after which
the precipitate was collected. The precipitate was resuspended
and washed with one milliliter of −20◦C pre-cooled acetone,
followed by a second centrifugation at 12,000 rpm for 15 min
at 4◦C. Then, the precipitate was collected and air dried,
and an appropriate amount of protein dissolving solution (8
M urea, 100 mM TEAB, pH 8.5) was used to dissolve the
protein precipitate.

The Bradford protein quantification kit (Beyotime, China)
was used to determine the protein concentration. DB protein
dissolving solution (8 M urea, 100 mM TEAB, pH 8.5) was added
to the protein sample to a volume of 100 µL, trypsin and 100 mM
buffer were added, and mixing and digestion were performed at
37◦C for 4 h. Then, pancreatin and CaCl2 were used for digestion
overnight. Formic acid was used to adjust the pH to less than

3, mixing was done at room temperature, and centrifugation
was performed at 12,000 rpm for 5 min. The supernatant was
then slowly passed through the C18 desalting column, and the
cleaning solution (0.1% formic acid, 3% acetonitrile) was used
for washing three times. In addition, an appropriate amount of
eluent (0.1% formic acid, 70% acetonitrile) was added, and the
filtrate was collected and lyophilized. One hundred microliters
of 0.1 M TEAB buffer was used for reconstitution, and 41 µL
of TMT labeling reagent was dissolved in acetonitrile. The
mixture was mixed at room temperature for 2 h, and 8%
ammonia was added to stop the reaction. An equal volume
of the labeled sample was used for mixing and freeze-drying
after desalting.

Mobile phase A solution (2% acetonitrile, 98% water, pH
10) and mobile phase B solution (98% acetonitrile, 2% water)
were prepared. The freeze-dried powder was dissolved in
solution A and centrifuged at 12,000 rpm for 10 min at room
temperature. An L-3000 HPLC system and a water VEHC 18
(4.6 mm × 250 mm, 5 µm) were used for this study, and
the column temperature was set to 45◦C. Details of the elution
gradient are shown in Table 1. One tube was collected every
minute, divided into 10 fractions, freeze-dried, and dissolved in
0.1% formic acid.

Mobile phase A solution (100% water, 0.1% formic acid)
and phase B solution (80% acetonitrile, 0.1% formic acid)
were prepared. One microgram of the supernatant from each
fraction was used for the test. The UHPLC system was upgraded
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TABLE 1 | The elution gradient table of peptide fraction separation
liquid chromatography.

Time (min) Flow rate
(mL/min)

Mobile phase
A (%)

Mobile phase
B (%)

0 1 97 3

10 1 95 5

30 1 80 20

48 1 60 40

50 1 50 50

53 1 30 70

54 1 0 100

with the EASY-nLC 1200 system. We prepared both the pre-
column (4.5 cm × 75 µm, 3 µm) and the analytical column
(15 cm × 150 µm, 1.9 µm). The elution conditions for liquid
chromatography are shown in Table 2. A Q Exactive series
mass spectrometer was used for this study, the ion source
was the Nanospray Flex, the ion spray voltage was 2.3 kV,
the temperature of the ion transfer tube was 320◦C, and the
data-dependent acquisition mode was used. The full scan range
of the mass spectrum was 350–1,500 m/z. The resolution of
the primary mass spectrometry was set to 60,000 (200 m/z),
the maximum capacity of the C-trap was 3 × 106, and the
maximum injection time of the C-trap was 20 ms. The top
40 precursor ions were selected for the full scan, and the
higher-energy collision dissociation (HCD) method was used
for the fragment, which contributed to the secondary mass
spectrometry detection. The isolation window of MS2 spectrum
is 2 m/z. HCD spectrum ranged from 120 to m/z (precursor
ion) × z (charge number) + 100 m/z. The resolution was
45,000 (200 m/z), the maximum capacity of the C-trap was
5 × 104, the maximum injection time of the C-trap was
86 ms, the threshold intensity was 1.2 × 105, and the dynamic
exclusion range was 20 s.

MS/MS raw files were processed using the MASCOT
engine (Matrix Science, London, United Kingdom; version
2.6) embedded into Proteome Discoverer software,
and searched against the UniProt database, including
Uniprot_RattusNorvegicus_36080_20180123 sequences1.
The search parameters included trypsin as the enzyme used
to generate peptides with a maximum of two missed cleavages
permitted. A precursor mass tolerance of 10 ppm was specified
along with a 0.05 Da tolerance for MS2 fragments. Except
for the TMT labels, carbamidomethyl (C) was set as a fixed
modification. The variable modifications were oxidation (M)
and acetyl (protein N-term). A peptide and protein false
discovery rate of 1% was enforced using a reverse database
search strategy. The quantitative values of proteins obtained
from two pairs of samples were examined using the t-test, and
the p-values were calculated. Fold change >1.1, fold change
<0.91, and P-value < 0.05, were considered to filter differentially
expressed proteins (DEPs). Proteomic data is provided as
Supplementary Material.

1http://www.uniprot.org

TABLE 2 | Elution gradient table of liquid chromatography.

Time (min) Flow rate
(nL/min)

Mobile phase
A (%)

Mobile phase
B (%)

0 600 94 6

2 600 85 15

78.5 600 60 40

80.5 600 50 50

81.5 600 45 55

90 600 0 100

Constructing the Protein-Protein
Interaction Networks for Heart Failure
With Preserved Ejection Fraction and
Hypertension
The STRING database (version 10.5)2 was used to predict protein
interactions and functional associations. The PPI networks
of HFpEF- and HTN-DEPs were obtained under controlled
parameters (interaction score >0.4). PPI networks were analyzed
using Cytoscape (version 3.6.1)3.

Functional Enrichment Analysis
HFpEF- and HTN-DEPs were submitted to the Database for
annotation, visualization, and integrated discovery for functional
enrichment, including GO and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses (version
6.8)4. The P-value was set at <0.05 for GO and KEGG pathway
enrichment, as is standard in the field (Yuan et al., 2016; Liu et al.,
2019).

Division and Identification of Network
Modules
Disease-related networks were analyzed using Cytoscape (version
3.6.1)5. Furthermore, the modules were divided by Molecular
Complex Detection (MCODE, version 1.3.2)6. The modules were
obtained under controlled parameters (degree cutoff = 2, node
score cutoff = 0.1, core threshold K = 2, flux density cutoff = 0.1,
K-core 2, max. depth = 100). The parameters for Cytoscape were
set as default, as recommended by previous studies (Yuan et al.,
2016; Liu et al., 2019).

Identification of Modern Medicine
Symptoms Related to Common
Differentially Expressed Proteins and
Links to Cardiovascular Diseases
The association between the co-DEPs and cardiovascular diseases
was analyzed using the Comparative Toxicogenomics Database
(CTD)7, which integrates the relationships between gene

2http://string-db.org/
3https://cytoscape.org/
4https://david.ncifcrf.gov/
5https://www.cytoscape.org/
6https://baderlab.org/Software/MCODE
7http://ctdbase.org/
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products, diseases, chemicals, and environments. Furthermore,
related MM symptoms of the co-DEPs were observed in
SymMap8 and in previous publications.

Drug Discovery and Molecular Docking
Small-molecule compounds related to the co-DEPs were
observed from the DrugBank9, through the target search.
Molecular docking analysis is a common strategy for drug
discovery. The structures of the co-DEPs were downloaded from
the Protein Data Bank (PDB)10, and the PDB IDs of the proteins
are shown in Table 3. The structures of the drugs were obtained
from PubChem11, and the CIDs are shown in Table 4. Eutectic
ligands and water molecules were removed, and residue repair,
side chain fixation, and hydrogenation were used for protein
preparation. The Surflex-Dock module of SYBYL 2.1 was used
for molecular docking. Furthermore, AMBR7 was used for energy
optimization, and the active pockets were obtained in automatic
mode. The parameters for SYBYL 2.1 were set as default,
as recommended by previous studies (Tan et al., 2020). The
molecular docking scores reflected the binding effects between
the small-molecule compounds and the co-DEPs, and the highest
scoring small molecules were considered as potential drugs.

RESULTS

Identification of Differentially Expressed
Proteins
A total of 83 DEPs, including 52 upregulated proteins, were
obtained by comparing the HFpEF group with the control
group sacrificed at 11 weeks (Figure 2A). A total of 132
DEPs, including 85 upregulated proteins, were identified by
comparing the HTN group with the control group sacrificed
at 7 weeks (Figure 2B). Among the HFpEF-DEPs and HTN-
DEPs, there were 7 co-DEPs, including haptoglobin (Hp),
coenzyme Q9 (COQ9), serotransferrin (Tf), major prion protein
(Prnp), acetyl-CoA acetyltransferase, mitochondrial (Acat1),
translocase of inner mitochondrial membrane 44 (Timm44),
and ATP-binding cassette sub-family B member 6 (Abcb6;
Figure 2C). Furthermore, the CTD database showed links

8https://www.symmap.org/
9https://www.drugbank.ca/
10http://www.rcsb.org/
11https://pubchem.ncbi.nlm.nih.gov/

TABLE 3 | PDB ID of protein.

Protein PDB ID

Hp 4X0lL

COQ9 6awl

Tf 1ryo

Prnp 2ol9

Acta1 2ib8

Timm44 2cw9

Abcb6 3nh6

TABLE 4 | CIDs of molecule compounds.

Molecule PubChem ID

Prednisolone acetate 5834

Bismuth subsalicylate 16682734

Phenoxymethylpenicillin 6869

Polyethylene glycol 40786

Prednisolone 5755

Chloroform 6212

Salicylic acid 338

Epinephrine 5816

Triptorelin 25074470

Benzylpenicillin 5904

Propofol 4743

Sulfadimethoxine 5323

between the co-DEPs and various cardiovascular diseases
(Figures 3A–G). Finally, the related MM symptoms of the
co-DEPs were determined using SymMap12 and previous
publications (Figure 3H).

Functional Enrichment Analysis
All HFpEF- and HTN-DEPs were submitted to DAVID for
GO and KEGG functional enrichment analyses. The DEPs
of HFpEF were mainly involved in immune response, energy
metabolism, inflammation response, and post-translational
modification (Figure 4). For example, DnaJ heat shock protein
family (Hsp40) member A1 (Dnaja1), Hp, immunoglobulin
heavy chain 6 (Igh-1a), milk fat globule EGF and factor
V/VIII domain containing (Mfge8), transforming growth
factor beta 1 induced transcript 1 (Tgfb1i1), apolipoprotein M
(Apom), paraoxonase 1 (Pon1), protein tyrosine phosphatase,
and non-receptor type 6 (Ptpn6) were closely related to
immune response; acetyl-CoA acetyltransferase, mitochondrial
(Acta1), Hp, mitochondrial inner membrane protein (Oxa1l),
glutamine fructose-6-phosphate transaminase 1 (Gfpt1), UDP-
N-acetylglucosamine pyrophosphorylase 1 (Uap1), calponin
3 (Cnn3), and follistatin-like 1 (Fstl1) were involved in
energy metabolism; serpin family A member 1 (Serpina1),
alpha-2-HS-glycoprotein (Ahsg), serpin family A member
10 (Serpina10), murinoglobulin 1 (Mug1), SMAD family
member 1 (Smad1), and kininogen 1 (Kng1) were connected
with inflammation response; mannosidase, alpha, class
2A, member 2 (Man2a2), N-glycanase 1 (Ngly1), protein
phosphatase 1, regulatory (inhibitor) subunit 14B (Ppp1r14b),
protein phosphatase 1, regulatory (inhibitor) subunit 14C
(Ppp1r14c), protein phosphatase 1, and regulatory (inhibitor)
subunit 14A (Ppp1r14a) were involved in post-translational
modification. For HTN, myocardial contraction, energy
metabolism, apoptosis, and oxidative stress were the main
biological functions (Figure 5). Carcass protein in high
growth mice 3 (Carp3), myosin light chain 3 (Myl3), titin
(Ttn), tropomodulin (Tmod1), hydroxysteroid (17-beta)
dehydrogenase 4 (Hsd17b4), actinin alpha 2 (Actn2), Acta1,

12https://www.symmap.org
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FIGURE 2 | Comparison of the DEPs in HFpEF and HTN. (A) Heatmap of HFpEF. (B) Heatmap of HTN. (C) The co-DEPs between HFpEF and HTN. Hp,
haptoglobin; COQ9, coenzyme Q9; Tf, serotransferrin; Prnp, major prion protein; Acat1, acetyl-CoA acetyltransferase, mitochondrial; Timm44, translocase of inner
mitochondrial membrane 44; Abcb6, ATP-binding cassette sub-family B member 6.

FIGURE 3 | Identification of co-DEP-related MM symptoms and links to cardiovascular diseases. (A) Abcb6, (B) Acat1, (C) COQ9, (D) Hp, (E) Prnp, (F) Tf, and
(G) Timm44. *, direct evidence. (H) The related MM symptoms of the co-DEPs. Hp, haptoglobin; COQ9, coenzyme Q9; Tf, serotransferrin; Prnp, Major prion protein;
Acat1, acetyl-CoA acetyltransferase, mitochondrial; Timm44, translocase of inner mitochondrial membrane 44; Abcb6, ATP-binding cassette sub-family B member
6.

myosin, light chain 4 (Myl4), Tf, alpha glucosidase (Gaa),
perilipin 2 (Plin2), ATPase Na+/K+ transporting subunit alpha
2 (Atp1a2), enolase 2 (Eno2), myosin heavy chain 7 (Myh7),

glutathione peroxidase 1 (Gpx1), tropomodulin 4 (Tmod4),
Acta1, Hp, and myosin light chain kinase 3 (Mylk3) were closely
related to myocardial contraction; glycogen synthase kinase
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FIGURE 4 | Main biological processes enriched in HFpEF-DEPs. (A) Immune response, (B) energy metabolism, (C) inflammation response, and (D)
post-translational modification.

3 beta (Gsk3b), hydroxysteroid (17-beta) dehydrogenase 4
(Hsd17b4), alpha glucosidase (Gaa), 2,4-dienoyl-CoA reductase
1 (Decr1), acyl-CoA dehydrogenase, short/branched chain
(Acadsb), adiponectin C1Q and collagen domain containing
(Adipoq), Acta1, and glycogen phosphorylase B (Pygb) were
involved in energy metabolism; nucleolar protein 3 (Nol3),
prion protein (Prnp), serpin family B member 2 (Serpinb2),
glycogen synthase kinase 3 beta (Gsk3b), hexokinase 1 (Hk1),
ferritin heavy chain 1 (Fth1), four and a half LIM domains 2
(Fhl2), A-Raf proto-oncogene, serine/threonine kinase (Araf),
glutathione peroxidase 1 (Gpx1), nascent polypeptide associated
complex subunit alpha (Naca), and ring finger protein 7 (Rnf7)
were connected with apoptosis.

The top five biological processes among HFpEF-DEPs were
acute-phase response (count 5, P-Value 2.15E-05), regulation of
protein dephosphorylation (count 3, P-Value 2.75E-04), response
to lead ion (count 4, P-Value 6.39E-04), negative regulation of
catalytic activity (count 4, P-Value 0.003203462), and regulation
of phosphorylation (count 3, P-Value 0.003348677). Blood
microparticles (count 10, P-Value 1.80E-09), extracellular
exosome (count 33, P-Value 1.01E-08), extracellular space (count
18, P-Value 3.18E-05), mitochondrial inner membrane (count
7, P-Value 0.002195356), and extracellular matrix (count 6,
P-Value 0.00460952) related cell compositions were significantly
enriched. Furthermore, the main enriched molecular functions
were protein homodimerization activity (count 12, P-Value
5.67E-04), protein serine/threonine phosphatase inhibitor
activity (count 3, P-Value 9.62E-04), protein binding (count

16, P-Value 0.002503286), chaperone binding (count 4, P-Value
0.004337384), and endopeptidase inhibitor activity (count 3,
P-Value 0.007219962). The enriched KEGG pathways were
prion diseases (count 4, P-Value 3.21E-04) and the complement
and coagulation cascades (count 4, P-Value 0.003144821)
(Figure 6A). With respect to HTN-DEPs, the most enriched
biological processes were the regulation of heart contraction force
(count 6, P-Value 2.73E-07), cardiac muscle contraction (count
7, P-Value 5.96E-07), muscle contraction (count 6, P-Value
1.50E-05), fatty acid beta-oxidation (count 5, P-Value 1.95E-04),
and cardiac myofibril assembly (count 3, P-Value 0.002067005).
The main components were extracellular exosome (count 48,
P-Value 3.12E-11), mitochondrion (count 32, P-Value 3.12E-08),
striated muscle thin filament (count 4, P-Value 3.24E-05),
mitochondrial inner membrane (count 10, P-Value 2.30E-
04), and a band (count 4, P-Value 4.49E-04). The molecular
functions of HTN-PEGs were mainly enriched in protein
homodimerization activity (count 15, P-Value 4.74E-04), actin
filament binding (count 6, P-Value 0.001790743), tropomyosin
binding (count 3, P-Value 0.003348376), oxidoreductase
activity (count 5, P-Value 0.00825633), and actin monomer
binding (count 3, P-Value 0.010556462). The enriched KEGG
pathways were adrenergic signaling in cardiomyocytes (count
6, P-Value 0.004149388), carbon metabolism (count 5, P-Value
0.014082125), cardiac muscle contraction (count 4, P-Value
0.022270779), starch and sucrose metabolism (count 3, P-Value
0.023739862), and mineral absorption (count 3, P-Value
0.03637201) (Figure 6B).
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FIGURE 5 | Main biological processes enriched in HTN-DEPs. (A) Myocardial contraction, (B) energy metabolism, (C) apoptosis, and (D) oxidative stress.

FIGURE 6 | Functional enrichment analysis. (A) Functional enrichment analysis of HFpEF-DEPs from the DAVID database. (B) Functional enrichment analysis of
HTN-DEPs from the DAVID database.
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FIGURE 7 | Network analysis of HFpEF and HTN. (A) The PPI network of HFpEF-DEPs. (B) The PPI network of HTN-DEPs. (C) The nodes and edges of the PPI
network. (D) The parameters of the PPI network. (E) The count of the PPI network of HFpEF-DEPs. (F) The count of the PPI network of HTN-DEPs.

FIGURE 8 | The modules of the HFpEF- and HTN-DEPs. (A) The modules of the HFpEF-DEPs. (B) The modules of the HTN-DEPs.

Protein-Protein Interaction Network
Analysis and Modularity Analysis
In total, from the PPI network of HFpEF-DEPs (Figure 7A)
and that of the HTN-DEPs (Figure 7B), 80 nodes and
246 edges, and 126 nodes and 692 edges were identified,
respectively (Figure 7C). The parameters of the PPI network
of the HFpEF- and HTN-DEPs are shown in Figure 7D.
Furthermore, transthyretin (Ttr; degree = 22), kininogen-1

(Kng1; degree = 18), alpha-1-antiproteinase (Serpina1;
degree = 18), alpha-2-HS-glycoprotein (Ahsg; degree = 16),
and pentaxin (Crp; degree = 16) were identified as hub
proteins in the HFpEF-DEP PPI network (Figure 7E). Acetyl-
CoA acetyltransferase, mitochondrial (Acta1; degree = 38),
glycogen synthase kinase 3 beta (Gsk3b; degree = 33), 2,4-
dienoyl-CoA reductase 1 (Decr1; degree = 28), myosin heavy
chain 7 (Myh7; degree = 28), and actinin alpha 2 (Actn2;
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FIGURE 9 | Functional enrichment analysis of overlapping modules between the HFpEF and HTN networks. (A) The overlapping modules in HFpEF and HTN.
(B) Functional enrichment analysis of overlapping modules in HFpEF and HTN from the DAVID database. (C) Biological functions of overlapping modules in HFpEF
and HTN.

degree = 26) were identified as hub proteins in the HTN-
DEP PPI network (Figure 7F). Finally, three modules were
obtained from the HFpEF-DEP PPI network (Figure 8A),
and five modules were identified from the HTN-DEP PPI
network (Figure 8B).

Overlapping Modules Between the Heart
Failure With Preserved Ejection Fraction
and Hypertension Networks
The overlapping modules between the HFpEF and HTN
networks are shown in Figure 9A. The top five biological
processes among the overlapping modules were cardiac muscle
contraction (count 8, P-Value 5.59E-08), acute-phase response
(count 7, P-Value 2.79E-07), regulation of the heart contraction
force (count 6, P-Value 5.37E-07), muscle contraction (count
6, P-Value 2.89E-05), and response to lead ion (count 5,
P-Value 1.72E-04). Extracellular exosome (count 62, P-Value
3.45E-18), mitochondrion (count 33, P-Value 1.10E-07),
blood microparticle (count 9, P-Value 2.42E-06), extracellular
space (count 27, P-Value 2.68E-06), and a band (count 5,
P-Value 2.15E-05) related cell compositions were significantly
enriched. Furthermore, the main enriched molecular functions
were protein homodimerization activity (count 18, P-Value
6.42E-05), calcium ion binding (count 15, P-Value 4.86E-
04), identical protein binding (count 14, P-Value 7.87E-04),
actin filament binding (count 6, P-Value 0.003338211), and
tropomyosin binding (count 3, P-Value 0.004429531). The
enriched KEGG pathways included adrenergic signaling

in cardiomyocytes (count 7, P-Value 0.001472787), prion
diseases (count 4, P-Value 0.003172377), cardiac muscle
contraction (count 5, P-Value 0.005270334), complement
and coagulation cascades (count 4, P-Value 0.02702271), and
adrenergic signaling in cardiomyocytes (count 4, P-Value
0.040014194) (Figure 9B). Finally, the main functional biological
processes were myocardial contraction (30.77%), energy
metabolism (15.38%), apoptosis (12.82%), oxidative stress
(15.38%), immune response (10.26%), and cardiac hypertrophy
(5.13%) (Figure 9C).

Drug Discovery and Molecular Docking
Twelve small-molecule compounds were obtained from
the DrugBank, including prednisolone acetate, bismuth
subsalicylate, phenoxymethylpenicillin, polyethylene glycol,
prednisolone, chloroform, salicylic acid, epinephrine,
triptorelin, benzylpenicillin, propofol, and sulfadimethoxine.
The binding affinity between the co-DEPs and the small-
molecule compounds are shown in Figure 10A. For Hp,
the docking score between epinephrine and Hp was the
highest. Epinephrine generated hydrogen bonds with GLU314
and LEU334 of Hp (Figure 10B). For COQ9, epinephrine
was again the best match. The ASN154, LEU219, ASN252,
and GLU255 residues of COQ9 were suggested to be the
binding sites of epinephrine (Figure 10C). Furthermore, Tf
displayed the strongest binding affinity with sulfadimethoxine,
potentially through hydrogen bonding at the LEU294, ARG124,
and TYR188+ residues of Tf (Figure 10D). For Prnp, the
docking score between chloroform and Prnp was the highest
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FIGURE 10 | Drug discovery and molecular docking. (A) Heatmap of the binding scores between the small-molecule compounds and co-DEPs. (B) The binding
sites and interactions between epinephrine and Hp. (C) The binding sites and interactions between epinephrine and COQ9. (D) The binding sites and interactions
between sulfadimethoxine and Tf. (E) The binding sites and interactions between chloroform and Prnp. (F) The binding sites and interactions between epinephrine
and Acta1. (G) The binding sites and interactions between sulfadimethoxine and Timm44. (H) The binding sites and interactions between prednisolone acetate and
Abcb6.

(Figure 10E). Epinephrine was the best match for Acta1,
with potential binding at the GLY97, GLY98, and ARG165
residues of Acta1 (Figure 10F). The binding affinity between
sulfadimethoxine and Timm44 was the strongest, with potential
hydrogen bonding at the ALA330 and TYR421 residues of
Timm44 (Figure 10G). Finally, prednisolone acetate was best
matched with Abcb6, and ARG739, GLY687, LYS743, and
VAL668 of Abcb6 were the potential targets of prednisolone
acetate (Figure 10H).

DISCUSSION

Heart failure with preserved ejection fraction is a complex
syndrome that includes many types of clinical phenotypes.
Huge pathophysiological differences exist among patients
with different clinical HFpEF phenotypes, and no treatment
strategy is suitable for all patients with HFpEF (Ge, 2020).
Exploring the underlying pathophysiological mechanisms of
different types of HFpEF will aid the discovery of personalized
therapies and precision medicines for HFpEF treatment.
Patients with HFpEF who are also diagnosed with HTN
are considered to have vascular-related HFpEF, so exploring
the functional connections between HFpEF and HTN will
contribute to finding effective therapeutic targets for HFpEF
and HTN treatment.

In this study, TMT-labeled quantitative proteomics was used
to identify HFpEF- and HTN-related proteins. The functional
links between HFpEF and HTN were analyzed at the network,
module, and protein levels. Furthermore, molecular docking
was used to determine precision medicine targets for HFpEF

and HTN treatment. Seven co-DEPs were found among the
HFpEF- and HTN-DEPs identified, including Hp, Tf, COQ9,
Acat1, Timm44, Abcb6, and Prnp. Notably, Hp levels are closely
related to hypertension and heart failure (Schröcksnadel, 1990;
Lu et al., 2019; Rodrigues et al., 2019). Moreover, clinical
studies have shown that inflammation plays an important role
in the transition from HTN to HFpEF (Quaye, 2008), and
that Hp is an indicator of inflammation in cardiovascular
diseases (Szelényi et al., 2015). This suggests that Hp could
be used to diagnose HTN and HFpEF and that Hp could be
an effective therapeutic target for HTN and HFpEF. COQ9
is involved in the basic functions of mitochondria (Ferko
et al., 2015), and the impairment of mitochondrial function
is a common pathophysiological mechanism underlying both
HTN and HFpEF (He et al., 2019; Zeng and Chen, 2019).
Thus, COQ9 is also a potential biomarker for HTN and
HFpEF. Several studies have shown that the expression of
Tf and Prnp is altered in many cardiovascular diseases and
that Tf and Prnp may be novel biomarkers for HTN and
HFpEF (Gao et al., 2013; Rahim et al., 2018; Roura et al.,
2018; Pang et al., 2020). Acta1 is involved in the pathological
progression of myocardial remodeling (Pagano et al., 2017; Cañes
et al., 2020), which is closely related to the prognosis of HTN
and HFpEF (Fortuño et al., 2001; Georgiopoulou et al., 2010;
Heinzel et al., 2015). Abcb6 and Timm44 are involved in
mitochondrial functions and are potential biomarkers for HTN
and HFpEF (Boswell-Casteel et al., 2017; Gao et al., 2020).
Analysis using the CTD database indicated that there were
strong connections between the co-DEPs and cardiovascular
diseases in humans, including HF and HTN. Additionally,
HFpEF was the most common type of HF, suggesting that
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the co-DEPs may be effective therapeutic targets for HFpEF
and HTN treatment.

Fever and anemia were found to be important co-DEP-
related MM symptoms, which is consistent with previous findings
(Bocchi et al., 2013; Tanimura et al., 2015; Burns et al., 2018).
The common biological processes of HFpEF and HTN were
closely related to energy metabolism. Previous studies have
also indicated that mitochondrial oxidative capacity plays an
important role in both HFpEF and HTN (Gueugneau et al., 2016;
De Jong and Lopaschuk, 2017).

Heart failure with preserved ejection fraction and HTN shared
eight overlapping modules, and the main biological functions
enriched in these modules were myocardial contraction,
energy metabolism, apoptosis, oxidative stress, immune
response, and cardiac hypertrophy. We also found that post-
translational modification and regulation of actin filaments
could play an important role in HFpEF and HTN. Previous
research has shown that phosphorylation of cardiac myosin-
binding protein-C influences the progress of cross-bridge
detachment and that deficient phosphorylation leads to diastolic
dysfunction (Rosas et al., 2015). Furthermore, fibroblasts with
abnormal proliferation contribute to the progression of HTN
to HFpEF (Oatmen et al., 2020). Further research into the
biological process of barbed-end actin filament capping may
provide new insights.

The study also suggested that chloroform, epinephrine,
sulfadimethoxine, and prednisolone acetate could be effective
drugs for treating HTN and HFpEF. In addition, epinephrine,
sulfadimethoxine, and prednisolone acetate have been widely
used in many clinical diseases, but chloroform was not approved
drug for human use. It suggested that chloroform maybe
an candidate drugs for HTN-HFpEF. Previous studies have
shown that gut microbiota dysfunction is closely related
to the development of HTN and HFpEF (Hsu et al., 2020;
Pakhomov and Baugh, 2020), and some antibiotics that
regulate the gut microbiota have shown beneficial effects
against HTN and other heart diseases (Chen et al., 2020;
Du et al., 2020; Wu et al., 2020). A previous study showed
that sulfadimethoxine could also regulate the gut microbiota
(Mourand et al., 2014) and contribute to the normalization of
blood pressure. Notably, chloroform injection can decrease the
mean blood pressure (Loyke, 1971). Furthermore, prednisolone
can prevent post-transplantation hypertension in rat renal
allograft recipients (de Keijzer et al., 1987), indicating that
prednisolone may be an effective drug for treating HTN
and HFpEF. For patients with mild essential hypertension,
intravenous infusion of small amounts of epinephrine has
shown beneficial effects on hemodynamics, renal electrolyte
excretion, and blood platelets (Kjeldsen et al., 1988). This
indicates that epinephrine may be an effective drug for
treating HTN and HFpEF. Most treatment strategies for
HFpEF are empiric and are greatly influenced by expert
consensus. In addition, some treatment strategies showed
beneficial effects in patients with HFpEF, including the
use of diuretics to control hypervolemia, treatment with
mineralocorticoid antagonists, exercise therapies, and classical
treatments for comorbidities. The results of this study, which

are based on molecular docking and bioinformatics analyses,
indicated that chloroform, epinephrine, sulfadimethoxine,
and prednisolone acetate could be effective medicines for
HTN and HFpEF. These drugs could be used to treat
HTN and HFpEF, to reduce the occurrence of HFpEF in
patients with HTN, or as personalized medicines for patients
with HFpEF. Further animal experiments and small-scale
clinical trials are needed to elucidate the functions and
effects of these drugs in HTN and HFpEF. Nevertheless,
it is important to note that chloroform is currently not
approved for human use.

According to the enrichment results of the overlapping
modules, myocardial contraction was the most important
biological function shared between HFpEF and HTN.
HTN influences the structure and function of the heart,
suppresses myocardial contractions, and increases the prevalence
of HFpEF (Chirinos et al., 2017). Previous studies have
also noted the importance of myocardial contraction, as
impaired diastolic function is a common phenotype of
HFpEF and HTN. Here, the co-DEPs Acat1, Tf, and Hp
were associated with myocardial contraction. Acta1 is involved
in skeletal muscle thin filament assembly, which influences
the contractile force of the heart (Winter et al., 2016). Tf
and Hp are related to the response to lead ion, and result
in myocardial contraction-related neurotoxic effects (Pappas
et al., 2015). Previous studies have indicated that epinephrine
treatment enhances myocardial contraction, but the effects of
sulfadimethoxine on myocardial contraction remain unclear
(Paur et al., 2012).

Here, we found that energy metabolism is closely
related to HFpEF and HTN. These findings are consistent
with earlier observations (Baltatu et al., 2017; De Jong
and Lopaschuk, 2017). Acta1, Timm44, and Abcb6 are
involved in fatty acid beta-oxidation and in the biological
functions of energy metabolism. In animal experiments,
fatty acid beta-oxidation is associated with the severity
of myocardial fibrosis. Additionally, it is associated
with a risk for HFpEF. Epinephrine, sulfadimethoxine,
and prednisolone also have beneficial effects on energy
metabolism (Park et al., 2001; Laskewitz et al., 2010;
Wang et al., 2019).

Furthermore, apoptosis was found to be an important
biological function in HTN and HFpEF. Activation of apoptosis
can lead to cardiac dysfunction (Ekhterae et al., 1999), and
inhibition of apoptosis can improve heart function and
lead to beneficial effects in HFpEF and HTN therapies (Liu
et al., 2018; Chen et al., 2019). Hp and Tf were involved
in the response to hypoxia, which promotes cardiomyocyte
apoptosis. Previous studies have indicated that Prnp is
associated with the negative regulation of apoptosis in
other diseases (Gao et al., 2019). As chloroform was best
matched with Hp, Tf, and Prnp, further studies exploring
the anti-apoptotic effect of chloroform in HFpEF and HTN
treatment are needed.

In our study, oxidative stress was important in both
HFpEF and HTN. Myocardial fibrosis, the major factor
leading to myocardial remodeling, was found to be a
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common pathological mechanism among HFpEF and
HTN. Previous studies using an animal model of HFpEF
and HTN have confirmed that the regulation of oxidative
stress contributes to the inhibition of myocardial fibrosis
(Wu et al., 2016; van der Pol et al., 2018). Similarly,
other studies showed that Hp and COQ9 are involved in
oxidative stress, including cellular oxidant detoxification
and negative regulation of oxidoreductase activity (Swain
et al., 2020; Yoshida et al., 2020). However, the effect of
epinephrine on oxidoreductase activity in HFpEF and HTN still
needs to be explored.

Immune responses are activated in both HFpEF and
HTN (Carnevale and Wenzel, 2018; Michels da Silva
et al., 2019). Although a treatment strategy targeting the
immune response achieved some positive results in HTN,
no obvious beneficial effects were observed in HFpEF
(Michels da Silva et al., 2019; Zhao et al., 2019). Previous
studies have shown that aging influences the immune
response in HFpEF and HTN, and here, we found that
Hp was associated with aging (De la Fuente et al., 2005;
Forman and Goodpaster, 2018). Furthermore, Prnp was
associated with the negative regulation of the T cell receptor
signaling pathway, which is known to influence the immune
response (Wong et al., 2017). Thus, chloroform may be an
effective drug for targeting the immune response in HFpEF
and HTN treatment.

The results showed that cardiac hypertrophy, which is
associated with diastolic function, was significantly associated
with HFpEF and HTN (Schmieder, 1990). Angiotensin II
receptor blockers (ARBs) have been used in clinical trials
for the treatment of HTN, as they not only reduce blood
pressure but also have beneficial effects on cardiac hypertrophy,
diastolic function, and renal function (Israili, 2000). ARBs
also affect the blood pressure of patients with HFpEF,
but do not have significant effects on echocardiographic
parameters, 6-min walk test distances, or brain natriuretic
peptide levels (Parthasarathy et al., 2009). Previous studies
have shown that epinephrine can also suppress cardiac
hypertrophy. Further research is necessary to determine whether
chloroform and prednisolone can induce similar beneficial effects
in HFpEF and HTN.

CONCLUSION

Seven co-DEPs were observed between the HFpEF-DEPs
and HTN-DEPs, including Hp, Tf, COQ9, Acat1, Timm44,
Abcb6, and Prnp. These co-DEPs were closely related to the
main functional similarities of HFpEF and HTN, including
myocardial contraction, energy metabolism, apoptosis, oxidative
stress, immune response, and cardiac hypertrophy. These
co-DEPs may serve as biomarkers and drug targets for
HFpEF and HTN. Furthermore, epinephrine, sulfadimethoxine,
chloroform, and prednisolone acetate may serve as precision
medicines for the treatment of HTN and HFpEF. Our
study provides several targets for of the development of

personalized therapies and precision medicines to treat HFpEF
and other comorbidities.

LIMITATIONS

There are some limitations to this study. Proteins with low
expression levels or those showing insignificant changes could
have been ignored in the analyses. Furthermore, these results
need to be validated through fundamental research and clinical
trials. Further animal experiments will help to explore the
function of these drugs in HTN and HFpEF, and small-
scale clinical trials will contribute to identifying whether
these drugs have similar effects in patients with HTN and
those with HFpEF.
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