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Simple Summary: Metastases cause the majority of breast cancer-related deaths. Circulating tumor
cells (CTCs), and in particular CTC-clusters, are considered the seeds of metastasis, but their analysis
in the early-stages of the disease has so far been limited by the fact that, by using conventional
and epithelial-based technologies (as the FDA-approved CellSearch platform), they are more often
detected in the metastatic setting. It is known, however, that cancer cells are heterogeneous and
can downregulate the expression of epithelial markers, thus limiting the detection capability of
epithelial-based technologies. Here, we show that it is possible to increase CTC-cluster detection
by using an epithope-independent technology based on blood filtration, and in particular that this
strategy allows to detect a high number of CTC-clusters in stage II-III breast cancer patients, before
and during neoadjuvant treatment. Our results therefore offer a new opportunity to deepen our
understanding of the cancer dissemination process in its early steps.

Abstract: The clinical relevance of circulating tumor cell clusters (CTC-clusters) in breast cancer
(BC) has been mostly studied using the CellSearch®, a marker-dependent method detecting only
epithelial-enriched clusters. However, due to epithelial-to-mesenchymal transition, resorting to
marker-independent approaches can improve CTC-cluster detection. Blood samples collected from
healthy donors and spiked-in with tumor mammospheres, or from BC patients, were processed for
CTC-cluster detection with 3 technologies: CellSearch®, CellSieve™ filters, and ScreenCell® filters.
In spiked-in samples, the 3 technologies showed similar recovery capability, whereas, in 19 clinical
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samples processed in parallel with CellSearch® and CellSieve™ filters, filtration allowed us to detect
more CTC-clusters than CellSearch® (median number = 7 versus 1, p = 0.0038). Next, samples
from 37 early BC (EBC) and 23 metastatic BC (MBC) patients were processed using ScreenCell®

filters for attaining both unbiased enrichment and marker-independent identification (based on
cytomorphological criteria). At baseline, CTC-clusters were detected in 70% of EBC cases and in
20% of MBC patients (median number = 2, range 0–20, versus 0, range 0–15, p = 0.0015). Marker-
independent approaches for CTC-cluster assessment improve detection and show that CTC-clusters
are more frequent in EBC than in MBC patients, a novel finding suggesting that dissemination of
CTC-clusters is an early event in BC natural history.

Keywords: circulating tumor cell clusters; liquid biopsy; early breast cancer; metastatic breast cancer;
circulating tumor microemboli; size-based enrichment

1. Introduction

Metastatic spreading is the main cause for death in patients diagnosed with cancer.
This process is promoted in its initial steps by cancer cells released from the primary tumor
into the blood stream. Accordingly, a large amount of data has been collected across
different tumor types linking the dissemination of circulating tumor cells (CTCs) with both
poor prognosis and treatment failure/resistance [1].

Nonetheless, single CTCs are inefficient in sustaining metastatic dissemination as,
to be able to colonize new sites, they must overcome numerous obstacles such as avoid
anoikis, escape immunological control by circulating immune cells, and resist sharing
stress due to fluid circulation, resulting in the fact that most CTCs do not survive long
in the circulation [2,3]. Therefore, being able to interact with other CTCs or with other
cells by generating homo- or heterotypic CTC-clusters appears a biologically reasonable
solution for increasing the metastatic potential of CTCs once they are facing the hostile
blood environment.

Functional studies employing animal models and patient-derived data [4–7] support a
role of CTC-clusters in tumor dissemination and metastasis formation in breast cancer (BC).
Such studies also offer hints on the biology of clusters revealing the mechanistic basis for
their association with poor outcome and suggesting possible targets for specific treatments
aiming at interfering with CTC-clusters formation and metastatic dissemination.

It is well known that metastatic dissemination occurs at early stages and is followed
by a prolonged dormant status of these early disseminated cells [8–10]. This observation is
supported by data demonstrating that enumeration of single CTCs predicts progression-
free survival and overall survival also in early breast cancer (EBC) patients (women with no
evidence for distant metastases), both prior [11,12] or after [13] breast surgery. Therefore,
addressing the presence of CTC-clusters in BC patients without clinically overt metastases
holds promise to gain important hints about the dissemination process.

However, this issue has not yet been addressed and, in BC, most studies evaluating the
clinical relevance of CTC-clusters have been limited to patients with metastatic or advanced
disease [14–20]. Overall, these studies suggest a direct association between detection of
CTC-clusters and poor clinical outcome, although the heterogeneous patient case series,
technical issues in CTC-cluster enumeration and variable definitions of CTC-clusters must
be taken into account as possible limitations and confounding factors.

Notably, all the mentioned studies used the CellSearch® for CTC-cluster detection,
which is possibly not the ideal method for CTC-cluster identification. The CellSearch®

is a platform specifically developed for assuring high detection of single CTCs with ep-
ithelial features and for attaining standardization of their enumeration [21]. No data are
available on its performance for CTC-cluster detection both in terms of recovery and of the
integrity of isolated clusters. The CellSearch® approach includes a CTC-enrichment step
employing ferrofluid nanoparticles with antibodies targeting EpCAM, which operates a
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selection in favor of clusters with exquisite epithelial features and possibly excludes larger
CTC-clusters [22], which could result in an underestimation in CTC-cluster enumeration.
Moreover, epithelial-to-mesenchymal transition (EMT) is recognized as an important driver
of tumor invasion and metastatic dissemination [23], and literature data supported an
increasing detection of mesenchymal markers in CTC-clusters compared to single CTCs in
breast cancer patients [24].

Recent studies by our group [25] and by an independent laboratory [26] reported the
detection of CTC-clusters in small cohorts of early-stage BC patients and confirmed their
malignancy by genomic profiling of individually isolated clusters. In particular, thanks
to the use of a blood-filtration technology, we were able to detect CTC-clusters in 6/6
EBC patient samples and assessed the presence of DNA aberrations in 96% of 48 analyzed
clusters [25]. These results suggest that CTC-clusters are frequent in EBC but are not
detected by the CellSearch. Thus, investigating the use of epitope-independent methods,
compared to the CellSearch®, for CTC-cluster detection, is urgently needed to be able to
fully appraise the actual clinical value of CTC-cluster in all BC stages.

Here, we hypothesized that resorting to epitope-independent approaches, such as
blood-filtration, can increase the detection of CTC-clusters, and that, by using these ap-
proaches, it is possible to identify CTC-clusters in EBC patients. To test our hypothesis we
first compared, in a series of spiked-in and clinical samples, the number of CTC-clusters
recovered using the CellSearch® platform and two size-exclusion methods based on a
short-time filtration that allows for the detection of both epithelial and non-epithelial
CTC-clusters. Thereafter, we implemented the recovery of CTC-clusters by filtration in a
prospective study involving patients with both EBC and metastatic BC (MBC) to analyze
CTC-cluster detection with respect to patient and primary tumor features.

2. Results
2.1. Comparison of Different Strategies for CTC-Cluster Identification
2.1.1. Technical Validation of Approaches used for CTC-Cluster Detection

To explore technical limitations of standard (CellSearch®) and filtration-based methods
for CTC-cluster detection, spiking experiments were performed comparing size-exclusion
approaches with the CellSearch® method (the currently most frequently used method
in CTC-cluster studies). In particular, we compared three technologies: the CellSearch®,
the CellSieve™ filters and the ScreenCell® filters. The latter two are very similar for the
enrichment strategy (based on short-time filtration through a membrane with pores of 7
and 6.5 µm, respectively), but differ for the criteria employed for the identification of tumor
cells. CellSieve™ filters include an identification based on marker expression similar to
that of CellSearch® (CKpos and CD45neg cells), whereas ScreenCell® filters’ identification is
based on cytomorphological evaluation.

Mammospheres derived from the MCF7 breast cancer cell line were used as surrogates
of CTC-clusters. For each technology, 10 mammospheres were spiked into healthy donor
blood samples (n = 8), and subsequently processed for CTC-cluster enrichment. For
ScreenCell® only, two spiking experiments were performed using PBS supplemented with
HSA, instead of blood; this was done to test the stress associated with the filtration process
itself, since, for this technology only, fresh blood is used for the spiking step and the
presence of active immune cells from the donor might have an impact on mammospheres
(for CellSearch® and CellSieve™ the blood is instead collected in CellSave tubes containing
a preservative which fix blood cells). The mammosphere recovery rates for each of the
10 spiking experiments are reported in Table 1.

All three technologies showed similar recovery ranging from 60% to 100%. The
impossibility of recovering 100% of the mammospheres in each sample suggests that a
partial dissociation of the mammospheres occurred, as also supported by the presence of
single tumor cells and fragments of mammospheres in the samples. However, disruption
was not specifically induced by filtration; in fact all the samples with a 100% recovery were
processed with filters.
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Table 1. Mammosphere recovery in spiking experiments, using different detection methods.

Sample ID Enrichment Technology Mammosphere Recovery Rate (%)

1
CellSearch®

70
2 80
3 60

4
CellSieve™

70
5 80
6 60

7

ScreenCell®

60
8 100

9 * 100
10 * 100

* For samples 9 and 10, mammospheres were spiked into PBS supplemented with HSA, instead of blood.

Another possible concern about using filtration devices for CTC-cluster identification
is the possibility of the formation of aggregates on the filtration membrane during the pro-
cessing, resulting in the identification of fictitious CTC-clusters. To exclude this possibility,
we spiked single MCF7 cells in three healthy donor blood samples (n = 30 MCF7 cells per
sample). The samples were processed with CellSieve™ filters and with ScreenCell® filters
(2 and 1 sample, respectively). We observed the presence of only 1 aggregate of two tumor
cells, on one CellSieve™ filter, indicating that filtration does not induce the formation of
artifactual clusters.

2.1.2. CTC-Cluster Detection in Clinical Samples Using an Epithelial-Based and a
Size-Based Approach

Once we assessed that the ability of enriching clusters for the three technologies was
similar, we next aimed at evaluating whether phenotypic heterogeneity of CTC-clusters
in clinical samples (i.e., the presence of both epithelial and non-epithelial clusters) could
have an impact on CTC-cluster detection by the epithelial marker-based CellSearch®

platform, compared to the marker-independent and size-based approaches. In that respect,
19 blood samples collected from 16 patients with MBC were processed in parallel with
CellSearch® and CellSieve™ filters (Figure 1A). For this analysis, CellSieve™ was used
as the representative among the two filtration methods, since its enrichment strategy is
the same of ScreenCell filters (based on size), but its identification criteria are based on the
detection of epithelial markers, and therefore allow for the distinction between epithelial
and non-epithelial clusters (not possible with ScreenCell® filters).

Blood samples were collected from clinically selected patients with highly aggressive
disease and during disease progression to increase the probability of CTC-cluster pres-
ence (patients’ clinico-pathological characteristics are reported in Table S1). For samples
processed with the CellSearch®, only CTC-clusters expressing CK (CKpos CTC-clusters,
defined as groups of two or more cells showing CKpos and CD45neg staining, Figure 1B)
could be detected, whereas for samples processed with CellSieve™ filters it was possible
to identify both CKpos and CKneg clusters (Figure 1C,D, respectively). CKneg clusters were
defined as groups of two or more cells showing a CKneg, CD45neg and CD31neg staining
(the latter marker allowing for the exclusion of endothelial cell clusters). CD31 expression
was unexpectedly observed also in a few CKpos CTC-clusters (Figure S1). These clusters,
CKpos and CD45neg, were included in the analysis.
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Figure 1. Comparison of CellSearch and CellSieve for CTC-cluster detection in clinical samples. (A) Nineteen blood 
samples collected from patients with MBC were processed in parallel with CellSearch and CellSieve for the detection of 
CTC-clusters. (B) Representative image of a CKpos CTC-cluster detected by CellSearch (green = CK; pink = DAPI; 10× 
magnification). (C,D) Representative images of a CKpos (C) and a CKneg (D) cluster detected by CellSieve (green = CK; blue 

Figure 1. Comparison of CellSearch and CellSieve for CTC-cluster detection in clinical samples. (A) Nineteen blood samples
collected from patients with MBC were processed in parallel with CellSearch and CellSieve for the detection of CTC-clusters.
(B) Representative image of a CKpos CTC-cluster detected by CellSearch (green = CK; pink = DAPI; 10× magnification).
(C,D) Representative images of a CKpos (C) and a CKneg (D) cluster detected by CellSieve (green = CK; blue = DAPI; yellow
= CD45; the white arrows indicate 2 CD45neg/CKneg cells inside the cluster). (E) Doughnut plot showing the percentages
of samples containing CKpos CTC-clusters (blue) analyzed by CellSearch (outer circle, 53%) and CellSieve (inner circle,
79%). Positivity threshold was set at 1 CTC-cluster/7.5 mL of blood. The percentage of CellSieve samples containing only
CKneg clusters are shown in orange (5%). (F) Spaghetti plot showing the numbers of CTC-clusters detected in each sample
analyzed by CellSearch and CellSieve. For CellSieve samples, both the counts of CKpos CTC-clusters only and of CKpos plus
CKneg clusters (CellSieve total) are reported (colors are arbitrary assigned for increasing readability of the graph only).
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We detected ≥1 CKpos CTC-clusters in 10 samples by using the CellSearch® and in
15 samples by using CellSieve™ filters (Table S2). Moreover, in the samples processed by
filtration, CKneg clusters were observed in 12 out of 18 evaluable samples, in 1 case alone
and in 11 cases together with CKpos CTC-clusters.

By adopting as positivity threshold the presence of one single cluster per sample,
we observed an increase in positivity rates from 53% in CellSearch® samples, to 79% and
84% in CellSieve™ samples when considering only CKpos or CKpos and CKneg clusters,
respectively (Figure 1E). Moreover, the absolute numbers of detected clusters were higher in
samples processed with CellSieve™ filters than with the CellSearch® (Figure 1F; Table S2).
In samples processed with the CellSearch®, a median of 1 CKpos CTC-cluster (interquartile
range, IQR = 0–2; range 0–108) was identified, compared to a median of 3 CKpos CTC-
clusters (IQR 1–6; range 0–112) for samples processed with CellSieve™ filters (p = 0.0293).
The increase in cluster counts for samples processed with CellSieve™ filters was even
higher when considering CKpos and CKneg clusters together (median = 7, IQR 1–11; range
0–112, p = 0.0038).

These results suggest that by using a size-based and marker-independent approach it is
possible to detect a higher number of clusters, allowing them to also be identified in patients
considered CTC-cluster negative by the CellSearch®. However, the observed phenotypic
heterogeneity of clusters in BC patient samples, and in particular the presence of CKneg

clusters, highlighted an important limitation of CellSieve™ technology, which was able to
enrich this type of clusters, but did not allow for reliable assessment of their malignancy
(since they were only DAPIpos). On the other hand, ScreenCell® technology had the same
ability of enriching CKneg clusters (since it is size-based as well), but its identification was
based on cytomorphological evaluation and was therefore not dependent on the expression
of any specific tumor marker. Moreover, we recently demonstrated the technical validity of
cytomorphological identification of CTC-clusters enriched by filtration [25]. We therefore
decided to use ScreenCell® filters to investigate the presence of CTC-clusters in both MBC
and EBC patients.

2.2. Detection of CTC-Clusters by a Size-Based Approach in Patients with Breast Cancer
2.2.1. Patient Characteristics

Between June 2014 and December 2015 a total of 37 and 23 patients with EBC and MBC
undergoing systemic treatment were enrolled in the study. Main clinical and pathological
features are reported in Tables 2 and 3 (for EBC and MBC patients, respectively).

The median age of EBC patients treated with neoadjuvant chemotherapy (NAC) was
49 years (range 26–84). At diagnosis, tumor size was 2–5 cm (cT2) in 20 patients (54%),
and >5 cm (cT3-4) in 16 patients (43%). Clinical nodal status was positive (cN1–3) in 29
cases (78%). No patients with stage I BC were enrolled. Histological grade 3 was reported
in 22 evaluable patients (60%). Among the 36 evaluable patients, the median Ki67 value
was 40%, with values ranging from 10% to 90%. Thirty-two patients (86%) had primary
tumors with a Ki67 staining ≥ 20 %. Nine patients (24.3%) reached a pathological complete
response (pCR).
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Table 2. Clinico-pathological characteristics of EBC patients and CTC-clusters.

N % Median CTC-Clusters
(Range) p CTC-Cluster + (%) p

Age
• <50 20 54.1 2.5 (0–20)

0.889
15 (75%)

0.719• ≥50 17 45.9 2 (0–20) 11 (65%)

Tumor size
• T1–T2 21 56.8 4 (0–20)

0.180
16 (76%)

0.475• ≥T3 16 43.2 1 (0–15) 10 (63%)

Nodal status
• N0 8 21.6 0 (0–12)

0.273
3 (37.5)

0.123• N1 21 56.8 3 (0–20) 17 (81.1)
• ≥N2 8 21.6 3 (0–20) 6 (75%)

Histology
• NST 35 94.6 2 (0–20)

0.322
15(68%)

• Lobular 2 5.4 3 (0–15) 11(73%) >0.99

Grade
• 2 10 27.0 2 (0–15)

0.918
7 (70%)

>0.99• 3 22 59.5 1.5 (0–20) 15 (68.2%)
• Missing 5 13.5

Ki67
• <20 4 10.8 1.5 (0–12)

>0.10
2 (50%)

0.570• ≥20 32 86.5 2 (0–20) 23 (72%)
• Missing 1 2.7 - -

Subtype
• HER2-positive 11 29.7 0 (0–8)

0.047
5 (45%)

0.111• Triple negative 11 29.7 5 (0–20) 9 (82%)
• Luminal-like 15 40.5 4 (0–20) 12 (80%)

Type of neoadjuvant chemotherapy
• Anthra/Taxane 32 86.5 2.5 (0–20)

0.984
22 (69%)

0.609• CarboPt-based 5 13.5 1 (0–20) 4 (80%)

Table 3. Clinico-pathological characteristics of MBC patients.

N %

Age
• <50 5 21.7
• ≥50 18 78.3

Histology
• Ductal 15 65.2
• Lobular 2 8.7
• Other 6 26.1

Disease type at screening
• Visceral 6 26.1
• Nonvisceral 12 52.2
• Missing 3 13.0

Hormone receptor status
• ER -positive, PgR positive or both 18 78.3
• ER-negative and PgR-negative 5 21.7

HER2 status
• Positive 1 4.3
• Negative 22 95.7

Metastatic disease at diagnosis
• No 15 65.2
• Yes 8 34.8

Prior chemotherapy for metastatic disease
• No 20 87.0
• Yes 3 13.0
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The median age of MBC patients was 68 years (range 29–84). The most common
histological type was invasive ductal carcinoma (65% of cases). Of the 23 patients included
in the study, 6 (26%) had visceral and 12 (52%) had non-visceral involvement. Eight patients
(35%) presented with de novo metastases. All patients, except three, had received no prior
systemic treatment for metastatic disease.

2.2.2. CTC-Clusters in Patients with Metastatic and Early Breast Cancer

To investigate the presence of CTC-clusters in our cohort of patients with MBC and
EBC, blood samples collected before starting systemic treatment underwent CTC-cluster
enrichment by filtration, followed by a marker-independent CTC-cluster identification
based on cytomorphological criteria using ScreenCell® filters (Figure 2A). This simplified
identification strategy requires only H&E staining rather than immunofluorescence, and
it gives reliable results regarding cell malignancy, independently from the expression
of specific markers [27–30], as we have previously confirmed by CTC-cluster genomic
profiling [25]. At baseline, in EBC patients, one or more CTC-clusters were detected in
26/37 cases (70%), with a median of two clusters per sample (range 0–20) (Figure 2B).
Among the 23 baseline samples collected from MBC patients, three samples were from
pre-treated patients and one was not evaluable for CTC-cluster identification (Figure 3A);
CTC-clusters were detected in 4 of the 19 remaining samples (21%), with a median of 0
CTC-clusters per sample (range 0–15). CTC-clusters were therefore more frequent and
more abundant in patients with EBC than MBC (p = 0.0015), despite the fact that notoriously
single CTCs are more numerous in MBC.

In particular, patients with stage II BC showed a higher CTC-cluster count than
patients with stage III and IV BC (Figure S2A). Among patients with EBC, a slightly higher
number of CTC-clusters was detected in patients with node-positive status (Figure 2C),
although this difference was not statistically significant (median CTC-cluster number = 0
versus 3 for node-negative versus node-positive patients, p = 0.1110). CTC-clusters were
more frequently observed in patients with luminal-like and triple negative BC than in
patients with HER2-positive disease (median CTC-cluster number = 4, 5, and 0 for luminal-
like, triple-negative, and HER2-positive BC respectively, p = 0.0467) (Figure 2D). For
25 patients for whom a primary tumor tissue sample was available, the presence of CTC-
clusters was analyzed with respect to the presence of tumor-infiltrating lymphocytes (TILs)
at the primary tumor site but no difference in CTC-cluster counts was observed between
patients presenting a high or low level of TILs (median CTC-cluster number = 3 versus 2
for patients with <12% versus ≥12% TILs, p = 0.5392) (Figure S2B).

These results indicate that CTC-clusters are present in early stages in BC patients and
are more frequent than in MBC patients. Among EBC patients, CTC-clusters are more
abundant in the blood of patients with HER2-negative disease.
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Figure 2. Detection of CTC-clusters in patients with early and metastatic breast cancer. (A) Representative images of
CTC-clusters enriched by filtration using ScreenCell filters. The list of cytomorphological criteria used for the identification
of CTC-clusters is reported in the inset. (B–D) Boxplots reporting the number of CTC-clusters detected in baseline samples
collected from EBC vs. MBC patients (B); and in baseline samples collected from EBC patients, according to the patients’
nodal status (C) and to the disease subtype (D).
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Figure 3. CONSORT plot reporting patients included in the study. (A) Metastatic breast cancer (MBC) patients (N.E. = not
evaluable: BL = baseline); (B) Non metastatic breast cancer (EBC) patients: blood samples available at each time point are
reported (BL = baseline; DT = during treatment; EOT = end of treatment; PS = post-surgery).

2.2.3. Longitudinal Evaluation of CTC-Clusters during Neoadjuvant Therapy

To further investigate the clinical relevance of CTC-clusters in EBC patients, longitu-
dinal blood samples collected at baseline (N = 37), during (N = 30), at the end (N = 18) of
NAC and after surgery (N = 18) were analyzed (Figures 3B and 4A). The median number of
detected CTC-clusters at baseline was 2 (range 0–20), during treatment (DT) was 1 (range
0–97), and at the end of treatment (EOT) was 3 (range 0–116). Thus, CTC-clusters did
not decrease during NAC, but instead increased in some patients. Overall, no significant
differences were observed in DT and EOT with respect to baseline. On the other hand,
a significant decrease was observed from DT to surgery (p = 0.0448) and EOT to surgery
(p = 0.0208). Only a slight decrease was instead observed between baseline and surgery
(p = 0.0678). The median number of CTC-clusters after surgery was 0 (range 0–20).

At baseline, numerically fewer clusters were observed in NAC-responders, i.e., pa-
tients with complete disappearance or a reduction of primary tumor volume of at least 50%
after NAC, as compared to non-responders, i.e., patients with stable disease after NAC: 1
cluster (range 0–20) versus 4 clusters (range 0–12), respectively (p = 0.58). The presence of
CTC-clusters at baseline was not significantly associated with pCR (Figure S3A). However,
patients without clusters at baseline reported a numerically higher pCR rate as compared
with those presenting with clusters, 27% versus 23%, respectively. Moreover, after surgery,
a significantly lower number of clusters was observed in patients with pathological com-
plete or partial response versus stable disease (p = 0.0208) (Figure S3B). As of 15 May 2020,
a total of 10 out of 37 EBC patients relapsed. No difference in baseline or post treatment
distribution of clusters was reported among patients with or without a relapse. At the same
date, 4 out of 19 evaluable MBC patients had died, notably the negative predictive value of
clusters at baseline in this case was as high as 86%, but the data is merely explorative due
to the small sample size.
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Figure 4. CTC-cluster evaluation during neoadjuvant therapy in early breast cancer patients. (A) Violin plot showing the
number of CTC-clusters detected in samples longitudinally collected from 37 EBC patients. CTC-clusters were evaluated
before starting neoadjuvant treatment (Baseline, n = 37), during (DT, n = 30), at the end of therapy (EOT, n = 18), and after
surgery (Surgery, n = 18). The colors indicate the BC subtype (blue = HER2-positive; purple = luminal-like; red = triple-
negative) while the gray shadow indicates the density of samples for the corresponding CTC-cluster number. The detailed
description of 2 index cases is reported in panels (B,C). TNBC = triple-negative breast cancer; AT = Antracyclines, Taxanes;
CMF = Cyclophosphamide, Methotrexate, Fluorouracil; pCR = pathological complete response.
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We present two examples of patients who responded to NAC but did not achieve pCR,
illustrating the cluster’s dynamics during treatment.

Patient A (Figure 4B) was diagnosed with a 40 mm ductal carcinoma of the right breast,
G3 ER, PgR and HER2 negative, 90% Ki67. Bone scan and liver ultrasound were negative
for distant involvement. She was further staged with a positron emission tomography (PET)
scan that confirmed a breast primary lesion with a standardized uptake value (SUV) of 22.5
and no loco-regional involvement. The patient was therefore enrolled in a NAC clinical trial
and received four cycles of Doxorubicin 60 mg/m2 together with Paclitaxel 200 mg/m2 q21.
No clusters were detectable at baseline. The first PET evaluation showed a dramatic drop in
metabolic activity (SUV 3.7), with five clusters detectable in the peripheral blood. Eribulin
1.23 mg/m2 was then started and four cycles were administered with a 1, 8, q21 schedule.
The subsequent PET scan showed further metabolic response with a 3.7 SUV, while an
increase in clusters was observed (35 clusters). She then underwent a quadrantectomy
with 17 mm residual disease and absence of nodal involvement (ypT1c, N0). ER was
2%, PgR and HER2 were negative, Ki67 was confirmed at 90%. Filter based enumeration
after surgery showed a complete clearance of detectable clusters. The patient was then
started on adjuvant CMF (Cyclophosphamide 600 mg/m2, methotrexate 40 mg/m2 and
5-Fluorouracil 600 mg/m2) but died seven months after surgery due to noncancer-related
causes without any detectable local or distant relapse.

Patient B (Figure 4C) was diagnosed with a screening-detected lobular carcinoma of
the left breast, G2, ER 20%, PgR 10%, HER2 negative and Ki67 10%. The baseline breast
magnetic resonance (MRI) showed a multifocal primary tumor with a 38 mm main lesion
and a 3 mm satellite lesion, while distant metastases were excluded via PET scan. Baseline
clusters enumeration was 3. A Doxorubicin 60 mg/m2 and Paclitaxel 200 mg/m2 q21
based NAC was started. Breast MRI after 4 cycles showed a partial regression. Clusters
were not detectable. CMF was administered for 4 cycles. While the breast MRI showed
further radiological response, 116 clusters were detected in the peripheral blood. The
patient underwent quadrantectomy with 3 mm residual disease and two metastatic lymph
nodes out of seven analyzed (ypT1a N1a). ER was 90%, PgR and HER2 were negative,
Ki-67 was 5%. After bone scan restaging, she was started on adjuvant Letrozole 2.5 mg,
which is still ongoing without evidence of distant or local recurrence.

3. Discussion

By using an epitope-independent enrichment method combined with cytomorpho-
logic detection and picking of single CTC-clusters we have previously reported the presence
of genomically aberrant cells within 46/48 CTC-clusters isolated from six early-stage breast
cancer patients [25]. In the current study, we extended these findings by providing method-
ological comparison between enrichments methods and reporting results on CTC-cluster
detection comparing EBC with MBC patients. We first challenged the most frequently-used
technical approach in BC for CTC-cluster detection, the CellSearch®, by comparing it with
methods based on size exclusion. Overall, filtration-based methods allowed detecting
a higher number of clusters in the blood of BC patients. Thus, we next analyzed blood
samples prospectively collected from 37 EBC and 23 MBC patients using the ScreenCell
approach and reported that, surprisingly, CTC-clusters were more frequently detected
in EBC than in MBC patients. We also observed that molecular subtypes affected their
presence in EBC as clusters were more frequently observed in women with HER-2 negative
primaries. Finally, the presence of clusters before starting neoadjuvant treatment did not
associate with pCR and their numbers increased during treatment, but dropped after
surgery.

To the best of our knowledge, this is the first study specifically comparing CTC-cluster
detection by CellSearch® and by a validated filtration-based technique [31], in patients
with BC. Such a comparison has instead been performed in small-cell lung cancer pa-
tients, by using in parallel the CellSearch® and the ISET filtration approach, showing
similar results [22]. Indeed, in lung cancer patients, no clusters were detected with the
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CellSearch®, whereas they were found in 50% of samples from stage IIIB/IV patients
processed with the ISET. The findings were explained by the authors as a possible failure
of the immune-magnetic enrichment step in the CellSearch® protocol to capture large
size clusters. However, additional considerations can be made regarding the increased
CTC-cluster detection attained by using filtration, both in our study and in that by Krebs
and colleagues. Strong positivity for mesenchymal, with concomitant weak positivity
for epithelial markers, has been reported for CTC-clusters isolated from patients with
advanced breast cancer [24]. Thus, an increase in cluster detection is not surprising when
using methods that do not relay on the expression of epithelial markers, and which are
not limited to the detection of epithelial clusters only. Conversely, the observed increased
detection of epithelial clusters (CKpos) is an unexpected finding. A possible explanation is
that CKpos CTC-clusters can also include cells undergoing EMT and therefore expressing a
mixed phenotype rather than a frankly epithelial one. Since the CellSearch® detects only
CTC-clusters expressing both EpCAM and CK, but EpCAM expression is lost early during
EMT [23,32], the CellSearch® could miss CKpos CTC-clusters that are undergoing EMT.
This hypothesis could not be tested in the present study since the expression of EpCAM
and mesenchymal markers was not assessed and this represents a limitation. However, the
results of the spiking experiments showing that CellSearch® yielded comparable recovery
rates as filtration devices, when using frankly epithelial mammospheres (expressing both
EpCAM and CK) indirectly supports our hypothesis. Thus, since in the numerous studies
run with the CellSearch® in women with early disease, massive presence of clusters has
not been reported, we speculate that the higher detection frequency of CTC-clusters in
EBCversus MBC patients observed here using filtration is related to a more mesenchymal
or mixed phenotype of CTC-clusters specifically in the early stages of BC. Further inves-
tigations comparing epitope-independent approaches to the CellSearch® in different BC
stages will be required to address this question.

Besides filters, other marker-independent technologies such as the HBCTC-Chip [4,24],
the Cluster-Chip [33] and the Parsortix™ [6], have been employed for CTC-cluster studies,
but mainly focusing on functional aspects rather than on pure translational purposes.
In fact, despite the fact that a number of studies have described new technical tools
specifically dedicated to CTC-cluster detection [for a review see [34,35], none of these
innovative methods is widely available to clinical research centers. In this context, simpler
technologies, as those based on size-exclusion would represent an affordable approach,
easily transferable to clinical studies that might help in elucidating the role of CTC-clusters
in different clinical contexts. This represents a strength of our study and opens the way to
further investigations on the role of CTC-clusters in larger series of women with EBC.

Indeed, here we applied an easy-to-use filtration-based approach to investigate the
relevance of CTC-clusters in 37 EBC and in 23 MBC patients. The ScreenCell® technology
was chosen since its validity has already been reported both for single CTCs and for clusters
both when identified based on cytomorphological criteria only, [29,30] or based on marker
expression [36].

Overall we report that, in baseline samples collected at the beginning of NAC, the
detection of at least 1 CTC-cluster occurred at least three times more frequently in women
with early breast cancer than in women beginning first line treatment for MBC (a result that
we also observed in our previous pilot study, which was comparing ScreenCell® with Ad-
naTest technology [37]). Although, due to the small case series, we have not done a formal
analysis to exclude a bias due to different distribution of molecular subtypes between the
two groups, molecular subtype linked effects would have impacted the data in opposite
direction than observed. Thus, our findings support the concept that dissemination of
CTC-clusters is an early event in EBC patients, rather than an event occurring during
metastatic progression, as might have been expected by the high metastatic potential of
clusters [4]. Since dissemination is proven to occur early in breast cancer [8,9], and indeed
single CTCs also hold prognostic value in EBC women [11–13], the more frequent presence
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of CTC-clusters and the higher number of clusters seen in early rather than later steps of
the disease is intriguing.

Nevertheless, many questions on clinical and biological aspects still remain to be
answered. We observed that molecular subtypes affect the prevalence of CTC-clusters. In
particular, CTC-clusters were found to be significantly more frequent in women bearing
HER2-negative tumors, a result that may appear counterintuitive since HER2-positive
tumors are more aggressive and are frequently associated with stemness markers [38].
Moreover, we have noticed that luminal-like tumors release high number of clusters, a
finding possibly linked to their late relapse-pattern and to a more efficient promotion of
dormancy within the clusters from patients with ER+ tumors [39]. Overall, this suggests
that clusters should be studied in molecularly homogeneous populations, although this
could not be done in this study, due to the limited number of patients.

In our cohort of EBC patients, the detection of clusters did not correlate with the
likelihood of achieving pCR, a finding already reported in the literature for CTCs [12,30].
Moreover, during the course of treatment a trend towards an increase in CTC-clusters
rather than a decrease was observed, as also described in another study using ScreenCell®

filters [30]. Indeed, only after surgery did we actually observe a decrease in the number of
clusters, although a significantly higher number of clusters persisting after surgery was
detected in patients with a pathologically non-responding disease (median 3, IQR 1–11.5
vs. 0, IQR 0–1 for non-responders and responders, respectively).

Thus, it may be speculated that in EBC, clusters formation is related to the presence
and characteristics of primary tumor, and the neoadjuvant treatment has a different effect
on the primary tumor and on clusters. Moreover, despite the fact that this study is not
properly powered to detect differences in disease-free survival and no association was
observed between relapse and CTC-clusters at baseline, it is intriguing to think of potential
applications of cluster enumeration after surgery as a completion of pathological staging to
assess the overall combined response to systemic and locoregional treatments.

Notably, a discrepancy between cluster dynamics and imaging was observed. As
consistently shown by the index cases, clusters generally increased during NAC, notwith-
standing the concomitant radiological and metabolic response. On the other hand, patients
that did not show response to NAC had a significantly higher number of clusters after
surgery. This suggests a more nuanced role of clusters in EBC with respect to that of
epithelial clusters in the metastatic setting.

Regarding the cluster composition, we reported in the same issue of the journal [25]
that most CTC-clusters isolated in women with EBC are heterotypic with variable pro-
portions of tumor and accessory normal cells. Indeed, cooperation and crosstalk with
other blood cells play a relevant role in increasing the metastasis-promoting efficiency of
cluster [7,40–43]. However, in the current study, we did not find an association between
TILs evaluated on the primary tumor and CTC-clusters, and thus the possible interaction
between inflammatory cells and CTC-clusters warrants further studies.

Unfortunately we were instead unable to perform a genomic profiling of the clusters
detected in the present case series similarly to what was done in the our other study due
to the fact that here clusters were collected from the filters months after their isolation
resulting in bad-quality amplified DNA not suitable for sequencing. Nonetheless, our
previous data [25] confirmed the malignancy of 96% of clusters identified by filtration
and cytomorphologic evaluation in EBC patients, supporting the validity of our detection
approach.

The observation that clusters do not disappear with the neoadjuvant treatment (and
thus possibly also persist after adjuvant treatment) suggests that they might hold the
potential of biomarkers of response to monitor the efficacy of neo- and adjuvant treatments,
although this awaits a demonstration in larger studies. Furthermore, once their role in the
metastatic process will be widely confirmed, they could also become the target of specific
treatments as already done in the metastatic setting (NCT03928210) where evidences on
the prometastatic role of CTC-clusters are available [6,44].
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We are finally aware of the limits due to the small size and heterogeneity of the case
series, although its strength may be linked to the fact that these represent real-world
patients, prospectively collected within the daily clinical practice.

4. Materials and Methods
4.1. Cell Cultures and Spiking Experiments

The MCF7 breast cancer cell line was purchased from the American Type Culture
Collection (ATCC, Manassas, VA, USA) and cultured in DMEM/F-12 (Lonza, Slough,
UK) medium supplemented with 10% fetal bovine serum (Lonza). Mammospheres were
derived from MCF7 cells cultured as floating cells in MammoCult™ (StemCellTechnolo-
gies, Vancouver, BC, Canada), a serum-free culture medium, supplemented with Heparin
Solution (StemCell Technologies) at final concentration of 4 µg/mL, and Hydrocortisone
(StemCell Technologies) at final concentration of 0.48 µg/mL. The cells were maintained
in non-adherent condition (Corning® Ultra-Low Attachment flask, Corning Inc., Corning,
NY, USA) at 37 ◦C, in humidified 5% CO2 and 5% O2. Authentication of cell lines by STR
DNA profiling analysis was performed by the Genomic Core Facility at Fondazione IRCCS
Istituto Nazionale Tumori (INT). We adopt a Mycoplasma contamination testing policy
employing an ELISA approach (MycoAlert mycoplasma detection kit, Lonza) for regular
testing. All cells used for this study tested negative for mycoplasma.

For the spiking experiments, either single MCF7 cells or single mammospheres were
manually captured under an inverted microscope using a p10 micropipette and directly
spiked into phosphate-buffered saline (PBS) supplemented with human serum albumin
(HSA 3% w/v, to mimic protein concentration of plasma), or into healthy donor blood
collected in either CellSave Preservative Tubes (Menarini Silicon Biosystems, Bologna,
Italy) for CellSieve™ and CellSearch® processing, or in K2EDTA BD Vacutainer tubes (BD,
Franklin Lakes, NJ, USA) for ScreenCell® processing. Spiked-in samples were processed
following the same protocols used for clinical samples, described in paragraphs 4.2 and
4.5. Spiked-in mammospheres were variable in dimensions. We have chosen spheres that
had sizes similar to those of medium/large clusters observed in patients, since the main
reason for these experiments was to exclude possible shearing stress effect occurring during
filtration which could damage the clusters (which should have a major impact on large
rather than small clusters).

4.2. Comparison of CellSearch® and CellSieve™ Filters for CTC-Cluster Detection in
Clinical Samples

Peripheral blood samples (15 mL) were collected in CellSave Preservative Tubes
(Menarini Silicon Biosystems) from patients with MBC treated at the Robert H Lurie
Comprehensive Cancer Center at the Northwestern University (Chicago, IL, USA). All
patients provided written informed consent to participate in the study, which was approved
by the institutional review board at the Robert H. Lurie Comprehensive Cancer Center of
Northwestern University (NUDB16Z01). Each sample was divided into two aliquots (7.5
mL each) and processed in parallel with the CellSearch® (Menarini Silicon Biosystems) and
with CellSieve™ filters (Creatv MicroTech, Potomac, MD, USA) within one day of collection.
For CellSearch® processing, the CELLSEARCH® Circulating Tumor Cell Kit (Menarini
Silicon Biosystems) was used following the manufacturer’s instructions. Briefly, after
immunomagnetic enrichment based on EpCAM expression, enriched CTCs were stained
with fluorescently-labeled antibodies against cytokeratins (CK) (8, 18 and 19) and CD45
and with DAPI. The number of CTC-clusters (groups of ≥2 CKpos/CD45neg cells) was
evaluated using the CELLTRACKS ANALYZER II® System (Menarini Silicon Biosystems)
by a trained technician. For CellSieve™ filters processing, the CellSieve™ Enumeration
Kit (Creatv MicroTech, Rockville, MD 20850, USA) was used following the manufacturer’s
instructions. The blood samples were filtered through a microporous membrane with pores
of 7 µm diameter and subsequently stained with fluorescently-labeled antibodies against
CK (8, 18 and 19), CD45 and CD31 (an endothelial marker used to exclude endothelial cell
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clusters) and with DAPI. The number of CTC-clusters (i.e., groups of ≥2 CKpos/CD45neg

or ≥2 CKneg/CD45neg/CD31neg cells for CKpos and CKneg CTC-clusters, respectively) was
evaluated using a fluorescence microscope.

4.3. Case Series & Blood Sample Collection Timing

Women with a histologically confirmed diagnosis of stage II and III BC (EBC) were
recruited at Fondazione IRCCS Istituto Nazionale dei Tumori (Milan, Italy) prior to start of
neoadjuvant treatment as for clinical practice, whereas women with stage IV BC (MBC)
were recruited prior to start of the first line of treatment. All patients provided written
informed consent before undergoing any procedures and the CTC study was approved by
the INT Institutional Review Board and Ethics Committee on February 19 2013.

Blood samples were longitudinally collected from patients with EBC (i) before starting
neoadjuvant treatment, (ii) at midcourse during treatment, (iii) at the end of treatment, and
(iv) after surgery (from 3 to 27 weeks). Blood samples were collected from patients with
MBC before starting the first line of treatment (Figure S2).

Pathological complete response (pCR) was defined as the absence of cancer cells in
the surgical specimens of breast and lymph nodes. Partial response (PR) and stable disease
(SD) referred to clinical assessment of response to treatment according to the WHO criteria,
hence a >50% tumor shrinkage occurred for a PR, and >25% tumor increase for progressive
disease (PD), whereas stable disease was neither PR nor PD.

4.4. Patho-Biological Characterization of Tumors

Hormone receptor status was evaluated according to the American Society of Clin-
ical Oncology guidelines [45]. HER2 status was considered negative when the immune-
histochemical score was 0–1, or 2+ with a negative chromogenic in situ hybridization
result [46]. Ki-67 labeling index was assessed by the MIB-1 monoclonal antibody by
counting invasive cancer cells at the tumor periphery, without focusing on hot-spots, as
recommended by the International Ki-67 in Breast Cancer Working Group [47].

The evaluation of tumor-infiltrating lymphocytes (TILs) was performed in full-face
hematoxylin and eosin sections from surgical or bioptic sample, strictly adhering to the
criteria proposed by the TILs Working Group [48]. Briefly, all mononuclear cells (i.e.,
lymphocytes and plasma cells) in the stromal compartment within the borders of the
invasive tumor were evaluated and reported as a percentage. TILs outside the tumor
border, around in situ component (DCIS) and normal breast tissue, as well as in areas of
necrosis, were excluded from the scoring.

4.5. CTC-Cluster Enumeration by ScreenCell® Filters

Peripheral blood samples (9 mL), collected into K2EDTA BD Vacutainer tubes (BD)
using a 21G needle, were stored at 4 ◦C in the dark and processed within 2.5 h for CTC-
cluster enrichment using the ScreenCell® Cyto kit (ScreenCell, Sarcelles, France) [49]
according to the manufacturer’s instructions, with slight modifications with respect to
what previously described [37,50]. Briefly, after discarding the first aliquot of blood to
avoid contamination by keratinocytes, three aliquots of 3.0 mL of whole blood per sample
were separately mixed with 4 mL of a proprietary red blood cell lysis and fixation buffer
(ScreenCell® FC2 filtration buffer) and incubated for 8 min at room temperature. Each
aliquot was filtered to isolate CTC-clusters using ScreenCell® Cyto isolation supports (ISs),
consisting in a microporous membrane with pores of 6.5 µm diameter. After rinsing with
PBS, ISs were air-dried and stained with Hematoxyilin Solution S (Merck, Darmstadt,
Germany) for 1 min and Shandon Eosin Y Aqueous Solution (Thermo Fisher Scientific
Inc., Waltham, MA, USA) for 30 s, at room temperature; or with May Grünwald (Merck
Millipore, Burlington, MA, USA; incubation for 2.5 min followed by a second incubation
for 2.5 min in May Grünwald diluted 1:2 with water) and Giemsa (Merck Millipore; diluted
1:10 with water, 10 min incubation) at room temperature. The stained ISs were sent to
ScreenCell for evaluation by a certified pathologist according to published criteria [51].
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CTC-clusters were defined as clusters of ≥2 CTCs showing the criteria of malignancy:
nuclear size ≥20 µm, nuclear-to-cytoplasmic ratio ≥0.75, irregular nuclear contours and
nuclear hyperchromatism. In case the cytoplasm edges were not clearly visible inside the
cluster (preventing nuclear-to-cytoplasmic ratio evaluation), malignancy identification was
mainly based on nuclei appearance: nuclei scattered irregularly through the cluster and
anisokaryosis (i.e., nuclei of variable sizes and shapes), in addition to nuclear size ≥20 µm
and irregular nuclear membrane. Detailed guidelines for ScreenCell filter interpretation are
described elsewhere [51]. Samples showing poor quality of cytology were excluded from
the analysis. The total number of CTC-clusters for each sample was obtained by summing
the CTC-clusters identified in the 3 ISs (corresponding to 9 mL of blood).

4.6. Statistical Analysis

Clinical and pathological variables were reported through descriptive analyses. Cate-
gorical variables were reported as frequency distribution, whereas continuous variables
were described according to median and interquartile range (IQR). Differences in clusters
distribution across subgroups of interest were tested through Mann–Whitney U test. Pair-
wise comparison between CellSearch® and CellSieve™ technologies, and across different
time points during neoadjuvant therapy were performed though Wilcoxon sign-rank test.
All reported p-values are two-sided.

Statistical analysis was conducted using the StataCorp 2016 Stata Statistical Software:
Release 15.1 (College Station, TX, USA), R (The R foundation for Statistical Computing.
version 3.3.1) (21 June 2016) and JMP (SAS Institute, version 15).

5. Conclusions

This study represents a small snapshot of CTC-cluster detection methods and on the
prevalence of clusters in BC patients at different disease stages. Nonetheless, it highlights
the possible bias linked to inadequate methods for cluster detection, a technical bias that is
worth considering in future translational studies. In addition, we report a new observation
of the fact that CTC-clusters are frequent in women with EBC. This represents a provocative
finding that needs to be addressed in future studies on larger series of cancer patients,
homogeneous with respect to molecular subtype. Finally, the observation that CTC-clusters
do not disappear during neoadjuvant treatment fosters the importance of developing
treatments specifically aimed at interfering with them.
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CTC-clusters with outcome in EBC patients.
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