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Mitochondrial DNA haplogroup distribution in Chaoshanese with

and without myopia
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Purpose: Mitochondrial DNA (mtDNA) haplogroups affect the clinical expression of Leber hereditary optic neuropathy,
age-related macular degeneration, and other diseases. The objective of this study is to investigate whether an mtDNA
background is associated with myopia.

Methods: Blood DNA was obtained from 192 college students, including 96 individuals with moderate-to-high myopia
and 96 controls without myopia. All the subjects were from a well-known isolated population living in the Chaoshan area
of east Guangdong Province and speaking one of the four major dialects in southern China. The mtDNA haplogroups in
the 192 subjects were determined by sequencing the mtDNA control region and partial coding regions as well as by
analysis of restriction fragment length polymorphisms. Each mtDNA was classified according to the updated version of
the Eastern Asian haplogroup system.

Results: Sixteen mtDNA haplogroups were recognized in the 192 subjects. The overall matrilineal structures of the
samples with and without myopia were similar and had genetic imprints showing their ethno-origin. There was no statistical
difference in frequencies of haplogroup distribution between subjects with and without myopia ()2 test, p=0.556).
Conclusions: We failed to identify clues that suggest an involvement of mtDNA background in the predisposition to

myopia.

Mitochondrial bioenergetics is linked to oxidative stress
that is associated with aging and neurodegeneration [1-3].
Mitochondria are involved in the production and clearance of
reactive oxygen species (ROS), and mutations of
mitochondrial DNA (mtDNA) may result in energy
deficiency and an increase in oxygen radicals. mtDNA
haplogroups, which are determined by a series of
characteristic variations and were formed during the origin
and migration of modern humans, have been shown to play
active roles in several neurodegenerative diseases, including
Alzheimer disease [4,5], Parkinson disease [6], and multiple
sclerosis [7], despite some of the original claims not being
repeated in subsequent studies [8]. In the eye, mtDNA
haplogroups have been reported to affect the clinical
expression of Leber hereditary optic neuropathy (LHON) in
European [9] and Chinese families [10], age-related macular
degeneration [11,12], and optic neuritis [13]. The mtDNA
haplogroup effect is ethnic specific, as demonstrated in LHON
where the haplogroups associated with LHON expression in
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Chinese populations are different from those in Caucasian
populations [10].

Myopia can be caused by excessive reading and close
work, which is potentially related to oxidative stress [14-16].
Individuals exposed to hyperbaric oxygen showed a refractive
change to myopia [17-19]. On the other hand, high myopia is
frequently associated with retinal neurodegeneration [20,21].
Under a similar environment and with similar reading
behavior, some individuals develop myopia but others do not,
suggesting a genetic background involvement. Linkage and
association studies on the nuclear genome have demonstrated
the importance of genetic factors in the development of
myopia, especially high-grade myopia [22-25]. However, the
exact molecular basis for most myopia remains unknown.
There have been no reports on the potential association of
myopia with the mitochondrial genome, although mtDNA
variations and haplogroups are known to be associated with
neurodegeneration and oxidative stress.

Chaoshanese is an intriguing, isolated, Han Chinese
population that is located in the Chaoshan area, east
Guangdong Province. This population has unique features in
dialects, life styles, customs, habits, and a population census
of 12 million. The Chaoshanese are suggested to be
descendents of northern Chinese who immigrated during the
Ming Dynasty (1368—1628 A.D.) or earlier [26]. In this study,
we analyzed the mtDNA haplogroup distribution frequencies
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TABLE 1. INFORMATION OF THE SUBJECTS WITH AND WITHOUT MYOPIA.

Myopias (M group; n=96)

Controls (NC group; n=96)

Characteristics (0)))

Age, mean(SD), y 21.8 (1.3)
Females, No. (%) 33 (34.4)
SE, mean (SD), D —6.52 (1.31)

AL, mean(SD), mm 26.28 (0.96)

K, mean (SD), D 43.72 (1.42)

ACD, mean (SD), mm 3.78 (0.29)

Partial correlation with SE, r (p value)

AL —0.68 (<0.001)

K —0.55 (<0.001)

ACD 0.28 (0.007)

0s oD oS
21.7(1.3)
33 (34.4)
~6.37(1.36) 0.27 (0.51) 0.33 (0.44)
25.22 (1.02) 23.78 (0.72) 23.72 (0.68)
43.69 (1.43) 42.75 (1.45) 42.75 (1.46)
3.79 (0.31) 3.44(0.23) 3.47 (0.23)
~0.71 (<0.001) ~0.30 (0.003) ~0.34 (0.001)
~0.57 (<0.001) ~0.23 (0.025) ~0.21 (0.046)
0.19 (0.062) 0.01 (0.939) 0.08 (0.475)

Abbreviations: ACD, anterior chamber depth; AL, axial length; K,corneal curvature; SE, spherical equivalent.

in Chaoshanese with and without myopia to detect the
potential association between the mtDNA background and
myopia.

METHODS

Subjects: College students were recruited from 12 universities
in Guangzhou, China, as part of a project to identify the
genetic causes of complex high myopia. In total 2,699 students
were examined, including 1,276 individuals with moderate-
to-high myopia (spherical refraction at each meridian <—
4.00D) and 1,423 control individuals without a significant
refractive error (with best unaided visual acuity of 1.0 or better
and bilateral refraction of a spherical equivalent between
—0.50D and +2.00D). For this study, 96 cases (66 males and
33 females, age from 19 to 25) and 96 controls (66 males and
33 females, age from 19 to 26) from the Chaoshan area were
selected based on similarities in age, gender, educational
background, and ethnic origin (local dialect and places where
they grew up). Detailed clinical information on the subjects is
listed in Table 1. The 96 cases were selected based on the
following criteria: 1) born in the Chaoshan area and can speak
the Chaoshanese dialect; 2) best corrected visual acuity of 0.8
or better; 3) spherical refraction at each meridian <-4.00D; 4)
no other known eye or related systemic diseases; 5) no family
history of high myopia; and 6) myopia occurred at age 7 years
or older). The 96 controls met the following criteria: 1) born
in the Chaoshan area and can speak the Chaoshanese dialect;
2) best unaided visual acuity of 1.0 or better; 3) bilateral
refraction between —0.50D and +2.00D (spherical
equivalent); 4) no other known eye or related systemic
diseases; and 5) no family history of high myopia or
hyperopia. Case and control individuals without complete
data, especially data for the measurement of IOL Master V5
(Carl Zeiss Meditec AG, Jena, Germany), were excluded.

The refractive error was measured with cycloplegic
autorefraction after mydriasis (Mydrin®-P, a tropicamide
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compound; Santen Pharmaceutical Co., Ltd., Osaka, Japan).
Ophthalmologic  examinations were performed by
ophthalmologists (Q.Z. and X.G.). Blood of each subject was
drawn from superficial veins of the arm by using disposable
syringe after sterilization of skin. Serum was removed after
centrifugation of the blood and the remaining leukocytes were
separated from red blood cells by hypotonic hemolysis.
Leukocytes were digested by proteinase K. The digested
leukocytes were then extracted by using phenol/chloroform
solution. The supernatant was mixed with cold alcohol to
generate a genomic DNA pellet. Genomic DNA was dissolved
in TE buffer. Informed consent conforming to the tenets of the
Declaration of Helsinki was obtained from each participant
before the study. The Institutional Review Board of
Zhongshan Ophthalmic Center approved this study.

Mitochondrial DNA haplogroup classification: mtDNA
sequence variations were scored for each sample relative to
the revised Cambridge reference sequence [27]. We followed
the same strategy and amplification and sequencing methods
as described by Yao et al. [28], which have been used and
optimized in our recent studies [10,29]. Each mtDNA was
categorized according to the methods described by Yao et al.
[28] and Kong [30]. Briefly, the first hypervariable segment
of the mtDNA control region from 16,001 to 16,497 (HVS-I)
was amplified and sequenced for each sample to allow a
preliminary classification of the haplogroups. The second
hypevariable segment from 30 to 407 (HVS-II) and two
coding region segments (regions 2,797-3,273 and
10,171-10,659) were amplified and sequenced in certain
samples to justify the haplogroup status based on the
preliminary haplogroup status inferred from HVS-I. In
addition, all samples were screened for the 9-bp deletion in
the COII/tRNAY region by nondenaturing polyacrylamide
gel (8%) electrophoresis to determine the haplogroup B status.
Furthermore, haplogroups A, D, and M7 were also genotyped
by restriction fragment length polymorphism (RFLP) to
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TABLE 2. MTDNA HAPLOGROUP DISTRIBUTION FREQUENCIES (%) OF SUBJECTS WITH AND WITHOUT MYOPIA.

Haplogroup Myopias (CS1M, n=96)
B 19.79
F 15.63
M7 12.50
Rf 2.08
M33 0
D 26.04
M10 3.13
M12 1.04
A 5.21
G 2.08
M8% 4.17
NO9a 2.08
Y 1.04
M* 5.21
* test v’=11.654

Controls (CSINC, n=96)

CS1** (n=192) CS2# (n=102)

18.75 19.3 16.7
16.67 16.2 19.6
10.42 115 13.7
6.25 42 1.9
1.04 0.5 0.0
22.92 245 25.5
2.08 2.6 2.9
0 0.5 0.0
2.08 36 2.9
4.17 3.1 2.9
9.38 6.8 5.9
4.17 3.1 59
0 0.5 0.9
2.08 3.6 0.9

p=0.556 P=6.411 p=0.930

The double asterisk indicates subjects with myopia (CS1M) and without myopia (CSINC) in the present study. The sharp (hash
mark) indicates that the Chaoshanese mtDNA data were taken from a recent report [26]. The dagger indicates that R includes
R*, R9b, R9c, and R11 and the double dagger indicates that M8 includes M8a, C, and Z.

further confirm the inferred haplogroup status. We followed
the strategy for data quality control according to the rules and
guidelines described in previous reports [31,32]. This
included careful handling to avoid sample contamination,
double checking of the sequence reading of HVS-I and HVS-
II to avoid base shift or variation missing, cautiously score
transition, transversion, deletion, or insertion. For those
regions genotyped by RFLP analysis, randomly selected
samples were further confirmed by additional sequencing
analysis. Final data of mtDNA haplogroups were
independently checked by two coauthors.

Statistical analysis: The haplogroup distribution frequencies
between the two groups were analyzed by the Pearson y? test.
Principal component analysis was conducted to assess the
geographic origin of the study subjects based on the mtDNA
haplogroup distribution frequencies. Previously reported Han
Chinese mtDNA data, including those from Guangdong
Province, and our previously published data were used for
comparisons ([26,28] and references therein).

RESULTS

The mtDNA sequence variations and haplogroup
classifications of all 192 subjects with and without myopia are
listed in Appendix 1. All the lineages belonged to haplogroups
that are found in Han Chinese and East Asian populations
[28]. Most of the samples could be allocated to the smallest
haplogroups, with the exception of seven samples with a status
of M*, which could not be further classified based on the
available information. Haplogroups D, B, F, and M7 were
detected in 25 (26.04%), 19 (19.79%), 15 (15.63%), and 12

(12.50%) subjects with myopia, respectively, accounting for
73.96% of the case subjects. Similarly, these four haplogroups
were present in 22 (22.92%), 18 (18.75%), 16 (16.67%), and
10 (10.42%) subjects without myopia, respectively,
accounting for 68.75% of the control subjects. The
haplogroup distributions between these two groups showed
no statistical difference () test, y>=11.654, p=0.556; Table 2).

The 9-bp (CCCCCTCTA) deletion was found in sample
NC960, which belongs to haplogroup F2b. The presence of
this deletion in haplogroups D4b1b2 and B (including its
subhaplogroups) as a haplogroup-specific variant suggests
multiple origins of the 9-bp deletion [33]. We found the
southern Han prevalent haplogroups (B, F, M7, and R) and
northern Han prevalent haplogroups (D, G, M8a, C, and Z) in
subjects with and without myopia but again with no statistical
difference (y*=1.377, p=0.502) in the distribution of these
haplogroups between the two groups.

We performed principal component analysis (Figure 1)
based on the mtDNA haplogroup frequencies of the
Chaoshanese populations with and without myopia and other
reported Han Chinese populations ([26,28] and references
therein). The first two principal components accounted for
91.8% of the genetic variation. The south-to-north cline of the
populations and the heterogeneity of the southern populations
were further confirmed by the second principal component
(PC). The Chaoshanese population (marked as CS2 in Figure
1) reported by Wang et al. [26] showed a close affinity to the
myopia and control populations (CS1M and CSINC) in this
study, which is consistent with the sampling location. This
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Figure 1. Principal component map of
mitochondrial DNA variation. The
mitochondrial DNA data (with respect
to the haplogroup frequencies in Table
2) of 16 reported regional Han
populations were from references ([26,
28] and references therein). The three
Chaoshanese populations are marked by
diamonds, whereas other Han Chinese
populations are labeled by circles with
city or province names above the circle.
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pattern suggests that the Chaoshanese are relatively
homogenous as compared to other Han Chinese.

DISCUSSION

The mitochondrial genome encodes the oxidative
phosphorylation system where energy and ROS are generated
[1]. Generation of ROS can cause deleterious peroxidation of
lipids, modification of proteins, and cleavage of DNA [34],
which is referred to as oxidative stress. The retina is
particularly sensitive to the deleterious effects of ROS
because of its high oxygen consumption and its constant
exposure to light [35]. Previous studies have demonstrated
that exposure to oxidative stress caused degeneration of
photoreceptors and other cells of the neural retina in animal
models [36]. The level of lipid peroxidation products may
relate to the degree of myopia [37]. Furthermore, single
nucleotide polymorphisms in the mitofusin-1 (MFNI) and
presenilin associated rhomboid-like (PSARL) genes are
among the clustering peak showing a genetic association with
myopia that was mapped to 3q26 (MYP8 locus) [15]. Both
MFNI and PSARL encode mitochondrial membrane proteins
that interact with Optic Atrophy 1 (OPA1), a mitochondrial
protein known to cause retinal neuron degeneration when
mutated [15,38]. Mitochondrial dysfunction, which is caused
by mutations in either mtDNA or nuclear-encoded
mitochondrial genes, can be a potential target for genetic
predisposition to myopia.

In this study, we analyzed mtDNA haplogroup
distributional patterns in 192 Chaoshanese individuals
(including 96 with myopia and 96 without myopia) to test

306

whether an mtDNA background would affect the clinical
expression of myopia. The case and control populations
presented a very similar matrilineal structure. We found no
statistical difference in the frequency of certain haplogroups
between the cases and controls. Principal component analysis
demonstrated homogeneity of the Chaoshanese populations
analyzed in this study, and this homogeneity had been
previously reported [26]. It is unlikely, therefore, that an
mtDNA haplogroup would affect myopia. This is in contrast
to our recent observation of an increased risk of haplogroup
M7b1°2 and a protective role of M8a during the expression of
LHON in Chinese families with m.11778G>A [10].

To our knowledge this is the first study to examine the
potential association of an mtDNA haplogroup with myopia.
We failed to find any evidence that would suggest the
involvement of an mtDNA background in the predisposition
to myopia. Although the sample size in this study was not
large, we have every reason to believe that an mtDNA
background is unlikely to play a major role in myopia
predisposition as our study has shown that the Chaoshanese
population has high genetic homogeneity. This pattern is
consistent with the relatively isolated status of the
Chaoshanese. The current results may provide guidance for
genome-wide association studies of myopia when selecting
study populations. The case-control series from the Chaoshan
area is a good candidate for such a study.
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Appendix

mtDNA sequence variation and haplogroup classification “Appendix 1.” This will initiate the download of a compressed
of 96 subjects with myopia (M) and 96 subjects without (pdf) archive that contains the file.
myopia (NC). To access the data, click or select the words
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