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Abstract
Human oral squamous cell carcinoma (OSCC) is the common head and neck malig-
nancy in the world. While surgery, radiotherapy and chemotherapy are emerging as 
the standard treatment for OSCC patients, the outcome is limited to the recurrence 
and side effects. Therefore, patients with OSCC require alternative strategies for 
treatment. In this study, we aimed to explore the therapeutic effect and the mode of 
action of the novel curcumin analog, HO- 3867, against human OSCC cells. We ana-
lysed the cytotoxicity of HO- 3867 using MTT assay. In vitro mechanic studies were 
performed to determine whether MAPK pathway is involved in HO- 3867 induced 
cell apoptosis. As the results, we found HO- 3867 suppressed OSCC cells growth ef-
fectively. The flow cytometry data indicate that HO- 3867 induce the sub- G1 phase. 
Moreover, we found that HO- 3867 induced cell apoptosis by triggering formation of 
activated caspase 3, caspase 8, caspase 9 and PARP. After dissecting MAPK pathway, 
we found HO- 3867 induced cell apoptosis via the c- Jun N- terminal kinase (JNK)1/2 
pathway. Our results suggest that HO- 3867 is an effective anticancer agent as its 
induction of cell apoptosis through JNK1/2 pathway in human oral cancer cells.
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1  |  INTRODUC TION

Oral squamous cell carcinoma (OSCC) is the most common oral 
cavity cancer with over 90% of cases.1 Betel nut chewing, smok-
ing and drinking are the most common risk factors for oral cancer 
in Taiwan.2– 4 OSCC often develops regional and distant lymph 
node.5,6 Although surgery, radiotherapy and chemotherapy have 
applied for the treatments of OSCC, the prognosis of OSCC is 
still poor due to the recurrence and resistance to treatments.7,8 
According to its high incidence and mortality, development of 
new and effective treatments for OSCC is an urgent and unmet 
goal.

Programmed cell death (apoptosis) is a process of eliminat-
ing cells to maintain cell population and the normal growth of an 
organism during development, ageing and DNA damage.9,10 On 
the contrary, defects in apoptosis result in neoplastic cells sur-
vival as dysregulated cell proliferation, increased cell motility and 
tumour progression.11 Apoptosis is triggered through intrinsic, 
extrinsic and endoplasmic reticulum (ER) pathways.12,13 Caspases 
drive apoptosis through activation of caspases initiator 8, 9 and 
10 (initiators), caspases 3 and 7 (executioners), and caspases 1, 
4 and 5 (inflammatorys).10,14 The inhibitors of apoptosis proteins 
are known as the inhibitor of apoptosis protein (IAP) family, in-
cluding cellular inhibitors of apoptosis 1, 2 (cIAP- 1 and cIAP- 2), 
X- linked inhibitor of apoptosis (XIAP) and survivin prohibit death 
receptor- mediated apoptosis through binding caspases.15– 19 
The mitogen- activated protein kinase (MAPKs) (ERKs, JNKs and 
p38 signalling) also mediate progression of apoptosis; however, 
the role of MAPKs is relied on status of activated MAPKs, cell 
types, stimuli or cell stress.20 Among them, activation of apoptotic 
via JNKs is through transcriptionally upregulating pro- apoptotic 
genes or phosphorylating mitochondrial pro-  and anti- apoptotic 
proteins.21

Curcumin analog HO- 3867 is an antioxidant and antiproliferative 
compound as it is also known as an antitumour agent through block-
ing the Janus kinase/signal transducer and activator of transcription 
(JAK/STAT3) pathway and downregulation focal adhesion kinase 
and fatty acid synthase in human breast cancer, ovarian cancer and 
human pancreatic cancer cells alone or in combined with cisplatin 
or doxorubicin.22– 31 In addition, HO- 3867 is also found to activate 
phosphatase and tensin homolog (PTEN) in human smooth muscle 
cells and in lung and heart tissues.32,33 A more recent study found 
that HO- 3867 transcriptionally converts mutant p53 protein to ac-
tive wild- type p53 in cancer cells.34 Nevertheless, HO- 3867 is re-
vealed to rescue suppression of placenta- specific protein 1 (PLAC1) 
level in ovarian cancer cells.35

As OSCC has over 40% mutant rate of TP538,36 and mutant 
TP53 leads cancer progression,37 we aimed to explore whether HO- 
3867 is capable of suppressing OSCC cell growth. We analysed its 
therapeutic effect on OSCC and to discover the inside mechanisms 
involved in HO- 3867 induced apoptosis and attempted to define its 
underlying mechanisms.

2  |  MATERIAL S AND METHODS

2.1  |  Cell culture and HO- 3867 treatment

Being purchased from the American Type Culture Collection 
(Manassas, VA, USA) and the Japanese Collection of Research 
Bioresources (Osaka, Japan), the human OSCC SCC- 9 and HSC- 3 
cells were supplemented with 10% FBS, 5 mL glutamine and 1% 
penicillin/streptomycin, and cultured in DMEM. HO- 3867 was dis-
solved initially in 100% DMSO to achieve a 100 mM stock solution 
of HO- 3867, and appropriate amounts of stock solution were sub-
sequently added into the culture medium to achieve the indicated 
concentrations.

2.2  |  Microculture tetrazolium (MTT) assay

To obtain information regarding the effect of apoptosis induced by 
HO- 3867, we subjected 6.5 × 104/mL SCC- 9 and HSC- 3 cells in 24- 
well plates for 16 h and treated them with different concentrations 
(0, 2.5, 5, 10 and 20 µM) of HO- 3867 to assay the cell viability via 
MTT assay as described previously.38,39

2.3  |  Flow cytometric analysis

To estimate the proportion of SCC- 9 and HSC- 3 cells in different 
phases of the cell cycle affected by HO- 3867, cellular DNA contents 
were measured via flow cytometry as stated previously.40 Briefly, 
we cultured 7.0 × 105 SCC- 9 and HSC- 3 cells in 6- cm dishes and 
treated them with different concentrations (0, 2.5, 5, 10 and 20 µM) 
of HO- 3867 for 24 h. After staining with PI, 7.0 × 105 SCC- 9 and 
HSC- 3 cells in one Eppendorf tube, the cell cycle was analysed on a 
BD AccuriTM C6 Plus personal flow cytometer (BD Biosciences, San 
Jose, CA, USA).

2.4  |  Annexin V- FITC apoptosis staining assay

We cultured 7.0 × 105 SCC- 9 and HSC- 3 cells in one 6- cm dish and 
treated them with different concentrations (0, 2.5, 5, 10 and 20 µM) 
of HO- 3867 for 24 h. Subsequently, SCC- 9 and HSC- 3 cells were 
harvested with trypsinization together with floating non- viable cells. 
The FITC Annexin V Apoptosis Detection Kit I was performed as 
reported previously.41

2.5  |  Human apoptosis array (ARY009, R&D 
systems)

Human apoptosis array (ARY009, R&D systems) Kit was used to eval-
uate protein lysates of 1.5 × 106 SCC- 9 cells/dish from vehicle-  or 
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20 µM HO- 3867- treated for 24 h according to the manufacturer's 
protocols (R&D Systems, Minneapolis, MN, USA).

2.6  |  Protein extraction and western blot analysis

To investigate the molecular mechanism further, the initiator and 
effector caspases and signalling pathways were detected using 
Western blot analysis. As described previously, 7.0 x 105/dish SCC- 9 
and HSC- 3 cells were cultured in 6 cm plates for 16 h and treated 
with different concentrations (0, 2.5, 5, 10 and 20 µM) of HO- 3867 
for 24 h, and the total cell lysates of SCC- 9 and HSC- 3 cells were pre-
pared.42,43 Blots were then incubated with a horseradish peroxidase 
goat anti- rabbit or anti- mouse.

2.7  |  Statistical analysis

The SigmaStat 2.0 software package (Jandel Scientific, San Rafael, 
CA, USA) was applied for statistical analyses. Differences be-
tween untreated and HO- 3867- treated groups were calculated by 
Student's t- test, and a p value of <0.05 was considered statistically 
significant. Each experiment was done in triplicate at least (n ≥ 3) 
were performed.

3  |  RESULTS

3.1  |  Cytotoxicity of HO- 3867 in human oral 
squamous cell carcinoma SCC- 9 and HSC- 3 cells

Curcumin and its analogs have been shown their anticancer ef-
fects, including suppression of oral squamous cell carcinoma 
(Table 1). The main goal of this study is to examine whether the 
novel curcumin analog HO- 3867 exhibits antitumour activ-
ity (Figure 1A). We first performed cytotoxicity assay in human 
oral cancer SCC- 9 and HSC- 3 cells using MTT assay. We found 
HO- 3867 effectively suppressed SCC- 9 and HSC- 3 cells growth 
at the dose region from 10 to 20 µM (Figure 1B). Moreover, cell 
proliferation was assessed by using the CCK- 8 method in SCC- 9 
and HSC- 3 cells. As shown in Figure 1C, treatment of cells with 
HO- 3867 for 24 h significantly decreased the proportion of viable 
cells in a concentration- dependent manner. Our results show that 
HO- 3867 inhibits the cell growth and cell proliferation in human 
oral cancer SCC- 9 and HSC- 3 cells in vitro.

3.2  |  HO- 3867 induces apoptosis and sub- G1 
fraction arrest of SCC- 9 and HSC- 3 cells

Given that HO- 3867 potently suppressed cell viability in SCC- 9 
and HSC- 3 cells, we assumed that HO- 3867 may affect with cell 
cycle progression. To examine this hypothesis, we tested the 

cell cycle progression of oral cancer SCC- 9 and HSC- 3 cells by 
FACS. Compared to the vehicle control, HO- 3867- treated SCC- 9 
and HSC- 3 cells exhibited a sub- G1 phase accumulation at the 
dose of 20 µM (57.7% in SCC- 9 cells and 41.7% in HSC- 3 cells) 
(Figure 2A– C).

3.3  |  HO- 3867 increases cleaved caspase 3 and 
decreases cIAP- 1 and XIAP in SCC- 9 and HSC- 3 cells

Increased sub- G1 phase cells in HO- 3867 cells suggest apoptotic 
pathway may be induced by the treatment of HO- 3867. To test this 
possibility, we measured and apoptotic cell populations in HO- 3867- 
treated SCC- 9 and HSC- 3 cells. Examining the Annexin V positive 
cells by flow cytometry assay, we found that there were significant 
inductions of Annexin V positive cells in both lines treated with HO- 
3867 (Figure 3A). Remarkedly, at the dose of 20 µM, HO- 3867 in-
duced extremely high amount of cell apoptosis by over 40% in SCC- 9 
cells and over 80% in HSC- 3 cells (Figure 3B,C).

3.4  |  Analysis of activating extrinsic and intrinsic 
apoptotic processes by HO- 3867 in SCC- 9 and HSC- 
3 cells

The next question is how apoptosis was activated in HO- 3867- 
treated cells. Since curcumin can increase apoptotic levels through 
multiple signalling, such as TNF and caspase 8,44 we hypothesized 
HO- 3867 may affect signalling associated with apoptosis or cell sur-
vival. To test this hypothesis, we first examined human apoptosis 
array (ARY009, R&D systems) in SCC- 9 cells. The human apoptosis 
array contains 35 proteins that associated with apoptotic process 
as our previous reports.45 We identified a serial change in the pro-
tein amounts (Figure 4A) We found that cleaved caspase- 3 was in-
creased by approximately 2.3- fold in HO- 3867- treated SCC- 9 cells 
compared to the vehicle control (Figure 4B). Nevertheless, we also 
found that XIAP, cIAP and Survivin were reduced by 60% upon HO- 
3867 (Figure 4B). These results indicate that HO- 3867 induces ap-
optotic pathway through activating cleaved caspase- 3 in human oral 
cancer cells.

The clarify the capability of HO- 3867 triggering apoptotic path-
way through activating cleaved caspase proteins, we measured both 
total and cleaved forms of apoptotic proteins, including caspase 
8, caspase 9, caspase 3 and PARP in HO- 3867- treated SCC- 9 and 
HSC- 3 cells. Significantly, treatment of HO- 3867 decreased the pro 
form of caspase 8, caspase 9, caspase 3 and PARP in SCC- 9 cells 
(Figure 5A). Treatment of HO- 3867 increased the active form of 
caspase 8, caspase 9, caspase 3 and PARP in SCC- 9 cells (Figure 5B). 
Consistently, in HSC- 3 cells, HO- 3867 reduced the pro form of 
caspase 8, caspase 9, caspase 3 and PARP, and enhanced the ac-
tive form of caspase 8, caspase 9, caspase 3 and PARP (Figure 5C,D) 
These results imply that HO- 3867 induces apoptotic pathway 
through caspase pathway in human oral cancer cells.
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TA B L E  1  Molecular actions of curcumin analog on human OSCC cells

Curcumin analog Cell line Mechanism of action Testing dose References

Curcumin YD10B ↑reactive oxygen species (ROS) 
production and autophagy

↑LC3- II formation and PARP 
cleavage

1– 40 μM [70]

FLLL- 32 SCC- 9
HSC- 3

↓cell viability
↑apoptosis via caspase- 3/- 8/- 9 and 

p38 MAPK signalling pathway
↑HO- 1

1– 16 μM [50]

PAC (3,5- Bis (4- hydroxy- 3- 
methoxybenzylidene)- N- methyl- 4- 
piperidone)

CA9- 22
gingival epithelial cells (GEC)

↓cell proliferation and colony 
formation

↑cytotoxicity, intracellular ROS, 
intracellular glutathione (GSH) 
activity

↑autophagy by targeting LC3B and 
p62

↓epithelial- to- mesenchymal 
transition and inhibits cell 
migration

↓mitochondrial membrane potential
↑apoptosis via ERK1/2, p38/

JNK, NF- κB and Wnt cellular 
signalling pathways

1– 10 μM [72]

EF- 24 (diphenyl difluoroketone) CAL-27 ↓cell viability
↑apoptosis via caspase- 3and 9
↓phosphorylated forms of MEK1 

and ERK

0.1– 30 μM [73]

EF- 24 (diphenyl difluoroketone) KB ↓cell viability
↑nuclear condensation and 

fragmentation
↑apoptosis via caspase- 3/- 7/- 9

0.1– 100 μM [74]

DMC (Demethoxycurcumin) SCC- 9
HSC- 3

↓cell viability
↑G2/M phase arrest
↑apoptosis via caspase- 3/- 8/- 9 and 

PARP
↓cIAP1/XIAP and activating the 

p38 MAPK- HO- 1 axis

12.5– 50 μM [49]

DBA (Dibenzylideneacetone) Human mucoepidermoid 
carcinoma (MC3 and 
YD15)

↓cell viability
↑apoptosis by inhibition of 

specificity protein 1 (Sp1) 
protein stability

↑Bim and truncated Bid (t- Bid) via 
Sp1

Anti- tumorigenic activity of DBA 
(20 mg/kg/day) in an athymic 
nude mouse xenograft model

5– 15 μM [75]

DBA (Dibenzylideneacetone) HSC- 4
HSC- 2
YD- 10B
SCC- 15

↓cell viability
↑apoptosis through 

Sp1 degradation
↑increased Bax expression

2.5– 10 μM [71]

trienone 11 (1,7- bis(3- hydroxyphenyl)- 
1,4,6- heptatrien- 3- one)

CLS- 354 ↑apoptotic cell death via ROS 
and caspase- 3/7, - 8, and - 9 
activations

Activates ROS to mediate caspase 
activation and

eventually apoptosis via the 
intrinsic pathway

0.01– 80 μM [76]
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3.5  |  HO- 3867 activates extrinsic and intrinsic 
apoptotic processes via JNK1/2 pathways in SCC- 
9 and HSC- 3 cells

Mitogen- activated protein kinase pathway is known to mediate the 
apoptotic pathway.20 To determine whether the treatment of HO- 
3867 could activate MAPK signalling in human oral cancer cells, we 

detected the phosphorylated levels of ERK1/2, JNK1/2 and p38 in 
human oral cancer cells SCC- 9 and HSC- 3 cells using immune blot. 
Upon the treatment of HO- 3867 at the dosages of 2.5– 20 µM, phos-
phorylated ERK1/2 (p- ERK1/2), p38 (p- p38) and phosphorylated 
JNK1/2 (p- JNK1/2) were enriched (Figure 6A,B), indicating HO- 
3867 activates MAPKs pathway in human oral cancer cells. To fur-
ther digest which MAPK signalling is response to HO- 3867 induced 

Curcumin analog Cell line Mechanism of action Testing dose References

H- 4073 UM- SCC- 74A
UM- SCC- 1
UM- SCC- 74B
UM- SCC- 38
UM- SCC- 47 CAL27

↓cell proliferation, migration, 
survival and angiogenesis cell 
proliferation via JAK/STAT3, 
FAK, Akt and VEGF signalling 
pathways

↓tumour growth and angiogenesis 
in SCID mouse xenograft model

2.5– 20 μM [77]

TA B L E  1  (Continued)

F I G U R E  1  Effects of HO- 3867 on the 
cell viability of SCC- 9 and HSC- 3 cells. 
(A) The structure of curcumin analog 
HO- 3867. (B, C) The viability of SCC- 9 and 
HSC- 3 cells treated with HO- 3867 (0, 2.5, 
5, 10 and 20 µM) for 24 h was detected 
by MTT assay and CCK- 8 assay, and the 
effects are illustrated after quantitative 
analysis. *p < 0.05, compared with the 
vehicle group
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F I G U R E  2  Effects of HO- 3867 on the 
cell cycle of SCC- 9 and HSC- 3 cells. SCC- 9 
and HSC- 3 cells were treated with HO- 
3867 (0, 2.5, 5, 10 and 20 µM) for 24 h and 
then subjected to flow cytometry after (A) 
PI staining to analyse DNA contents. (B, 
C) The cell cycle profile of (B) SCC- 9 cells 
and (C) HSC- 3 cells in flow cytometry was 
quantified

F I G U R E  3  Effects of HO- 3867 on 
the cell apoptosis in SCC- 9 and HSC- 3 
cells. Oral cancer SCC- 9 and oral cancer 
HSC- 3 cells were treated with HO- 3867 
(0, 2.5, 5, 10 and 20 µM) for 24 h and then 
subjected to (A) flow cytometry to analyse 
DNA contents. (B, C) Subsequently 
quantitative analyses of apoptosis of 
(B) SCC- 9 cells and (C) HSC- 3 cells were 
summed up. *p < 0.05, compared with the 
vehicle group
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apoptosis, we next measure apoptotic signalling in HO- 3867- treated 
human oral cancer cells SCC- 9 and HSC- 3 cells under inhibitions of 
ERK1/2, JNK1/2 or p38. The inhibitors were U0126,46 JNK- IN- 847 
and SB20358048 for blocking the phosphorylation of ERK1/2, 
JNK1/2 and p38 respectively. According to previous studies,49,50 
after 2- hour pretreatments of U0126 (10 µM), JNK- IN- 8 (10 µM) and 
SB203580 (10 µM), cells were administered with HO- 3867 (20 µM) 
for another 24 h. We found the treatment of JNK- IN- 8 was able to 
attenuate the formation of the active form of caspase 3, caspase 8, 
caspase 9 and PARP in SCC- 9 cells (Figure 7A). Moreover, as shown 
in Figure 7B, inhibition of JNK1/2 pathway using JNK- IN- 8 (10 µM) 
effectively reduced the apoptotic pathway as the active form of 
caspase 3, caspase 8, caspase 9 and PARP were reduced in HSC- 3 
cells (Figure 7B). Altogether, using inhibitors of JNK1/2 (JNK- IN- 8), 
HO- 3867 increases in cleaved caspases 3, 8 and 9 are rescued, but 
they could not be affected by co- treatment with the U0126 (ERK1/2 
inhibitor) and p38 inhibitor (SB203580). HO- 3867 induces apop-
totic pathways in OSCC SCC- 9 and HSC- 3 cells through activating 
JNK1/2 signalling.

4  |  DISCUSSION

As HO- 3867 is a versatile antitumour agent with targeting STAT3, 
PTEN and p53 in various cancer types,22– 31 we attempted to exam-
ine whether HO- 3867 suppress OSCC and to analyse how HO- 3867 
triggered cell death. In the present study, we detected that HO- 3867 
exhibited great therapeutic effects on OSCC cells, including induc-
ing G2/M cell cycle arrest and apoptotic cell death. Upregulation 
of the p- JNK1/2 and downregulation of cIAP1/XIAP/Survivin were 
critical for HO- 3867- induced apoptotic cell death in OSCC cells.

It is exciting to find that JNK1/2 signalling is elevated in HO- 
3867- treated OSCC cells. While it is reported that the JNK1/2 sig-
nalling and IAPs mediate cell apoptosis,51 our study has revealed a 
novel avenue of modulating JNK1/2 signalling and IAPs using a single 
compound, HO- 3867. Although inhibitors directly targeting either 
JNK1/2 or IAPs are not clinical used, development of curcumin and 

its analogs into clinical is actively processing,52 as curcumin func-
tions as an anticancer agent in in vitro, in vivo studies and clinical 
trials.53 However, the detail mechanism of how HO- 3867 activates 
JNK1/2 and attenuates IAPs in OSCC still unknown.

Over decades, drugs targeting p53, STAT3, ERK1/2, JNK1/2 and 
p38 are investigated for anticancer propose,54– 59 such as COTI2 for 
reactivation of mutant p53 to a form with WT properties,60 LLL12B 
blocking STAT3,61 LY3214996 targeting ERK1/2,62 AS602801 sup-
pressing JNK63 and BIRB796 targeting p38.64 Therefore, as HO- 3867 
is reported to target p53,34 STAT3,29 JNK1/2 and IAPs, HO- 3867 
would be a potential therapeutic approach for treatment of OSCC or 
other types of cancers that may have dysregulation of p53, STAT3, 
JNK1/2 and IAPs.

As a versatile compound, HO- 3867 has been examined its po-
tential to be a treatment for many diseases, such as breast cancer,34 
ovarian cancer,22,25,26,30,35,65 pancreatic cancer29,31 and endometrial 
cancer.28 HO- 3867 is found not only induce apoptosis in ovarian 
cancer cells25,65 but also to repress the migration and invasion of 
ovarian cancer cells by inhibiting the expression or activity of FAS, 
FAK, VEGF and their downstream protein levels.25 Moreover, HO- 
3867 has been evaluated for the treatment of pulmonary hyperten-
sion,66 pulmonary hypertension secondary to left- heart failure33 and 
arterial restenosis.32 Together, these researches indicate that HO- 
3867 has highly potential to be developed into an anticancer agent 
or a regimen for other diseases.

Curcumin and its analogs have been shown their anticancer 
effects in vitro and in vivo,67 including suppression of oral squa-
mous cell carcinoma.68 Through targeting EGFR mediated AKT, 
ERK1/2 and STAT3 pathways, curcumin inhibits SCC- 25 cell 
growth at the dosage range of 10– 80 µM.69 Moreover, curcumin 
promoted apoptosis by inducing cleaved caspase 3 and cleaved 
PARP in YD10B OSCC cells at the dose of 10 µM.70 Interestingly, 
several analogs of curcumin are identified their antitumour ac-
tivity through induction of apoptosis in OSCC.71,72 In HSC- 4 and 
HSC- 2 human oral cancer cells lines, Dibenzylideneacetone inhib-
its cell viability by triggering apoptosis at the dose of 5– 10 µM.71 
PAC (3,5- Bis (4- hydroxy- 3- methoxybenzylidene)- N- methyl- 4- pip

F I G U R E  4  Effects of HO- 3867 on 
the human apoptosis array and IAPs 
expression in SCC- 9 cells. (A) After 
treatment of 20 µM HO- 3867 for 24 h in 
SCC- 9 cells, the human apoptosis array 
(ARY009, R&D systems) were employed 
and the increased cleaved caspase- 3 
protein and decreased XIAP, cIAP1 
and survivin proteins were exposed 
to quantitative analysis. (B) Intensity 
qualifications of cleaved caspase- 3, XIAP, 
cIAP1 and survivin in HO- 3867- treated 
SCC- 9 cells
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eridone) is recently reported to reduce cell survival through pro-
mote apoptosis and autophagy by activating NF- κB, MAPK, Wnt, 
caspase- 3/9 and PARP1 at the dose of 5 µM in oral cancer CA9- 22 
cells.72 In this study, we show that the curcumin analog HO- 3867 
exhibits anti- OSCC activity by inducing apoptosis at the similar 

dose range (2.5– 20 µM), suggesting that HO- 3867 is comparably 
potent to OSCC as curcumin and other analogs.

In conclusion, we have revealed that the curcumin analog HO- 
3867 suppresses OSCC growth via inducing cell cycle arrest and apop-
tosis. As inhibition of apoptosis is a hallmark of cancer progression, we 

F I G U R E  5  Effects of HO- 3867 on the activation of caspases - 3, - 8, and - 9 in SCC- 9 and HSC- 3 cells. Western blot analysis for (A) 
caspase- 3, caspase- 8 caspase- 9 and PARP as well as (B) their active forms after various concentrations (0, 2.5, 5, 10 and 20 µM) of HO- 3867 
treatment for 24 h in SCC- 9 and (C, D) HSC- 3 cells were measured. All of them were subjected to quantitative analysis. *p < 0.05, compared 
with the control group

F I G U R E  6  Effects of HO- 3867 on the 
phosphorylation of MAPK pathway in 
SCC- 9 and HSC- 3 cells. (A) Expressions 
of ERK1/2, JNK1/2 and p38, as well 
as their phosphorylation after various 
concentrations (0, 2.5, 5, 10 and 20 µM) of 
HO- 3867 treatment for 24 h in SCC- 9 and 
HSC- 3 cells, were measured via Western 
blot analysis. (B) They were subjected to 
quantitative analysis. *p < 0.05, compared 
with the vehicle group



2282  |    CHEN Et al.

found HO- 3867 triggers OSCC cell apoptosis via promoting cleaved 
caspase- 3 through JNK1/2 signalling. As the results, HO- 3867 has 
high potential to improve the outcome of treatment of OSCC.
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