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Purpose: Craniopharyngiomas (CPs) are benign tumors, complete tumor resection is
considered to be the optimal treatment. However, although histologically benign, the local
invasiveness of CPs commonly contributes to incomplete resection and a poor prognosis.
At present, some advocate less aggressive surgery combined with radiotherapy as a
more reasonable and effective means of protecting hypothalamus function and preventing
recurrence in patients with tight tumor adhesion to the hypothalamus. Hence, if a method
can be developed to predict the invasiveness of CP preoperatively, it will help in the
development of a more personalized surgical strategy. The aim of the study was to report
a radiomics-clinical nomogram for the individualized preoperative prediction of the
invasiveness of adamantinomatous CP (ACPs) before surgery.

Methods: In total, 1,874 radiomics features were extracted from whole tumors on
contrast-enhanced T1-weighted images. A support vector machine trained a predictive
model that was validated using receiver operating characteristic (ROC) analysis on an
independent test set. Moreover, a nomogram was constructed incorporating clinical
characteristics and the radiomics signature for individual prediction.

Results: Eleven features associated with the invasiveness of ACPs were selected by
using the least absolute shrinkage and selection operator (LASSO) method. These
features yielded area under the curve (AUC) values of 79.09 and 73.5% for the training
and test sets, respectively. The nomogram incorporating peritumoral edema and the
radiomics signature yielded good calibration in the training and test sets with the AUCs of
84.79 and 76.48%, respectively.

Conclusion: The developed model yields good performance, indicating that the
invasiveness of APCs can be predicted using noninvasive radiological data. This
reliable, noninvasive tool can help clinical decision making and improve patient prognosis.
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INTRODUCTION

Craniopharyngiomas (CPs) are rare and non-neuroepithelial
entities arising from a malformation of embryonal tissue, with an
incidence of 0.5–2 cases per million persons per year (1–3). Two
histological subtypes have been identified: adamantinomatous CPs
(ACPs) and papillary CPs (PCPs). They are commonly located in
the suprasellar region and can cause devastating neuroendocrine
dysfunction by mass effect and/or invasion to the optic apparatus,
pituitary gland and hypothalamus. Complete tumor resection with
improvement in visual function, and no further deterioration of
neuroendocrine and cognitive function is considered the optimal
treatment outcome. However, although these massed are of a
benign histological nature, the abovementioned ideal treatment
goal is not always achievable due to the potential close adhesion
of CPs to surrounding brain tissue.

Pathological studies have confirmed that the histology of the
interface between CPs and surrounding brain tissue can be
classified into two types, including finger-like invasion and no
finger-like invasion (4–6). Numerous investigators have deemed
that such local invasion resulting in adhesion could be associated
with the failure of complete resection and poor prognosis (7–9).
Therefore, a preoperative noninvasive method for identifying the
invasiveness of CPs could help in the development of more
individualized treatment decisions. Addressing this problem, we
developed a machine learning radiomics model to predict the
invasiveness of ACPs before surgery.

Radiomics is an emerging research method that can
effectively evaluate the heterogeneity of tumors by extracting a
large number of image features from medical images. Its
applicability and utility have already been validated in several
tumor types; Zhang et al. focused on the preoperative prediction
of nonfunctioning pituitary adenoma subtypes before surgery
(10); Li et al. predicted P53 status, progression-free survival
(PFS), phosphatase and tensin homolog (PTEN) and vascular
endothelial growth factor (VEGF) expression in patients with
gliomas (11–14). Furthermore, radiomics approaches have also
been validated in meningiomas (15), lung cancer (16) and skull
base chordomas (17).

In the current study, we extracted a large number of
radiomics features from preoperative MRI scans of ACPs with
known local invasiveness. We hypothesized that a radiomics
model could predict the invasiveness of ACPs via a machine-
learning algorithm.
METHODS

Patients
We retrospectively reviewed the medical records of patients who
underwent surgery for craniopharyngioma from 2002 to 2019, and
a total 335 cases of ACPs were included in this study. Their
radiographic and pathological data were collected from picture
archiving and communications systems. The pathological sections
were reviewed by two individual senior neuropathologists to
confirm the histology of the interface between the ACPs and
Frontiers in Oncology | www.frontiersin.org 2
surrounding brain tissue (Figures S2 and S4). Potential candidates
were excluded if their pathological sections could not reflect the
relationship between the ACP and brain tissues. Furthermore,
MRI images were reviewed by two experienced radiologists to
identify whether peritumor edema was present on T2-weighted
images. Any disagreement was resolved by a consultation. The
inclusion criteria were as follows: 1) histologically confirmed as
ACPs; 2) the definite invasiveness of each tumor; 3) complete
preoperative MRI data [including T2-weighted, T1-weighted and
contrast enhanced (CE)-T1 images]; 4) no history of surgical
treatment; and 5) available clinical characteristics. Among 335
patients, 225 patients who were treated between January 2002 and
December 2015 were allocated to the training set, and 110 patients
who were treated between January 2016 and December 2019 were
allocated to the validating set. The training set was used to
establish a stable model to predict the invasiveness of ACPs via
radiomics features, while the validation set was used to assess the
prediction accuracy of the model. The study was approved and
reviewed by the institutional review board.

MRI Acquisition and Tumor Segmentation
CE-T1 images were used for the extraction of radiomics features,
as these images are optimal for identifying the tumor border.
MRI was performed in the head-first supine position on a 3-T
scanner (Tim Trio, Siemens) using a head coil. The acquisition
parameters for precontrast T1-weighted sequences were as
follows: repetition time, 156–2,520 ms; echo time, 2–19.7 ms;
flip angle:150°; field of view: 240×188 mm2; acquisition matrix:
384×300 and slice thickness: 5 mm. The study was repeated
immediately after the rapid injection of contrast agent
gadolinium-DTPA (0.1 mmol/kg Gadovist; Beijing Beilu
Pharmaceutical Co., Beijing China). The regions of interest
(ROI), i.e., whole tumors, were manually delineated by two
neuroradiologists on the CE-T1 images using MRIcron
software (http://www.mccauslandcenter.sc.edu/mricro) (Figure
S1 and S3). The two neuroradiologists were blinded to the
patients ’ clinical characteristics. Next, a third senior
neuroradiologist reevaluated the ROIs and made final decisions
when discrepancies were ≥ 5%.

Feature Extraction
First, we homogenized the image intensity on all MR images by
z-score transformation (MATLAB version 2014a; The
Mathworks, Natick, MA, USA) to avoid heterogeneity bias. In
this study, a total of 1,874 features were acquired (Table S1). The
features were divided into eight categories: (a) first-order
statistics, (b) shape-based, (c) Gray Level Cooccurence Matrix
(GLCM), (d) Gray Level Run Length Matrix (GLRLM), (e) Gray
Level Size Zone Matrix (GLSZM), (f) Neighboring Gray Tone
Difference Matrix (NGTDM), (g) Gray Level Dependence Matrix
(GLDM), and (h) wavelet features, they were derived from first-
order statistics and texture features via wavelet decomposition
(using directional low-pass and high-pass filtering.

Feature Selection and Classification
We used the least absolute shrinkage and selection operator
(LASSO) algorithm, which is a suitable and powerful method for
February 2021 | Volume 10 | Article 599888
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the regression of high-dimensional data, to screen the most
predictive features in the training set. In this procedure, the
tuning parameter (lambda) was selected by the cross-validation
method; the optimal lambda was confirmed as that which
resulted in the smallest cross-validation error. Then, a support
vector machine (SVM) classifier was used to establish a
machine-learning model for invasiveness prediction. The
performance of the classification model was evaluated and
validated by employing 10-fold cross-validation. Receiver
operator characteristic (ROC) curve analysis was performed for
both the training and validation sets to evaluate the discriminative
ability of the machine-learning model.

Radiomics-Clinical Nomogram
Construction and Performance
Assessment
To provide a more individualized predictive model, a nomogram
was built from the training set data. First, a radiomics signature
was constructed using the selected features, and represented by a
radiomics score. The score was calculated for each patient as a
linear combination of the selected features weighted by their
respective coefficients. Second, the radiomics signature and other
clinical predictors (age, sex, peritumoral edema, tumor size) were
tested using a multivariate logistic regression algorithm in the
training set. The final selection of the model for the nomogram
Frontiers in Oncology | www.frontiersin.org 3
was conducted using a backward step-down selection process
based on the Akaike information criterion. The performance of
the nomogram was estimated with the training cohort and then
tested with the validation cohort.

Statistics
The Mann–Whitney U test and chi-square test were used to
evaluate whether age, sex, tumor invasiveness and peritumoral
edema were significantly different between the training set and
validation set. They were performed by using SPSS software
version 22.0 (IBM Corp.) Statistical significance was set as p <
0.05. The LASSO algorithm, SVM classifier, ROC curve analysis
and nomogram were performed based on “glmnet”, “e1071”,
“pROC”, and “rms” packages in R software version 3.3.2 (The R
Foundation, Salt Lake City, UT, USA), respectively.
RESULTS

Clinical Characteristics
A total 187 male and 148 female patients was enrolled in the
study, with 51 pediatric patients (mean age 14.3 years, range 6–
17 years) and 284 adult patients (mean age 41.6 years, range 18–
71 years). Among these patients, 129 men and 96 women were
allocated to the training group and 58 men and 52 women were
allocated to the validation group via random assignment. The
ratios of invasiveness to noninvasiveness were 65/160 in the
training group and 31/79 in the validation set. The distributions
of the characteristics of the two groups were compared using the
Mann–Whitney U test and the chi-square test, and there were no
significant differences in age (p = 0.61), sex (p = 0.43),
peritumoral edema (p = 0.38), tumor size or invasiveness (p =
0.22). Detailed information pertaining to the clinical
characteristics of the patients is shown in Table 1.
TABLE 1 | Patient characteristics.

Training Validation P value

Age(years, mean) 37.2 35.63 0.61a

Sex(Male/Female) 129/96 58/52 0.43b

Peritumoral edema 48/177 19/91 0.38b

Tumor invasiveness 65/120 31/79 0.22b
aMann-Whitney U test, bChi-square test.
A B

FIGURE 1 | Texture feature selection using LASSO logistic regression. (A) Selection of the tuning parameter (lambda). The dotted vertical lines are plotted at the
optimal l values based on the minimum criteria and 1 standard error of the minimum criteria. (B) LASSO coefficient profiles are shown for the 1874 texture features.
A vertical line is drawn at the value where the optimal lambda results in 11 nonzero coefficients.
February 2021 | Volume 10 | Article 599888
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Machine-Learning Model for Predicting
the Invasiveness of ACPs
In this study, the LASSO algorithm was used to select features
with nonzero coefficients, and a subset of 11 features were
screened from a total of 1,874 radiomic features (Figures 1A,
B). The names and descriptions of these 11 selected features are
shown in Table 2.

A machine-learning model was constructed based on the
selected features and the SVM classifier with the training set data.
The AUC was 79.09% following ROC curve analysis, and the
sensitivity, specificity, and accuracy were 81.97%, 66.74 and 75%,
respectively at the optimal cutoff point (0.609) (Figure 2A).
Then, the model was applied to the validation set, and the
invasiveness of the ACPs was effectively predicted. In the ROC
curve analysis, the AUC was 73.5%. In addition, the optimal
cutoff value (0.568) yielded a sensitivity, specificity, and accuracy
of 69.53, 72.44, and 66.53%, respectively (Figure 2B). Hence, the
11 radiological features that constituted our model were regarded
as an effective radiomics signature for the invasiveness of ACPs.
Frontiers in Oncology | www.frontiersin.org 4
Development and Validation of the
Individualized Predictive Nomogram
The radiomics signature and peritumoral edema were identified
as independent predictors of ACP invasiveness based on the
multivariate logistic regression algorithm (Table 3). The
nomogram showed favorable discrimination with an AUC of
84.79% [95% confidence interval (CI), 84.12–85.46%] in the
training set (Figures 3A, B). The radiomic nomogram also
showed good discrimination with an AUC of 76.48% (95% CI,
74.13–78.83%) in the testing set (Figure 3C).
DISCUSSION

Although the history of surgical treatment for CPs has been
spanned the course of more than 100 years, these masses still
pose a surgical challenge even after the application of modern
neurosurgical techniques (18–22). Numerous studies have
revealed that quality of life (QoL) and cognitive performance
TABLE 2 | Eleven prognostic radiomics features selected by the LASSO algorithm.

Features Descriptions Coefficients

First order_ Skewness Skewness measures the asymmetry of the distribution of values about the Mean value. -2.7 × 10-1

GLSZM_ Gray Level Variance Measuring the variance in gray level intensities for the zones. 4.32 × 10-1

Shape _Sphericity Measuring the roundness of the shape of the tumor region relative to a circle 1.13 × 10-1

Shape _ Surface Volume Ratio A lower value indicates a more compact (sphere-like) shape and dependent on the volume of the ROI. 2.46 × 10-2

GLCM _ Contrast Measuring the local intensity variation, favoring values away from the diagonal. 2.87 × 10-3

wavelet-HLL_ GLDM_ DNU Describing the homogeneity among dependencies in the image. The value is low if the image has more similarity. -5.1 × 10-1

wavelet-LHL_GLCM_
Autocorrelation

Describing the magnitude of the fineness and coarseness of texture. -6.72 × 10-2

wavelet-HLH_ NGTDM_ Busyness Describing the change from a pixel to its neighbor. The value is high if the changes of intensity between pixels and
its neighborhood is rapid.

-1.91

wavelet-LLL_ NGTDM _Complexity Describing the complexity of the image. The value is high if there are many rapid changes in gray level intensity. 4.09 × 10-3

wavelet-HLL_ GLSZM_ SAHGLE Describing the distribution of smaller size zones with higher gray-level values. -1.17 × 10-1

wavelet-LLH_ GLSZM _ SZNUN Describing the variability of size zone volumes throughout the image. -7.42 × 10-2
February 2021 | Volume 10 | A
DNU, Dependence Non Uniformity; SAHGLE, Small Area High Gray Level Emphasis; SZNUN, Size Zone Non Uniformity Normalized.
A B

FIGURE 2 | Receiver operating characteristic curves for the prediction of invasiveness of ACPs in the training and validation sets. (A) For the training set, the area
under the curve (AUC) was 79.09% with a sensitivity, specificity and accuracy of 81.97, 66.74, and 75%, respectively. (B) For the validation set, the AUC was 73.5%
with a sensitivity, specificity and accuracy of 69.53, 72.44, and 66.53%, respectively.
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are frequently impaired in long-term survivors after surgery
due to the anatomical proximity of the CPs to the optic
nerve and to the hypothalamic-pituitary axes (23–25). Some
researchers have advocated less aggressive surgery combined
with radiotherapy as a more reasonable and effective means of
protecting hypothalamus function and preventing recurrence in
the patients with tight tumor adhesion to the hypothalamus (26–
28). Therefore, it is important to assess the aggressiveness of the
tumor before surgery. In the present study, we used the
noninvasive radiomics method to predict the invasiveness of
ACPs before surgery, which made it possible to develop a
personalized surgical protocol. Note that to avoid heterogeneity
between the two histopathological CP subtypes, only ACPs were
included in the study.

In our cohort, there were more male patients (n = 187,
55.82%) than female patients (n = 148, 44.18%), consistent
with previous reports (29–31). Although CPs were more
Frontiers in Oncology | www.frontiersin.org 5
common among child patients, the proportion of adult
patients was higher in this study (84.78 vs. 15.22%); because
adult patients were the main group of patients in our ward.

To date, radiomics studies on craniopharyngiomas are rare.
Yue et al. proposed a machine learning model for discriminating
BRAF mutation and wild type among craniopharyngiomas with
sensitivity of 1.00 and specificity of 0.91 (32). Chen et al.
predicted the pathological subtype and gene mutations in
craniopharyngiomas with radiomics (33).

Radiomics is an emerging diagnostic technique, and the
potential ability of improving clinical decision support systems
has been well verified. Some successful precedents have been
demonstrated in radiomics studies for identifying the
invasiveness of tumors. For example, a previous report showed
that preinvasive pulmonary adenocarcinomas and invasive
pulmonary adenocarcinomas could be distinguished by
constructing a radiomics-clinical nomogram predictive model
TABLE 3 | Multivariate logistic regression analysis of the radiomics score and clinical predictors in the training set.

Univariate logistic regression Multivariate logistic regression

HR 95% CI P value HR 95% CI P value

Age, per 1 year increase 0.927 0.552–1.556 0.77
Sex (male) 0.988 0.972–1.005 0.16
Peritumoral edema 2.499 1.351–4.624 0.014 1.964 1.018–3.788 0.036
Tumor size, per 1cm increase 1.719 1.899–3.288 0.101
Radiomics score, per 0.1 increase 1.583 1.079–2.458 <0.001 1.257 1.072–1.473 0.005
February
 2021 | Volume 10 | Artic
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FIGURE 3 | The radiomic-clinical nomogram and its performance are illustrated. (A) The radiomics-clinical nomogram developed to predict the invasiveness of ACPs
is illustrated. (B) For the training set, the AUC was 84.79% with the sensitivity, specificity and accuracy of 83.27, 76.05, and 78.22%, respectively. (C) For the
validation set, the AUC was 76.48% with a sensitivity, specificity and accuracy of 71.24, 72.33, and 72.58%, respectively.
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with an AUC of 0.903 (34). Another report revealed that the
muscular invasiveness of bladder cancer could be evaluated by a
noninvasive radiomics model (35). Furthermore, Zhu et al.
proposed a learning radiomics model for preoperative grading
in meningioma (36). In the present study, we employed a
radiomics approach to provide preoperatively predict the
invasiveness of ACPs. The high-throughput features applied in
our radiomics model were extracted from the whole tumor on
preoperative CE-T1 images, which could reflect the heterogeneity
of the tumor. Subsequently, 11 invasiveness-associated features
were screened by using the LASSO algorithm, consisting of one
first-order feature, two shape-based features, two texture features,
and six wavelet features. Most of these selected features were also
reported in previous studies of tumor invasiveness (35, 37). Our
predicted model constructed by using an SVM classifier achieved
AUCs of 79.09% in the training set data and 73.5% in the
validation set data. The results indicate that the invasiveness of
APCs can be predicted using noninvasive radiological data, and
the proposed radiomics signature performed well in the training
and validation sets.

Tumor invasiveness is closely associated with gene mutations
and/or relative protein expression levels. However, owing to its
rarity and benign histological nature, studies of the genomics and
molecular pathology of CPs are limited. A previous study revealed
that the expression of claudin-1, a tight junction protein expressed
in epithelial tissues that plays important roles in cell polarity and
adhesion, could be strongly associated with the invasiveness of CPs
(38). The authors found that the invasive CPs exhibited significantly
lower claudin-1 expression than their noninvasive counterparts
regardless of CP subtype. We suggest that this difference may be the
basis of the molecular pathology for distinguishing invasive and
noninvasive ACPs by using the radiomics method.

The individualized predictive nomogram, incorporated the
radiomics signature and peritumoral edema into a model, which
facilitated the individualizedpredictionof the invasiveness ofACPs.
The radiomic-clinical nomogram showed better discrimination in
the training and validation sets with AUCs of 84.79 and76.48%,
respectively. This revealed that combining multiple clinical risk
factors to estimate and determine follow-up treatment, rather than
focusing on a single radiological feature, is very necessary.

There are some limitations in our study. First, to build the
radiomics signature and predictive model, we analyzed axial CE-
T1 images, which are usually referred to clinically; however,
combinations with other sequences such as fluid attenuated
inversion recovery (FLAIR) imaging and T2-weighted imaging
may have provided additional information and improved the
Frontiers in Oncology | www.frontiersin.org 6
performance of the predictive model. Second, potential selection
biases might have occurred because of the retrospective nature of
the study. Third, the imaging protocols used were not fully
consistent in that the imaging data were acquired with
different MRI scanners.
CONCLUSION

We proposed a radiomics-clinical nomogram for the
individualized preoperative prediction of the invasiveness of
ACPs. This reliable, noninvasive tool can help clinical decision
making and improve patient prognosis.
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