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Abstract: Poly(ADP-ribose)polymerase-1 (PARP1) is a nuclear protein implicated in 

DNA repair, recombination, replication, and chromatin remodeling. The aim of this study 

was to evaluate possible differences between PARP1
−/−

 and wild-type mice regarding 

induction and repair of DNA lesions in irradiated male germ cells. Comet assay was 

applied to detect DNA damage in testicular cells immediately, and two hours after 4 Gy  

X-ray irradiation. A similar level of spontaneous and radiation-induced DNA damage was 

observed in PARP1
−/−

 and wild-type mice. Conversely, two hours after irradiation, a 

significant level of residual damage was observed in PARP1
−/−

 cells only. This finding was 

particularly evident in round spermatids. To evaluate if PARP1 had also a role in the 

dynamics of H2AX phosphorylation in round spermatids, in which γ-H2AX foci had been 

shown to persist after completion of DNA repair, we carried out a parallel analysis of  

γ-H2AX foci at 0.5, 2, and 48 h after irradiation in wild-type and PARP1
−/−

 mice. No 

evidence was obtained of an effect of PARP1 depletion on H2AX phosphorylation 

induction and removal. Our results suggest that, in round spermatids, under the tested 

experimental conditions, PARP1 has a role in radiation-induced DNA damage repair rather 

than in long-term chromatin modifications signaled by phosphorylated H2AX.  
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1. Introduction 

The maintenance of DNA integrity in the paternal genome is of utmost importance for reproduction 

and it is well known that DNA lesions in germ cells can be transmitted to the next generation [1]. Germ 

cells need efficient systems to repair DNA damage to prevent inheritable mutations. Differences have 

been observed among DNA repair pathways in somatic and male germ cells, in which the expression or 

the presence of some DNA repair proteins depends on the phase of germ cell development [2–9]. 

Poly(ADP-ribose)polymerase-1 (PARP1) is one of the members of a family of nuclear proteins 

involved in several cellular processes like DNA repair, replication and transcription, chromatin 

structure, and intracellular calcium signaling, and is critical for the long-term maintenance of genomic 

stability [10]. Activation of PARP1 is one of the immediate responses of eukaryotic cells to DNA 

damage. It recognizes DNA strand breaks and, at the site of breakage, catalyzes the transfer of the 

ADP-ribose moiety from the respiratory co-enzyme NAD+ to nuclear protein acceptors [11,12]. 

PARP1 signals the presence of DNA lesions to downstream effectors involved in coordinating the 

cellular response to DNA damage, recruits repair enzymes to the damaged sites, and affects chromatin 

structure to allow repair factors to access DNA lesions [11,13–15]. PARP1 has been involved in the 

repair of various types of DNA lesions by multiple pathways [15]. The role of this enzyme and other 

PARP family members in DNA repair processes has been extensively studied in somatic cells,  

both using chemical inhibitors and mouse and cellular models genetically defective for the  

enzymes [13,16–24]. These studies show that inhibition or lack of PARP slows down DNA repair and 

increase the cytotoxicity of ionizing radiation and alkylating agents. The contribution of PARP1 to 

DNA repair in male germ cells has been considerably less investigated. It is known that germinal cells 

are characterized by a high expression level of PARP [25] and difference among testis cell 

subpopulations in PARP activity and production of ADP-ribose polymers was also observed [26–30]. 

In male germ cells poly(ADP ribose) metabolism is important for the regulation of meiotic process and 

seems to have a role in DNA repair and chromatin remodeling in post-meiotic cells [27,28,30–32].  

A delay of radiation-induced DNA damage repair was shown in cultured rat spermatocytes and 

spermatids [25], and mouse spermatids in vivo [3] when poly(ADP ribose) metabolism was inhibited 

by chemical treatment. These studies left unanswered the question of the specific role of PARP1 in the 

germ cell DNA damage response because of the poor specificity of chemical inhibitors towards 

different PARP family members [25]. 

PARP1 knockout mice have been produced to investigate the specific role of PARP1 in cellular 

processes [24]. PARP1
−/−

 mice are more sensitive to the lethal effects of alkylating agents and ionizing 

radiation, show an increased frequency of spontaneous sister chromatid exchanges in bone marrow 

cells and increased levels of chromatid and chromosome aberrations after exposure to genotoxic  

agents [24,33–35]. Although their fertility is not compromised, more subtle effects on the germ cell 

DNA damage response in these mice cannot be excluded. To our knowledge, no studies  
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have been published so far to evaluate male germ cell capability of PARP1
−/−

 mice to repair induced 

DNA damage. 

In this study, alkaline comet assay has been applied to evaluate the level of basal and X-ray induced 

DNA lesions in testis cells from wild-type (WT) and PARP1
−/−

 mice. In addition, to investigate the 

role of PARP1 in DNA repair in male germ cells, DNA damage was assessed at different times after 

irradiation. Exploiting the capacity of comet assay to identify DNA lesions in individual cells versus 

their ploidy [9,36], we evaluated the response to irradiation of different testis cell subpopulations.  

Post-meiotic early spermatids were the most affected by lack of PARP1. So, in these cells the 

induction of double strand breaks (DSB) was also specifically investigated by γ-H2AX immunolabeling. 

Finally, the persistence of γ-H2AX foci after DNA repair was evaluated to assess the role of PARP1 in 

long-lasting chromatin remodeling [37]. 

2. Results and Discussion 

Cytotoxic effects induced by 4 Gy X-rays on WT and PARP1
−/−

 testis cells were assessed by flow 

cytometric DNA content analysis 48 h after irradiation. The most radiosensitive testicular cell population 

is that of differentiating spermatogonia. Thus, shortly after irradiation, cytotoxic effects are reflected  

by a decrease of the S-phase flow cytometric compartment, which includes mainly proliferating 

spermatogonia. X-rays induced a comparable cytotoxic effect in WT and PARP1
−/−

 mice (Table 1), the 

magnitude of which was in agreement with a previously published dose-effect relationship [38]. 

Table 1. Percentage of testis cells in each population (standard error) as evaluated by flow 

cytometric DNA content analysis. 

 
Elongated 

spermatids 

Round  

spermatids 

Diploid  

cells 

S-phase  

cells 

Tetraploid  

cells 

WT control 23.11 (1.06) 49.85 (1.13) 11.32 (0.52) 2.69 (0.13) 10.90 (0.20) 

PARP1−/− control 23.71 (0.31) 48.42 (0.66) 11.36 (0.31) 2.46 (0.16) 11.07 (0.27) 

WT 4 Gy 48 h 23.21 (0.61) 49.32 (0.93) 12.13 (0.91) 1.04 (0.22) b 10.94 (0.33) 

PARP1−/− 4 Gy 48 h 26.28 (0.79) a 46.83 (0.93) 11.57 (0.54) 0.70 (0.11) b 11.29 (0.27) 
a p < 0.05; b p < 0.005. 

Short term genotoxic damage induced by 4 Gy X-rays on WT and PARP1
−/−

 testis cells was 

assessed by alkaline comet assay immediately after irradiation; removal of DNA lesions was assessed 

by comet analyses at 2 and 48 h after treatment. Overall data are summarized in Table 2. 

Table 2. Mean fraction tail DNA (± standard error) of unirradiated testis cells and of  

4 Gy-irradiated cells sampled immediately, 2 or 48 h after exposure.  

 WT  

Fraction tail DNA (± s.e.) 

PARP1
−/−  

Fraction tail DNA (± s.e.) 

Control 0.09 (0.01) 0.08 (0.01) 

4 Gy T0 0.14 (0.02) a 0.13 (0.01) a 

4 Gy T2 0.08 (0.01) 0.11 (0.01) a 

4 Gy T48 0.09 (0.01) 0.08 (0.01) 
a p < 0.05 with respect to matched controls. 
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The mean fraction tail DNA values in control and irradiated testis cells evaluated in WT and 

PARP1
−/−

 mice immediately after irradiation are also reported in Figure 1. No differences in the basal 

level of DNA strand breaks were observed; 4 Gy X-rays induced a similar significant increase of mean 

fraction tail DNA values in WT and PARP1
−/−

 mice. These results suggest that, in male germ cells, 

lack of PARP1 does not affect the level of endogenous damage or modify chromatin structure in a way 

that makes it more susceptible to radiation-induced lesions. 

Figure 1. Fraction tail DNA of unirradiated testis cells and of 4 Gy-irradiated cells 

sampled immediately after exposure. Columns represent the mean of fraction tail  

DNA values (+ standard error) for each experimental group. Asterisks evidence results 

significantly different from matched controls (* p < 0.05; ** p < 0.01). 

 

Histograms in Figure 2 report data on the level of residual damage observed at different times after 

irradiation expressed as differences between the mean fraction tail DNA of irradiated and unirradiated 

groups. WT mice showed a complete repair of DNA lesions within two hours after treatment; on the 

contrary, in PARP1
−/−

 mice, although the level of damage decreased with time after irradiation, a 

statistically significant (p < 0.05) level of residual damage was still detected two hours after treatment. 

Similarly to WT animals, 48 h after irradiation no residual damage was detectable in PARP1
−/−

 mice. 

These results are in agreement with previous studies in rodent testis cells reporting a significant delay 

of DNA repair following oxidative stress induced by chemical and physical agents when PARP 

activity was inhibited by chemical inhibitors [3,25,27], and suggest that PARP1 is specifically 

involved in DNA strand break repair after X-ray irradiation in one or more spermatogenic cell stages. 

The complete recovery observed 48 h after treatment indicates that, eventually, the absence of PARP1 

is compensated by other proteins with a similar function and/or alternative repair pathways.  

Previous in vitro studies on PARP1 null cells had already suggested that lack of PARP1 decreases the 

efficiency of and delays DNA repair, although such effects are ultimately overcome by backup  

mechanisms [19,24,39]. 

  



Int. J. Mol. Sci. 2013, 14 18082 

 

 

Figure 2. Differences between the mean fraction tail DNA of irradiated and unirradiated 

groups (Effect) immediately, 2 and 48 h after irradiation in testis cells of wild-type and 

PARP1
−/−

 mice. Columns represent the mean values for each experimental group. The 

asterisk evidences results significantly different from matched controls (* p < 0.05). 

 

In order to investigate the response to the insult of different testis cell subpopulations we exploited 

the capacity of comet assay to identify DNA lesions in individual cells versus their ploidy. The cell 

distribution obtained by this approach (Figure 3A), that had been previously applied to evaluate DNA 

damage in different cell cycle phases [40] and different testicular cell types [36], was validated by 

comparing it with the DNA content distribution histogram obtained by flow cytometry (Figure 3B). 

The two distributions resulted very similar also considering that flow cytometric histogram was 

obtained measuring 10,000 cells, while the comet assay histogram is based on 200 cells.  

Figure 3. Comparison between DNA content histograms obtained by comet assay (A)  

and flow cytometry (B). The histograms were obtained by analyzing the samples of 

untreated testis cells. Two hundreds and 10,000 cells were analyzed by comet assay and 

flow cytometry respectively.  
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The mean fraction tail DNA values were then evaluated on cells attributed to different cell 

subpopulations, as described in the Experimental Section and are reported in Figure 4. The distribution 

of strand breaks in different cell types of unirradiated testes was similar in WT and PARP1
−/−

 cells, 

with four-times higher mean fraction tail DNA values in untreated 4C cells than in the other cell types. 

This finding could be ascribed to DNA strand breaks generated during meiotic synapsis and 

recombination occurring in pachytene cells [41,42], which represent a relevant fraction of this 

subpopulation. Immediately after irradiation an increase of fraction tail DNA values was induced in 

round spermatids, 2C and S-phase cells while no effect was observed in 4C cells, indicating different 

sensitivity of various cell subpopulations. This result, in agreement with Zheng and Olive [9], could 

reflect differences in chromatin condensation and interaction of target DNA with histone and  

non-histone proteins during the differentiation process that make it differentially susceptible to 

radiation-induced lesions. It is known that radiosensitivity of testicular subpopulations varies, the 

mitotically active spermatogonia being the most sensitive to ionizing radiation, and spermatocytes and 

spermatids the most resistant cells [43]. Two hours after treatment, a significant reduction of radiation 

damage was observed in all cell subpopulations with the exception of PARP1
−/−

 round spermatids, 

indicating that the delay in strand break rejoining observed in testis cells was mainly imputable to this 

cell subpopulation. This finding is consistent with the observation that round spermatids respond to 

genotoxic stress with a more elevated production of poly(ADPribose) than other testis cells and 

provides evidence that lack of PARP1, among all family members, is specifically implicated in the 

delay of DNA repair shown in rodent post-meiotic cells [3,25] treated with chemical inhibitors of 

poly(ADP) ribosylation. Considering that ADP-ribosylation of nuclear proteins releases chromatin 

structure and, in this way, facilitates repair of damaged regions [11,17], it is conceivable that, due to 

the progressive chromatin condensation occurring during post-meiotic maturation, spermatids 

increasingly rely upon PARP1 activity to give access to repair enzymes. It was not possible to 

specifically investigate the requirement for PARP1 in elongated spermatids because our experimental 

conditions failed to decondense their compact chromatin. However, since all DNA repair processes 

decrease with maturation, the role of PARP1 in mature spermatids is probably less relevant.  

We had previously shown that round spermatids are peculiar also regarding the dynamics of H2AX 

phosphorylation, which persists long time after DNA damage induced by irradiation has been  

repaired [37]. To evaluate if PARP1 had also a role in the dynamics of H2AX phosphorylation in these 

cells, the induction and removal of γ-H2AX foci were compared in round spermatids from PARP1
−/−

 

and WT mice. H2AX phosphorylation has become a popular marker of radiation-induced DSB [44] 

and more recently, it has been proposed to also mark chromatin modifications independently from the 

presence of DNA breaks [45–47]. In unirradiated testes, H2AX is highly phosphorylated in the sex 

body of pachytene cells, which corresponds to the heterochromatic domain of sex chromosomes [41,48] 

and γ-H2AX marks sites of recombinational DSB preceding chromosome synapsis [41]. After 

irradiation, increased phosphorylation was found in the whole testis [49] and γ-H2AX foci were 

detected in A spermatogonia, pachytene spermatocytes, and round spermatids [3,37,42], as well as in 

neonatal male germ cells [50]. Due to the interplay between Ataxia Telangiectasia Mutated (ATM) 

kinase protein and poly(ADP-ribosyl)ation that is important for the phosphorylation of H2AX [51] a 

difference in the basal and radio-induced level of γ-H2AX foci could be expected between PARP1
−/−

 

and WT mice.  
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Figure 4. Fraction tail DNA in different testis subpopulations, discriminated on the basis 

of their ploidy, after irradiation of WT and PARP1
−/−

 mice. Mean of fraction tail DNA 

values (+ standard error) are shown for each experimental group. Control, untreated sample; 

4 Gy T0, immediately after irradiation; 4 Gy T2, 2 h after irradiation. Asterisks evidence 

results significantly different from matched controls (* p < 0.05). 

 

Under our experimental conditions, no difference was observed between PARP1
−/−

 and WT mice in 

the background frequency of γ-H2AX-positive spermatids (Figure 5). Thirty minutes after irradiation a 

comparable highly significant increase (p < 0.001) of γ-H2AX-positive cells was found in both  

lines. The subsequent temporal evolution of γ-H2AX foci was also quantitatively similar in WT and 

PARP1
−/−

 mice: 2 h after irradiation, a further increase of positive cells was observed, and 48 h after 

irradiation, although the number of foci was reduced, a high percentage of positive cells was still 

present. At the same time, the size of foci increased and they became discrete and countable. The 

average number was 5.7 ± 0.28 in WT and 5.0 ± 0.13 in PARP1
−/−

 γ-H2AX positive cells, not showing 

significant differences between the two mouse lines. Such large foci were never detected in the few  

γ-H2AX positive unirradiated cells. Examples of γ-H2AX labeled testicular cells are shown in Figure 6. 
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A number reduction and a size increase of foci had been observed in somatic and germ cells with time 

after irradiation and related to clustering of small foci and relocalization of repair enzymes to sites of 

complex unrepaired DNA lesions or to remaining scaffold structures used for DSB repair [37,52–54]. 

Our results suggest that PARP1 does not strongly influence the dynamics of H2AH phosphorylation in 

round spermatids. This finding is not completely consistent with data reported by Ahmed and  

co-workers [3] who showed that, after a comparable induction of foci by 1 Gy gamma-rays in mice 

treated or not with PARP chemical inhibitors, significantly more foci remained in PARP inhibited 

mice at eight hours after irradiation. Such different observations might be explained considering 

differences in tested doses (1 vs. 4 Gy), sampling times (8 h vs. 48 h), and analyzed endpoints (number 

of foci vs. percentage of positive cells), or might be actually due to a secondary role of PARP1 among 

PARP family members in radiation-induced γ-H2AX foci removal, or to a combination of all these 

factors. Additionally, it should be noted that inhibition of PARP1 is not equivalent to genetic deletion 

of PARP1, as also suggested by a comparison between RNAi depleted HeLa cells and the same cells 

treated with a PARP1 inhibitor [55]. In this study, the effects of inhibition were more serious as the 

PARP1 protein was still able to engage in the formation of a DNA damage chromatin complex making 

the shift to an alternative repair mode more difficult. Further experiments in PARP1
−/−

 mice with 

lower X-ray doses might contribute to solve these issues. 

Figure 5. Percentages of γ-H2AX-positive round spermatids. Control, untreated sample;  

4 Gy T0.5, 30 min after irradiation; 4 Gy T2, 2 h after irradiation; 4 Gy T48, 48 h after 

irradiation. Columns represent the mean values (+ standard error) for each experimental 

group. Asterisks evidence results significantly different from matched controls (* p < 0.001). 
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Figure 6. Representative images of γ-H2AX immunostained testicular cells. Left: DNA 

fluorescence; middle: γ-H2AX fluorescence; right: merge. (A) Unirradiated cells: one 

pachytene spermatocyte showing a bright stained XY body and two round spermatids;  

(B) Three round spermatids 30 min after 4 Gy X-ray; (C) Two round spermatids 48 h after  

4 Gy X-ray. 

 

3. Experimental Section  

3.1. Mice 

Male C57Bl mice aged 12–14 weeks were obtained from Harlan (Udine, Italy); PARP1
−/−

 mice 

were bred at ENEA from founders received from P. de Boer (Nijmegen, The Netherlands) upon 

licence of G. de Murcia (Strasbourg, France). Animals were maintained under standard conditions  

(20–22 °C, 60% relative humidity, on a 12 h light/dark cycle, with chlorinated water and feed  

ad libitum). All experimental protocols were reviewed and approved by the Institutional Animal Care 

and Use Committee. 

3.2. X-Ray Irradiation 

Mice were anaesthetized with Avertin (Sigma Aldrich St. Louis, MO, USA) diluted at 2.5% in 

sterile saline solution given intraperitoneally at a dose of 10 μL/g b.w. and only the testes region was 

irradiated with 4 Gy X-rays, the remainder of the body was shielded by 1-mm thick lead shield. 

Irradiation was carried out with a Gilardoni X-ray machine (15 mA, 250 kV; dose-rate 0.96 Gy/min). 

At different times after irradiation, mice were sacrificed and testes were removed and minced to obtain 

cellular suspensions to be analyzed. 
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3.3. Comet Assay of Testis Cells 

Alkaline comet assay (pH > 13) was performed on testis cells from control mice and mice irradiated 

with 4 Gy and sacrificed immediately, 2 or 48 h after irradiation. At least four wild type (WT) and  

four PARP1
−/−

 mice were used per experimental point. One testis from each mouse was minced and 

the cell suspensions were filtered through a 70 μm nylon mesh, centrifuged, resuspended in PBS 

(approximately 10
7
 cells/mL), and mixed with low-melting point agarose (Bio-Rad, Hercules, CA, 

USA) to prepare slides for comet assay. 

Alkaline comet assay was performed as described by Singh et al. [56] with minor modification [36]. 

Immediately before scoring, slides were stained with 12 μg/mL ethidium bromide (Sigma-Aldrich,  

St. Louis, MO, USA) and examined, at 200× magnification, with an Olympus fluorescence microscope. 

Slides were analyzed by a computerized image analysis system (Delta Sistemi, Rome, Italy). To 

evaluate the amount of DNA damage, computer generated fraction tail DNA values were used.  

Two-hundred cells were scored for each mouse from two different slides. Elongated spermatids, 

morphologically recognized, were not included in DNA damage analysis because our standard 

conditions failed to decondense their compact chromatin. Furthermore, the integral fluorescence 

intensity of each comet was taken as a measure of DNA content and used to discriminate cells with 

different DNA content [40]. The procedure to assign cells to the various subpopulations was adapted 

from the method previously described by Zheng and Olive [9]. In particular, cells were classified as 

haploid spermatids on the basis of DNA content distribution histograms and morphology; this 

subpopulation is defined ―round spermatids‖ in the manuscript, although it is rather broad and includes 

different maturation stages from early round spermatids up to the elongating ones. Somatic and 

germinal cells, were considered 2C if their total fluorescence was comprised between one standard 

deviation minus and one standard deviation plus twice the mean haploid cell value. Cells with total 

fluorescence higher than double fluorescence of 2C cells were considered 4C. Cells included between 

2C and 4C populations were considered S-phase cells. A representative histogram of relative 

fluorescence intensity obtained from a control sample is reported in Figure 3A and compared with the 

DNA distribution histogram obtained by flow cytometry on the same sample (Figure 3B). 

3.4. Immunofluorescent Analysis of H2AX Histone Phosphorylation 

Immunofluorescent analysis of H2AX histone phosphorylation was performed on round spermatids 

in groups of 4 PARP1
−/−

 and 4 WT mice irradiated with 4 Gy X-rays and sacrificed 30 min, 2 h or 48 h 

later. Four unirradiated mice of each line were used as matched controls. Testis cell suspensions in 

PBS were mechanically prepared and filtered through 70 μm nylon mesh. The suspensions were fixed 

in 70% ethanol and diluted to a concentration of approximately 4 × 10
5
 total cells/mL. Cells were 

cytospun onto slides (10 min, 600 rpm), air-dried, and re-fixed for 30 min in 2% paraformaldehyde in 

PBS. After 3 rinses in 0.05% Triton-X100 in PBS (TBS), slides were blocked in 5% nonfat dry milk in 

TBS for 1 h at 37 °C and incubated overnight at 4 °C with mouse monoclonal anti-γ-H2AX antibody 

(Upstate Biotechnology, Lake Placid, NY, USA) diluted 1:1000 in 10% goat serum, 5% nonfat dry 

milk in TBS. Slides were then washed 3 times in PBS, blocked in 5% nonfat dry milk in PBS for  

30 min at 37 °C and finally incubated for 2 h at 37 °C with Alexa 488-conjugated goat antimouse IgG 
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(Molecular Probes, Eugene OR, USA) diluted 1:2000 in 10% goat serum, 5% nonfat dry milk in  

PBS. Slides were rinsed in PBS and mounted in Vectashield mounting medium with DAPI (Vector 

Laboratories Inc., Burlingame, CA, USA). 

Slides were viewed under 1000× magnification using an Olympus fluorescence microscope 

(Olymphus Optical co. Tokyo, Japan) equipped with CCD camera. Round spermatids were identified 

by their morphology according to Mahadevaiah et al. [41]. At 0.5 and 2 h post-irradiation time points 

there were tens of small foci on multiple focal planes and it was not possible to reliably count their 

number. For this reason, spermatids were simply classified in γ-H2AX positive and γ-H2AX negative  

(Figure 6). At 48 h after irradiation, few large countable foci were observed in positive cells, and their 

average number was also determined. At least 100 spermatids were analyzed per mouse. 

3.5. Flow Cytometric DNA Content Analysis of Testis Cells 

Flow cytometric (FCM) DNA content analysis was performed 48 h after irradiation on one testis of 

control and irradiated mice to evaluate radiation-induced cytotoxicity. The procedure used is described 

in detail elsewhere [57]. The DNA content of the testis cells was measured using a FACScan flow 

cytometer (Becton Dickinson, San Jose, CA, USA). A total of 1 × 10
4
 events were accumulated for 

each measurement. Typical DNA content fluorescence intensity distribution histograms from adult 

mouse testicular cells (Figure 3B) are characterized by four main peaks representing elongated haploid 

spermatids, round haploid spermatids, cells with a 2C DNA content including G1 somatic and germ 

cells plus secondary spermatocytes, and cells with a 4C DNA content including G2 somatic and germ 

cells and primary spermatocytes; S-phase cells are included between 2C and 4C cell compartments, as 

described in Zante et al. [58]. The calculation of the relative frequencies of the various testicular cell 

types was performed automatically according to the model described in Lampariello and coworkers [59]. 

3.6. Statistical Analysis 

Individual mouse data were considered the experimental unit. Mean values and standard errors 

relative to each homogeneous group were calculated. Statistical analysis was performed using 

STATISTICA software (StatSoft, Inc., Tulsa, OK, USA). Comparison between group means was 

performed by one-way ANOVA, and Duncan‘s test was used for post hoc comparisons. Differences 

were considered due to the treatment when their probability level was lower than 5%.  

4. Conclusions 

In summary, our results suggest that in round spermatids lack of PARP1 delays the repair of 

radiation-induced DNA damage, whereas it does not seem to affect H2AX phosphorylation dynamics 

signaling double strand breaks or post-repair chromatin modifications. Additional experiments could 

clarify if these conclusions could be extended also to the radiation response of round spermatids in the 

low-dose range.  
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