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Abstract

Mutations that confer herbicide resistance are a primary concern for herbicide-based chemi-

cal control of invasive plants and are often under-characterized structurally and functionally.

As the outcome of selection pressure, resistance mutations usually result from repeated

long-term applications of herbicides with the same mode of action and are discovered

through extensive field trials. Here we used acetohydroxyacid synthase (AHAS) of Kochia

scoparia (KsAHAS) as an example to demonstrate that, given the sequence of a target pro-

tein, the impact of genetic mutations on ligand binding could be evaluated and resistance

mutations could be identified using a biophysics-based computational approach. Briefly, the

3D structures of wild-type (WT) and mutated KsAHAS-herbicide complexes were con-

structed by homology modeling, docking and molecular dynamics simulation. The resis-

tance profile of two AHAS-inhibiting herbicides, tribenuron methyl and thifensulfuron methyl,

was obtained by estimating their binding affinity with 29 KsAHAS (1 WT and 28 mutated)

using 6 molecular mechanical (MM) and 18 hybrid quantum mechanical/molecular mechani-

cal (QM/MM) methods in combination with three structure sampling strategies. By compar-

ing predicted resistance with experimentally determined resistance in the 29 biotypes of K.

scoparia field populations, we identified the best method (i.e., MM-PBSA with single struc-

ture) out of all tested methods for the herbicide-KsAHAS system, which exhibited the high-

est accuracy (up to 100%) in discerning mutations conferring resistance or susceptibility to

the two AHAS inhibitors. Our results suggest that the in silico approach has the potential to

be widely adopted for assessing mutation-endowed herbicide resistance on a case-by-case

basis.
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Introduction

Acetohydroxyacid synthase (AHAS, also known as acetolactate synthase or ALS) is a group of

biosynthetic enzymes found in all plants, fungi, and bacteria (but absent in animals and

humans). AHAS is a key enzyme that catalyzes the formation of acetolactate and acetohydrox-

ybutyrate from pyruvate and 2-ketobutyrate [1, 2]. This is the first step in biosynthesis of the

essential branched-chain amino acids (valine, leucine, and isoleucine), which are critical for all

forms of life. AHAS has long been an attractive target in the development of herbicides, fungi-

cides, and antimicrobials because its inhibitors have a low toxicity to mammals while still

being highly selective and very potent [3]. AHAS-inhibiting herbicides are the largest site-of-

action group on the market, with more than 50 chemicals belonging to five classes (sulfonyla-

minocarbonyltriazolinones, triazolopyrimidines, pyrimidinyl(thio)benzoate, sulfonylureas,

and imidazolinones) and sulfonylureas being the majority [4]. However, persistent use of her-

bicides has exerted intense selection pressure on a great variety of weed species and resulted in

the evolution of resistance [5]. In the most common mechanism, resistance is conferred by

alteration of amino acids in the target site that attenuates the sensitivity to target-specific herbi-

cides [6, 7]. The magnitude of herbicide resistance depends on weed species, structural change

induced by mutation, and the type of herbicide. For a specific herbicide, a given mutation may

endow moderate to high resistance [7, 8] or, in rare instances, an increase in sensitivity to the

herbicide in different species [5]. In the current practice of weed control, resistance mutations

may be discovered only after repeated failure of herbicide application. Therefore, there is a

strong and urgent demand for a reliable and systematic approach for determining resistance

profiles of different herbicides that are in use or have been newly developed before commenc-

ing weed treatment. Compared to wet lab-based experiments and techniques, computational

approaches provide a rapid and cost-effective solution to screen and detect resistance

mutations.

Although computational endeavors in understanding herbicide resistance have been

scarcely reported [8, 9], considerable in silico efforts have been made to interpret and predict

drug resistance associated with genetic mutations during the last decade [10–14]. Here we

focus on computational studies in which the mutational effect is evaluated by measuring pro-

tein-ligand interactions. A handful of biophysics-based methods have been employed to esti-

mate the affinity of inhibitors binding to wild-type (WT) or mutated proteins [15–22], and the

results are in good agreement with experimental data. Moreover, viable mutations that confer

resistance to an inhibitor of dihydrofolate reductase have been predicted by a protein design

algorithm before being verified by crystallography and other experiments [23]. In addition to

mutational effects on binding affinity, the influence of mutations on catalytic activity has been

studied [24]. A successful resistance mutation should only impede the inhibitor binding to the

enzyme, but not the catalytic efficacy. In the aforementioned reports, the noncovalent interac-

tion between protein and ligand is typically described by a molecular mechanics (MM) poten-

tial function. Despite the success of MM force fields, it is always of immense interest to

precisely treat noncovalent interactions for accurate calculation of binding affinity. In theory,

noncovalent interactions can be handled more accurately with quantum mechanics (QM)

than with MM [25, 26] because important effects such as charge transfer and electronic polari-

zation are considered in QM, but not in MM. Inevitably, these additional considerations cause

a drastic increase in computational requirements, which limits the size of the systems that can

be studied. As a tradeoff between efficiency and accuracy, semi-empirical quantum mechanical

(SQM) methods have lately attracted attention again [27, 28]. SQM-DH, an improved SQM

approach with the addition of dispersion (D) and hydrogen bond (H) correction terms, yields

results comparable to high-level QM calculations in terms of accuracy [28, 29]. Even so, SQM
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is still too computationally demanding to be applicable for a large biomacromolecular system.

A feasible solution is the hybrid QM/MM model, in which the interaction region is treated by

QM whereas the remaining part is described by MM. Consequently, a number of QM/MM

approaches have been developed to study a group of ligands binding to a receptor [25]. How-

ever, it is unknown how well these QM/MM methods could differentiate between mutations

that confer resistance or susceptibility to an herbicide.

Here we investigate if the MM and QM/MM approaches can correctly identify AHAS

mutations in Kochia scoparia (also called Bassia scoparia) that confer resistance to two sulfo-

nylurea herbicides, tribenuron methyl and thifensulfuron methyl. K. scoparia is one of the

most problematic annual broadleaf weeds in North America known for its rapid adaptability

and widespread herbicide resistance [30]. So far, it has been reported that resistance to herbi-

cides arises via multiple mechanisms of action [31]. The resistance mechanism of K. scoparia
to AHAS-inhibiting herbicides, including the two most popular classes of AHAS inhibitors

(sulfonylurea and imidazolinone), has been well studied. Principally, this resistance is acquired

through mutations in the AHAS gene, which inhibit herbicide binding, but do not severely

impair AHAS catalytic activity and plant growth [30, 32, 33].

Because the structure of K. scoparia AHAS (KsAHAS) has not been solved, we first modeled

the structures of WT and mutated KsAHAS in complex with the two sulfonylurea herbicides

using homology modeling and docking. Then a plethora of MM and QM/MM methods were

employed to calculate the binding affinity, including MM-PBSA/GBSA/ALPB (i.e., MM com-

bined with Poisson-Boltzmann/generalized Born/Analytical Linearized Poisson-Boltzmann

and surface area continuum solvation) and QM/MM-GBSA combined with SQM and

SQM-DH approaches. The estimation of binding affinity was based on single structure or an

ensemble of structures sampled from classical and QM/MM molecular dynamics (MD)

simulations.

Materials and methods

Data curation and structure preparation

Various biotypes with AHAS mutations have been reported in field K. scoparia populations

[31, 34–36]. We curated 28 amino acid substitutions (Table 1) occurring at 7 KsAHAS residue

sites (according to the Arabidopsis thaliana AHAS (AtAHAS) amino acid sequence): Pro197,

Val225, Gly268, Glu284, Asp376, Asn434, and Trp574 (Fig 1). These residues corresponded to

Pro189, Val217, Gly260, Glu276, Asp372, Asn430, and Trp570 in KsAHAS. In the remainder

of this paper, residue numbers refer to those in AtAHAS. Among the 28 KsAHAS mutations,

25 (including 14 single-point and 11 double-point mutations that were all labeled “R”)

endowed resistance to the two sulfonylurea herbicides, tribenuron methyl and thifensulfuron

methyl, and the remaining 3 mutations (labeled “S”) caused susceptibility to them (Table 1).

Out of the 14 single-point resistance mutations, 10 occurred at the site of Pro197 (Fig 1 and

Table 1).

The structures of AtAHAS and Saccharomyces cerevisiae AHAS (ScAHAS) have been solved

experimentally. All AtAHAS structures are monomers, whereas dimer structures are available

for ScAHAS. The structures of AtAHAS (PDB ID: 1YI1, monomer) [37] and ScAHAS (PDB

ID: 1T9A, dimer) [38], both bound with the herbicide of tribenuron methyl, were retrieved

from the Protein Data Bank (Fig 2). The WT K. scoparia AHAS sequence (GI 188529573) [33]

was downloaded from NCBI (https://www.ncbi.nlm.nih.gov/protein/188529573). The 3D

structures of tribenuron methyl and thifensulfuron methyl were retrieved from PubChem.

The two herbicides were prepared by adding hydrogen with Open Babel 2.4 [39] and assigning

AM1-BCC atom charges with Antechamber implemented in Amber 16 [40].
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Molecular docking and homology modeling

AtAHAS shared a sequence similarity of about 80% with KsAHAS, whereas the sequence simi-

larity between ScAHAS and KsAHAS was about 40%, which allowed us to build homology

models. First, the dimer structure of 1YI1 (AtAHAS) was modeled using the structure of 1T9A

(ScAHAS) as the template. Then, tribenuron methyl and thifensulfuron methyl were docked

to the dimer structure of 1YI1 using DOCK 6.7 [41]. Finally, using the docked structures as

templates, KsAHAS structures bound with tribenuron methyl or thifensulfuron methyl were

constructed using Modeller 9.17 [42]. For each herbicide, 29 KsAHAS (1 WT and 28 mutated)

structures were generated. In docking simulations, the receptor box delimiting the binding

pocket was calculated with SHOWBOX. Potential grids were generated by the GRID program

using a 0.3 Å spacing. The herbicides were flexibly docked into the AtAHAS or KsAHAS struc-

ture, and the number of sampled ligand poses was set to 1,000.

Table 1. AHAS mutations in field Kochia scoparia populations along with their experimentally determined resis-

tance to tribenuron methyl and thifensulfuron methyl.

Mutation type Residue substitution Activity Reference

Wild type None Sa 33,34

Single

mutation

Pro197 Ala Rb 33

Arg R 33–35

Gln R 33–35

Glu R 30

Leu R 33

Lys R 33,34

Met R 33

Ser R 33,35

Thr R 33,34

Trp R 33

Val225 Ile R 33

Gly268 Asp S 33,34

Glu284 Val S 33,34

Asp376 Glu R 33–35

Asn434 Lys S 33

Trp574 Leu R 33–35

Arg R 33

Double

mutation

Pro197Ala+Trp574Leu R 34

Pro197Gln+Asp376Glu R 33

Pro197Ser+Asp376Glu R 33

Pro197Thr+Asp376Glu R 33

Pro197Arg+Trp574Leu R 33

Pro197Gln+Trp574Arg R 33

Pro197Gln+Trp574Leu R 33–35

Pro197Leu+Trp574Leu R 33

Pro197Ser+Trp574Leu R 33,34

Pro197Thr+Trp574Leu R 33,34

Asp376Glu+Trp574Leu R 33,35

aR = resistant
bS = susceptible

https://doi.org/10.1371/journal.pone.0216116.t001
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Fig 1. Reported mutation sites in Kochia scoparia AHAS (KsAHAS). Mutations at four sites (Pro197, Val225,

Asp376, and Trp574) confer resistance to sulfonylurea herbicides while mutations at the other three sites (Gly268,

Glu284, and Asn434) resulted in susceptibility. Residue numbers refer to the positions in the Arabidopsis thaliana
AHAS (AtAHAS) amino acid sequence with which KsAHAS was aligned.

https://doi.org/10.1371/journal.pone.0216116.g001

Fig 2. The complex structures of AHAS bound with tribenuron methyl. (A) The monomer structure of Arabidopsis thaliana AHAS (AtAHAS)

bound with tribenuron methyl (1YI1). (B) The dimer structure of Saccharomyces cerevisiae AHAS (ScAHAS) bound with tribenuron methyl

(1T9A). (C) The modeled dimer structure of Kochia scoparia AHAS (KsAHAS) bound with tribenuron methyl. (D) Important interactions

between ScAHAS and tribenuron methyl (1T9A). In panels A, B, and C, tribenuron methyl is displayed in spheres, indicating the binding site. In

panels B, C, and D, the two chains of AHAS are colored pink and cyan, respectively. In panel D, tribenuron methyl and three important residues

are shown in sticks. Carbons in tribenuron methyl are colored green.

https://doi.org/10.1371/journal.pone.0216116.g002
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Molecular dynamics (MD) simulations

One of the two symmetry binding sites in KsAHAS was removed for reduction of computa-

tional complexity. The remaining protein with two chains and 484 residues was used for MD

simulation and calculation of binding affinity. The WT and mutated KsAHASs were modeled

using the Amber ff14SB force field [43]. The herbicides were modeled using the GAFF2 force

field [44]. Each complex structure was explicitly solvated in a rectangular box of TIP3P water

molecules with a minimal distance of 10 Å from the protein to the box edges. Counter ions

(Na+) were added to neutralize uncompensated charges. The whole system was energy mini-

mized with 2,000 steps of steepest descent followed by 10,000 steps of conjugate gradient with-

out any harmonic restraint. The energy-minimized structures were extracted from the water

box for calculation of the single-point binding free energy.

Then, coupled to a Langevin thermostat, the system was heated from 10 K up to 300 K by

increments of 100 K in 20 ps and continued to run for 40 ps at 300 K at constant volume.

Finally, the system was equilibrated for 200 ps in NPT ensemble with the Langevin thermostat

and isotropic position scaling at 300 K and 1 bar, respectively. The production run for each

complex structure was carried out for 2 ns in NVT ensemble with the Langevin thermostat at

300 K using the parallel PMEMD. The MD simulations ran only for 2 ns because it was previ-

ously reported that the length of MD simulations had little effect on the calculation of binding

affinity [45]. After that, the QM/MM [46, 47] MD simulations were turned on. The QM region

was composed of the herbicide and side chains of residues at the 7 mutation sites except

Gly268 and Pro197. Gly268 was excluded because it was located outside the QM region. For

Pro197, only backbone atoms were included. Thus, the QM region contained 89–124 atoms,

depending on herbicides and mutations. The AM1 method with dispersion correction

(AM1D) was employed to model the QM region. The QM/MM MD simulations ran for 200

ps in NVT ensemble with the Langevin thermostat at 300K using the parallel SANDER. The

trajectories were sampled at a time interval of 10 ps. In our case, the QM/MM MD simulations

were 45–120 times slower than the classical MD simulations, depending on the size of the QM

region. For each classical MD trajectory, the last 50 frames were obtained for calculation of

binding free energy. For any QM/MM MD trajectory, the last 10 frames were extracted to cal-

culate the binding free energy.

All MD simulations were carried out using Amber 16 [40]. The equations of motion were

solved with the leapfrog integration algorithm with a time step of 2 fs. The lengths of all bonds

involving hydrogen atoms were kept constrained with the SHAKE algorithm. The particle

mesh Ewald (PME) method was applied for treating long-range electrostatic interactions. Peri-

odic boundary condition was used in all simulations that were performed on a Cray XE6 High

Performance Computing system with 32 CPUs on each node.

Binding free energy calculation

In MM-PBSA [48], binding affinity (ΔGbind) was estimated from free energies of reactants

(receptor and ligand) and product (complex): ΔGbind = Gcomplex−(Greceptor+Gligand). The free

energy of a state (receptor, ligand, or complex) was decomposed into gas-phase molecular

mechanics energies (EMM), solvation energies (Gsolv), and conformational entropy (TS). The

standard molecular mechanics energy included internal (bond, angle, and dihedral), electro-

static, and van der Waals interactions. The solvation energy was determined by the polar (Gpol)

and nonpolar (Gnp) contributions. The polar solvation contribution was calculated by solving

the Poisson–Boltzmann (PB) equation, and the nonpolar contribution was estimated by the

solvent accessible surface area (SASA). The entropy contribution was obtained by normal

mode analysis or quasi-harmonic approximation, which was dropped in our calculation. Thus,
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the binding affinity was estimated as the sum of the three energy terms (Eqs 1 and 2).

G ¼ EMM þ Gsolv � TS ¼ Einter þ Eele þ EvdW þ Gpol þ Gnp � TS ð1Þ

DGbind ¼ Gcomplex � ðGreceptor þ GligandÞ ¼ DEMM þ DGsolv � TDS ð2Þ

The polar solvation contribution (Gpol) was also estimated using the generalized Born (GB)

method, a computationally efficient approximation to the PB equation. In this work, two GB

models (the improved GBOBC model [49, 50] and the GBn model [51]) were tested. ALPB

(Analytical Linearized Poisson-Boltzmann) [52, 53] was another approximation method we

tested to handle electrostatic interactions within the implicit solvent model.

In QM/MM-GBSA [46, 54], the mechanics energies (EMM) were replaced with the QM/

MM energies (Eq 3).

DGbind ¼ DðEQM þ EMM þ EQM=MMÞ þ DGsolv � TDS ð3Þ

A series of SQM methods were used for the QM calculation, including PM3 [55], RM1

[56], DFTB3 [57], AM1, PM6, and AM1/PM6 coupled with the empirical dispersion (D) and

hydrogen bonding (H) correction [58] (i.e., AM1D, AM1DH, PM6D, and PM6DH). For sim-

plicity, a QM/MM-GBSA method is represented by the SQM method plus the GB model in

the remaining text. For example, AM1D-GBn stands for QM/MM-GBSA combined with

AM1, dispersion correction and the GBn model.

The calculations of binding free energy were performed with SANDER implemented in

Amber 16. In MM-PBSA, the internal dielectric constant (ε) was set to 2 and 4, as previously

described [45]. Other parameters were kept at their default settings. The binding free energy

was calculated using single structure as well as ensembles of conformations obtained from clas-

sical and QM/MM MD simulations.

Prediction power assessment

For each combination of herbicide and binding free energy estimation method, the 29 KsA-

HASs were sorted by the binding free energy in descending order (i.e., from weak binding to

strong binding), and the top-ranked KsAHASs were predicted to be potentially resistant.

Based on the known field resistance data, we made such prediction calls as true resistance (TR)

and false resistance (FR) in the top n KsAHASs, and true susceptibility (TS) and false suscepti-

bility (FS) in the remaining (29 –n) KsAHASs. Out of the 29 KsAHASs, 25 contained resistance

mutations, which should ideally be ranked ahead of the other 4 KsAHASs (3 mutated plus 1

WT). If a resistant KsAHAS was ranked below 25, it was called a FS; if a susceptible KsAHAS

was found in the top 25, it was called a FR. The following three metrics were introduced to

compare the overall prediction power of the methods for binding affinity calculation: accuracy,

enrichment factor (EF), and AUC-ROC (see below for definition and explanation).

Accuracy (Ac) was defined as TRþTS
N , where N was the total number of AHASs.

EF was defined as
a=n
A=N in the top-ranked 10 AHASs, where N was the total number of

AHASs; n was the number of AHASs selected (that is, 10); A was the total number of resistant

AHASs; and a was the number of resistant AHASs in the selection.

The receiver operating characteristic (ROC) [59] curve was drawn by plotting the TR rate

( TR
TRþFS) against the FR rate ( FR

FRþTS) with an increasing n. Here, the area under the curve (AUC) of

ROC was the integral of the ROC plot, and served as a measure of the probability that a bind-

ing free energy estimation method could correctly rank a resistant AHAS over a susceptible

AHAS.

In silico identification of resistance mutations
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The paired t-test hypothesis testing method was employed to assess if two groups of data

were statistically different from each other. The null hypothesis was that there was no signifi-

cant difference between the two groups. The paired t-test is a parametric statistic with an

assumption that the data follow a normal distribution. All hypothesis testing was carried out at

the 5% significance level using Python 3.4 and SciPy 0.18.

Results

Modeling of KsAHAS-herbicide structures

Crystallographic studies indicate that AHAS inhibitors bind in a channel leading to the active

site on the interface of the AHAS dimer and consequently block substrate access to the cata-

lytic site [37, 38]. While the complex structures of tribenuron methyl with AtAHAS and ScA-

HAS have been experimentally determined (Fig 2A and 2B), the structure of AHAS-

thifensulfuron methyl was unavailable at the time of this study. Using the known structures as

templates, the KsAHAS-herbicide complexes were built using homology modeling as

described in the Materials and methods section (Fig 2C). Inspection of the binding mode of

ScAHAS and tribenuron methyl (PDB entry 1T9A) showed that Trp574 formed the π-π inter-

action with the heterocyclic ring of tribenuron methyl while Pro197 and Asp376 were in close

contact with the aromatic ring (Fig 2D). The three residues (Pro197, Asp376, and Trp574) are

highly conserved in AHAS genes [6], and the aforementioned interactions can be found in

other AHAS-herbicide complexes as well as in the modeled KsAHAS-herbicide structures.

Mutations at these conserved residue sites may disrupt the important interactions between

AHAS and herbicides (thereby disturbing herbicide binding), which may explain why resis-

tance mutations mostly occurred at these three sites (see Fig 1 and Table 1).

Examination of AHAS-herbicide crystal structures suggests that the same herbicide adopts

nearly identical orientation when bound to AHASs in different species. For example, the poses

of tribenuron methyl in complex with AtAHAS and ScAHAS were very much alike with a

ligand RMSD (root mean square deviation) of 0.79 Å (Fig 3A). In the modeled KsAHAS-tribe-

nuron methyl complex, the ligand pose was almost the same as those experimentally deter-

mined with a ligand RMSD of 0.67 Å (AtAHAS) or 1.07 Å (ScAHAS). In the KsAHAS-

thifensulfuron methyl complex, the ligand exhibited a binding mode highly similar to that of

tribenuron methyl in AHAS. As shown in Fig 3A, the central sulfonylurea bridge and hetero-

cyclic ring of the herbicides completely overlapped, while the thiophene ring of thifensulfuron

methyl moved slightly away from the aromatic ring of tribenuron methyl. This was possibly

because chemical structures of the two herbicides were very similar with the aromatic ring in

tribenuron methyl substituted by the thiophene ring in thifensulfuron methyl (Fig 3B), which

induced the rearrangement.

Prediction performance comparison

For each KsAHAS-herbicide complex, the binding affinity was estimated by 24 MM or QM/

MM methods in combination with three different sets of structures obtained from structure

minimization (i.e., single structure), classical MD simulations, and QM/MM MD simulations.

The predictive power of different approaches to distinguish resistant mutants from susceptible

ones was evaluated by the following three metrics: EF, AUC, and accuracy (see S1–S4 Tables).

As shown in Fig 4A and 4B, the best prediction performance was achieved by MM-PBSA

combined with single structure. With this approach, AUC and accuracy were both above 0.9

while EF reached the highest value of 1.16 for both herbicides. The internal dielectric constant

(ε) had little influence on the results. When ε changed from 2 to 4, accuracy was slightly

improved from 0.93 to 1, and AUC rose from 0.94 to 1 for tribenuron methyl. However, there

In silico identification of resistance mutations
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was no change in EF, AUC, and accuracy for thifensulfuron methyl. The top three ROCs for

tribenuron methyl and thifensulfuron methyl (see S5 and S6 Tables) were plotted and shown

in Fig 4C and 4D, respectively. For thifensulfuron methyl, the ROCs of MM-PBSA with ε
being either 2 or 4 were the same, so only the ROC of MM-PBSA with ε of 2 was presented

(Fig 4D). Among QM/MM-GBSA methods, PM6D-GBn (for tribenuron methyl, Fig 4C) and

AM1D-GBOBC (for thifensulfuron methyl, Fig 4D) also demonstrated a high capability in dif-

ferentiating between mutations causing resistance or susceptibility. Based on an ensemble of

structures obtained from classical MD simulations, methods such as MM-PBSA, AM1D, and

PM6D were better than most of the others. They were only inferior to the best performer

(MM-PBSA combined with single structure). As AM1D performed well with both single struc-

ture and classical MD, it was chosen for depiction of the QM region in the QM/MM MD simu-

lations. With an ensemble of structures from QM/MM MD, the QM/MM approaches showed

similar discriminating ability for either herbicide.

Discussion

It is noteworthy that there was a large variation in the discerning ability of the tested methods

on the basis of single structure (Fig 4A and 4B). MM-PBSA combined with single structure

was the frontrunner among all approaches, but some QM/MM GBSA methods with the same

sampling strategy led to the worst performance in this work. By contrast, the discriminating

power remained stable across different approaches based on an ensemble of structures from

either classical or QM/MM MD simulations. It was also observed that the ability of QM/

MM-GBSA to distinguish resistance mutations depended on the GB model and SQM correc-

tion. Here we further discuss how sampling techniques (i.e., single structure, classical MD, and

Fig 3. Comparison of the two sulfonylurea herbicides binding to AtAHAS, ScAHAS, and KsAHAS (A) and

chemical structures of tribenuron methyl and thifensulfuron methyl (B). AtAHAS and KsAHAS are superposed

onto ScAHAS. Carbons in AtAHAS-tribenuron methyl (1YI1), ScAHAS-tribenuron methyl (1T9A), KsAHAS-

tribenuron methyl, and KsAHAS-thifensulfuron methyl complexes are colored cyan, green, pink, and salmon,

respectively.

https://doi.org/10.1371/journal.pone.0216116.g003

In silico identification of resistance mutations

PLOS ONE | https://doi.org/10.1371/journal.pone.0216116 May 7, 2019 9 / 18

https://doi.org/10.1371/journal.pone.0216116.g003
https://doi.org/10.1371/journal.pone.0216116


QM/MM MD), GB models (GBOBC and GBn), and SQM corrections (D and DH) affected

identification of resistance mutations using different methods for binding affinity calculation.

The influence of sampling technique is summarized in Fig 5A and Table 2. For MM meth-

ods, single structure outperformed both classical MD and QM/MM MD in terms of EF and

AUC, whereas the difference between classical MD and QM/MM MD was subtle. Specifically,

the EF of classical MD was slightly better than that of QM/MM MD (p-value < 0.001), but

QM/MM MD had a higher accuracy than classical MD (p-value< 0.01). For QM/MM-GBSA

methods, QM/MM MD was significantly superior to single structure in terms of AUC (p-

value < 0.01) and accuracy (p-value< 0.001) and was also better than classical MD in terms of

EF (p-value< 0.05) and AUC (p-value< 0.001). The statistical difference between single struc-

ture and classical MD cannot be confirmed because the EF of single structure was statistically

higher than that of classical MD (p-value < 0.05), but the accuracy of classical MD was better

Fig 4. Prediction performance of 24 binding affinity estimation methods in combination with three conformational sampling strategies

evaluated by EF, AUC, and accuracy (Ac). (A) Performance metrics for prediction on resistance to tribenuron methyl. (B) Performance metrics

for prediction of resistance to thifensulfuron methyl. (C) The top three ROCs for tribenuron methyl. (D) The top three ROCs for thifensulfuron

methyl. PBSA_2/4 is the MM-PBSA with ε of 2 or 4. The GBOBC and GBn models are represented by 5 and 7, respectively. Binding affinity was

computed on the basis of single structure minimized (SS), structures sampled from classical MD simulations (cMD), or structures extracted from

QM/MM MD simulations (qMD).

https://doi.org/10.1371/journal.pone.0216116.g004
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than that of single structure (p-value < 0.001). These results suggest that, when MM methods

were employed to compute binding affinity, single structure was more suitable for distinguish-

ing resistance mutations than the ensemble of structures from MD simulations. With QM/

MM-GBSA methods in use, the ensemble of structures sampled from QM/MM MD simula-

tions was preferred.

The above results are in agreement with a previous study which reported that single struc-

ture performed as well as or better than MD simulations [60]. However, it is well known that,

with single structure, the results depend on the starting structure, given that conformational

changes are ignored. In this work, herbicides were first docked into the AtAHAS, and the

Fig 5. Effects of sampling technique (A), GB model (B), and SQM corrections (C) on the performance metrics of MM and QM/MM-GBSA

methods. SQM correction impact was assessed for QM/MM-GBSA methods only. In each boxplot, red lines, notches, upper/lower whickers,

upper/lower box border lines, and circles represent medians, confidence intervals of the medians, maximum/minimum values, 75/25 percentiles,

and outliers, respectively.

https://doi.org/10.1371/journal.pone.0216116.g005

Table 2. Impact of sampling technique on the discerning ability of binding affinity estimation approaches. SS: single structure; cMD: classical MD; qMD: QM/MM

MD.

Calculation

method

Sampling

technique

Mean ± standard deviation p-value

EF AUC Accuracy EF AUC Accuracy

cMD qMD cMD qMD cMD qMD

MM SS 1.16±0.00 0.84±0.11 0.80±0.11 0.038 <0.001 <0.001 <0.001 0.152 0.599

cMD 1.12±0.05 0.67±0.06 0.76±0.03 <0.001 0.387 0.002

qMD 1.04±0.00 0.64±0.09 0.82±0.03

QM/MM-GBSA SS 1.04±0.15 0.49±0.19 0.73±0.02 0.045 0.539 0.543 0.009 <0.001 <0.001

cMD 0.98±0.10 0.51±0.12 0.79±0.05 0.026 <0.001 0.057

qMD 1.02±0.10 0.59±0.13 0.80±0.04

https://doi.org/10.1371/journal.pone.0216116.t002
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resulting structures were used as templates for building the KsAHAS-herbicide complexes. In

a preliminary study, we tested an alternative modeling strategy, in which the KsAHAS struc-

tures (WT and mutated) were modeled first before the herbicides were docked into them. We

observed that its discriminating power was unsatisfactory and much worse than what is

reported here. Combined with single structure, most of the QM/MM-GBSA approaches were

inferior to the MM approaches. This was possibly because the starting structures were energy-

minimized using the MM force field and only one structure was adopted in the calculation of

binding affinity. MM-PBSA performed better than QM/MM-GBSA possibly because the PB

model was more accurate and less computationally expensive than the GB model. The lower

accuracy of QM/MM-GBSA was likely introduced by the GB model. Nevertheless, more in-

depth research is warranted to answer such questions as why certain methods performed bet-

ter than others on a specific ligand-protein system.

In binding affinity calculation, the solvation effect is usually estimated by implicit solvent

models [60]. Between the two implicit solvent models used for calculation of binding affinity

in this study, there was no statistical difference for MM methods in terms of EF, AUC, and

accuracy (p-values > 0.05, see Fig 5B and Table 3). For QM/MM-GBSA methods, the GBn

model achieved a significantly greater accuracy (p-value < 0.001) than the GBOBC model. Gen-

erally speaking, the GBn model was a better choice than the GBOBC model for identification of

resistance mutations, which worked well for both MM and QM/MM-GBSA methods.

For the two SQM methods (AM1 and PM6), dispersion (D) and hydrogen bond (H) correc-

tions were taken into account in this work. Compared to methods without corrections (i.e.,

AM1 and PM6), the SQMs with corrections (D and DH) notably enhanced prediction power

measured by EF and AUC (p-values < 0.001, see Fig 5C and Table 4), which is consistent with

previous studies [28, 29]. However, the addition of hydrogen bond correction (AM1DH and

PM6DH) resulted in lower AUC than the dispersion correction only (AM1D and PM6D, p-

value < 0.05), even though there was no statistical difference in EF and accuracy between

them (p-values > 0.05). Therefore, SQM corrections were able to ameliorate the prediction

performance of QM/MM-GBSA methods, and dispersion correction was more important

than hydrogen bond correction.

The structural and functional characterization of the interaction between herbicides and

their biomacromolecular targets is critical for better understanding and accurately assessing

Table 3. Impact of GB (generalized Born) model on the discriminating ability of binding affinity estimation methods.

Calculation method GB model Mean ± standard deviation p-value

EF AUC Accuracy EF AUC Accuracy

MM GBOBC 1.12±0.05 0.65±0.03 0.75±0.03 0.175 0.971 0.175

GBn 1.08±0.05 0.66±0.12 0.77±0.10

QM/MM-GBSA GBOBC 1.03±0.11 0.56±0.16 0.77±0.05 0.694 0.885 <0.001

GBn 1.02±0.12 0.56±0.17 0.79±0.06

https://doi.org/10.1371/journal.pone.0216116.t003

Table 4. Impact of SQM (semi-empirical quantum mechanics) corrections on the discerning ability of QM/MM-GMSA methods.

SQM correction Mean ± standard deviation p-value

EF AUC Accuracy EF AUC Accuracy

D DH D DH D DH

SQM 0.89±0.11 0.36±0.10 0.77±0.03 <0.001 <0.001 <0.001 <0.001 1.0 0.104

D 1.07±0.07 0.59±0.10 0.77±0.04 0.166 0.019 0.166

DH 1.05±0.07 0.53±0.10 0.75±0.04

https://doi.org/10.1371/journal.pone.0216116.t004
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genetic mutation-conferred resistance. Therefore, modeling of KsAHAS-herbicide complexes

is an important aspect of recognizing resistance mutations. It is impractical to acquire experi-

mental data to exhaustively examine all variables such as plant species, mutation, and herbicide

due to inhibitory costs. As a result, many herbicide-enzyme complexes are not well character-

ized. To safeguard the effectiveness and sustainability of herbicide-based invasive plant man-

agement, it is vital to accurately assess the impact of mutations on ligand binding. In this work,

we modeled the complex structures of a WT and 28 mutant KsAHAS bound with two sulfonyl-

urea herbicides (tribenuron methyl and thifensulfuron methyl), and investigated the ability of

computational methods to distinguish between mutations causing resistance or susceptibility

to either herbicide. Up to 100% accuracy was achieved when MM-PBSA combined with mini-

mized single structure was employed to estimate the binding affinity of the two herbicides to

the 29 KsAHAS structures. Although we observed that all susceptible mutants had mutations

outside the binding pocket while the resistant mutants possessed mutations inside the binding

pocket, it is premature to extrapolate this observation to other mutations due to both the small

sample size in this study and the high number of possible single-point mutations and combi-

nations of multi-point mutations.

The KsAHAS-herbicide sensitivity dataset used in this study was imbalanced with more

resistant biotypes than susceptible ones. Imbalanced datasets may present a challenge to

machine learning algorithms when the minority class is of interest, because these algorithms

train a model by learning the features of the entire dataset. The more members a class has, the

more the class is represented in the model. Although the imbalanced K. scoparia dataset was

not an ideal one, it served the objective of this study, i.e., compare a wide variety of biophysics-

based in silico methods and identify the best one for discerning mutation-conferred herbicide

resistance in field populations of invasive plant species. Here, we compared 24 different MM

and QM/MM methods combined with three different structure sampling strategies (Fig 4 and

S1–S4 Tables). These methods showed differential performance, and MM-PBSA with single

structure was identified as the best approach for the specific system of AHAS-herbicide

complexes.

To further evaluate the impact of dataset imbalance on method performance, we conducted

a sensitivity test by randomly selecting 4 to 24 resistant mutants together with all 3 sensitive

mutants and the wild-type KsAHAS, and recalculating prediction accuracy for the new data-

sets. We plotted the mean and standard deviation of accuracy against the number of selected

resistant mutants for seven scenarios of single structure sampling: MM-PBSA (ε = 2),

MM-PBSA (ε = 4) and QM/MM-GBSA for both tribenuron methyl and thifensulfuron

methyl, and MM-GBSA for thifensulfuron methyl (S1 Fig). The accuracy of 1000 unique ran-

dom combinations (except for 25 combinations of 24 resistant mutants and 300 combinations

of 23 resistant mutants, both of which were the maximum number of all possible non-redun-

dant combinations) was influenced by the degree of dataset imbalance (i.e., ratio of resistant to

sensitive mutants) in six of the seven scenarios. While the mean accuracy was little affected,

variation in accuracy increased as the dataset became more balanced (i.e., fewer resistant

mutants included). Obviously, MM-PBSA had smaller variations in accuracy and was more

resistant to dataset imbalance than MM-GBSA and QM/MM-GBSA. Especially, the

MM-PBSA method with ε = 4 for tribenuron methyl was not affected by imbalance because it

determined that all resistant KsAHAS mutants had a lower binding affinity with the herbicide

than the wild-type and sensitive mutants.

In summary, we present here how homology modeling, docking, and MD simulations were

integrated to computationally predict the resistance of a mutated enzyme to an herbicide with

no prior knowledge of the complex structure. The estimation of noncovalent interaction

remains a big challenge in accurate identification of resistance mutations because binding
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affinity calculation is computationally expensive, and the calculation accuracy depends on

sampling techniques and estimation methods. However, with increasing computational

power, noncovalent interactions can be precisely modeled with more rigorous methods, and

the complex structure can be sampled more thoroughly. This study demonstrates that excellent

agreement between in silico prediction and experimental data of herbicide resistance can be

achieved when appropriate computational approaches are chosen.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the

official views of U.S. Army Corps of Engineers and U.S. Food and Drug Administration.
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25. Ryde U, Söderhjelm P. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods.

Chem Rev. 2016; 116(9):5520–66. https://doi.org/10.1021/acs.chemrev.5b00630 PMID: 27077817

26. Yilmazer DN, Korth M. Recent Progress in Treating Protein–Ligand Interactions with Quantum-

Mechanical Methods. Int J Mol Sci. 2016; 17(5). https://doi.org/10.3390/ijms17050742 PMID:

27196893

27. Brandenburg JG, Hochheim M, Bredow T, Grimme S. Low-Cost Quantum Chemical Methods for Non-

covalent Interactions. J Phys Chem Lett. 2014; 5(24):4275–84. https://doi.org/10.1021/jz5021313

PMID: 26273974

28. Christensen AS, Kubař T, Cui Q, Elstner M. Semiempirical Quantum Mechanical Methods for Noncova-

lent Interactions for Chemical and Biochemical Applications. Chem Rev. 2016; 116(9):5301–37. https://

doi.org/10.1021/acs.chemrev.5b00584 PMID: 27074247

29. Yilmazer ND, Korth M. Enhanced semiempirical QM methods for biomolecular interactions. Comput

Struct Biotechnol J. 2015; 13:169–75. https://doi.org/10.1016/j.csbj.2015.02.004 PMID: 25848495

30. Légère A, Stevenson FC, Beckie HJ, Warwick SI, Johnson EN, Hrynewich B, et al. Growth Characteri-

zation of Kochia (Kochia scoparia) with Substitutions at Pro197 or Trp574 Conferring Resistance to

Acetolactate Synthase–Inhibiting Herbicides. Weed Sci. 2013; 61(2):267–76. https://doi.org/10.1614/

WS-D-12-00116.1

31. Kumar V, Jha P, Giacomini D, Westra EP, Westra P. Molecular Basis of Evolved Resistance to Glypho-

sate and Acetolactate Synthase-Inhibitor Herbicides in Kochia (Kochia scoparia) Accessions from Mon-

tana. Weed Sci. 2015; 63(4):758–69. https://doi.org/10.1614/WS-D-15-00021.1

In silico identification of resistance mutations

PLOS ONE | https://doi.org/10.1371/journal.pone.0216116 May 7, 2019 16 / 18

https://doi.org/10.1038/nrmicro3380
http://www.ncbi.nlm.nih.gov/pubmed/25435309
https://doi.org/10.3389/fonc.2015.00282
http://www.ncbi.nlm.nih.gov/pubmed/26734568
https://doi.org/10.1093/nar/gkw875
https://doi.org/10.1093/nar/gkw875
http://www.ncbi.nlm.nih.gov/pubmed/27694307
https://doi.org/10.1080/17460441.2017.1322579
http://www.ncbi.nlm.nih.gov/pubmed/28490289
https://doi.org/10.1021/jp102546s
https://doi.org/10.1021/jp102546s
http://www.ncbi.nlm.nih.gov/pubmed/20604558
https://doi.org/10.1016/j.jmb.2011.02.031
http://www.ncbi.nlm.nih.gov/pubmed/21376058
https://doi.org/10.1021/jp300818c
http://www.ncbi.nlm.nih.gov/pubmed/22574920
https://doi.org/10.1021/ci200626m
http://www.ncbi.nlm.nih.gov/pubmed/22651699
https://doi.org/10.1021/ci4002102
http://www.ncbi.nlm.nih.gov/pubmed/23834142
https://doi.org/10.1021/ct400104x
http://www.ncbi.nlm.nih.gov/pubmed/23914145
https://doi.org/10.1021/acs.jcim.5b00667
https://doi.org/10.1021/acs.jcim.5b00667
http://www.ncbi.nlm.nih.gov/pubmed/27082876
https://doi.org/10.1021/acs.jcim.6b00317
http://www.ncbi.nlm.nih.gov/pubmed/27564845
https://doi.org/10.1073/pnas.1411548112
https://doi.org/10.1073/pnas.1411548112
http://www.ncbi.nlm.nih.gov/pubmed/25552560
https://doi.org/10.1021/acs.jpcb.7b04562
http://www.ncbi.nlm.nih.gov/pubmed/28635289
https://doi.org/10.1021/acs.chemrev.5b00630
http://www.ncbi.nlm.nih.gov/pubmed/27077817
https://doi.org/10.3390/ijms17050742
http://www.ncbi.nlm.nih.gov/pubmed/27196893
https://doi.org/10.1021/jz5021313
http://www.ncbi.nlm.nih.gov/pubmed/26273974
https://doi.org/10.1021/acs.chemrev.5b00584
https://doi.org/10.1021/acs.chemrev.5b00584
http://www.ncbi.nlm.nih.gov/pubmed/27074247
https://doi.org/10.1016/j.csbj.2015.02.004
http://www.ncbi.nlm.nih.gov/pubmed/25848495
https://doi.org/10.1614/WS-D-12-00116.1
https://doi.org/10.1614/WS-D-12-00116.1
https://doi.org/10.1614/WS-D-15-00021.1
https://doi.org/10.1371/journal.pone.0216116


32. Saari LL, Cotterman JC, Primiani MM. Mechanism of Sulfonylurea Herbicide Resistance in the Broad-

leaf Weed, Kochia scoparia. Plant Physiol. 1990; 93(1):55. PMID: 16667465

33. Lee H, Rustgi S, Kumar N, Burke I, Yenish JP, Gill KS, et al. Single nucleotide mutation in the barley

acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herbicides. Proc Natl

Acad Sci USA. 2011; 108(21):8909–13. https://doi.org/10.1073/pnas.1105612108 PMID: 21551103

34. Warwick SI, Xu R, Sauder C, Beckie HJ. Acetolactate Synthase Target-Site Mutations and Single

Nucleotide Polymorphism Genotyping in ALS-Resistant Kochia (Kochia scoparia). Weed Sci. 2008; 56

(6):797–806. https://doi.org/10.1614/WS-08-045.1

35. Beckie HJ, Warwick SI, Sauder CA, Lozinski C, Shirriff S. Occurrence and Molecular Characterization

of Acetolactate Synthase (ALS) Inhibitor–Resistant Kochia (Kochia scoparia) in Western Canada.

Weed Technol. 2011; 25(1):170–5. https://doi.org/10.1614/WT-D-10-00067.1

36. Beckie HJ, Blackshaw RE, Low R, Hall LM, Sauder CA, Martin S, et al. Glyphosate- and Acetolactate

Synthase Inhibitor–Resistant Kochia (Kochia scoparia) in Western Canada. Weed Sci. 2013; 61

(2):310–8. https://doi.org/10.1614/WS-D-12-00140.1

37. McCourt JA, Pang SS, King-Scott J, Guddat LW, Duggleby RG. Herbicide-binding sites revealed in the

structure of plant acetohydroxyacid synthase. Proc Natl Acad Sci USA. 2006; 103(3):569–73. https://

doi.org/10.1073/pnas.0508701103 PMID: 16407096

38. McCourt JA, Pang SS, Guddat LW, Duggleby RG. Elucidating the Specificity of Binding of Sulfonylurea

Herbicides to Acetohydroxyacid Synthase. Biochemistry. 2005; 44(7):2330–8. https://doi.org/10.1021/

bi047980a PMID: 15709745

39. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open

chemical toolbox. J Cheminform. 2011; 3(1):33. https://doi.org/10.1186/1758-2946-3-33 PMID:

21982300

40. Case DA, Cerutti DS, Cheatham I T.E., Darden TA, Duke RE, Giese TJ, et al. AMBER 2017, University

of California, San Francisco. 2017.

41. Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, et al. DOCK 6: Impact of new

features and current docking performance. J Comput Chem. 2015; 36(15):1132–56. https://doi.org/10.

1002/jcc.23905 PMID: 25914306

42. Martı́-Renom MA, Stuart AC, Fiser A, Sánchez R, and FM, Šali A. Comparative Protein Structure
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