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Abstract: Next-generation sequencing (NGS) technology has led to great advances in understanding
the causes of Mendelian and complex neurological diseases. Owing to the complexity of genetic
diseases, the genetic factors contributing to many rare and common neurological diseases remain
poorly understood. Selecting the correct genetic test based on cost-effectiveness, coverage area, and
sequencing range can improve diagnosis, treatments, and prevention. Whole-exome sequencing
and whole-genome sequencing are suitable methods for finding new mutations, and gene panels
are suitable for exploring the roles of specific genes in neurogenetic diseases. Here, we provide
an overview of the classifications, applications, advantages, and limitations of NGS in research on
neurological diseases. We further provide examples of NGS-based explorations and insights of the
genetic causes of neurogenetic diseases, including Charcot–Marie–Tooth disease, spinocerebellar
ataxias, epilepsy, and multiple sclerosis. In addition, we focus on issues related to NGS-based
analyses, including interpretations of variants of uncertain significance, de novo mutations, congenital
genetic diseases with complex phenotypes, and single-molecule real-time approaches.

Keywords: next generation sequencing; neurogenetics; rare disorders; Charcot–Marie–Tooth disease;
spinocerebellar ataxias; epilepsy

1. Introduction

According to the OMIM database, a wide variety of neurogenetic diseases have been
discovered owing to the development of next-generation sequencing (NGS) technology.
The clinical application of NGS significantly accelerated the discovery of disease-causing
genes and promoted the understanding of molecular genetic mechanisms associated with
hereditary diseases. Although detailed clinical phenotyping and genetic counselling are
generally performed before NGS is undertaken, significant differences exist in the efficacy
by which NGS can diagnose different diseases and different types of genetic variation.

The human genome consists of coding regions (exons) and non-coding regions (introns,
promoters, regulatory elements, and structural elements). The sequencing of all regions is
known as whole-genome sequencing (WGS). Meanwhile, whole-exome sequencing (WES)
considers only coding regions (exons) for sequencing. Human exomes contain thousands of
variants, including missense variants, protein-truncating variants, small indels, and large
structural variants (SVs) that can span multiple genes. However, the presence of variants
of unknown significance (VUS) makes it difficult for clinicians to decide whether or not to
convey genetic sequencing results which could significantly increase psychological burden
to patients, [1,2].

Currently, NGS technologies are limited to read lengths of approximately 150 base
pairs (bp) and, thus, are incapable of identifying pathogenic expansion repeats—which
can span up to thousands of bp in size [3]. Moreover, while the current gold standard
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for estimating repeat length is Southern blotting, it has inherent limitations including the
precision of size estimation [4]. Meanwhile, third-generation sequencing has the potential
to identify repeat expansion disorders—such as Friedreich ataxia, spinocerebellar ataxias
(SCA), Alzheimer’ s disease, and Frontotemporal Dementia (FTD)—which are often missed
by current NGS platforms.

Due to the complexity of genetic diseases, genetic testing is often employed as a last
resort for patients who have visited multiple hospitals or doctors yet remain undiagnosed.
Meienberg suggested that gene panels related to the patients’ phenotype could be used
as an inexpensive and rapid first-tier test to address these issues. If the associated results
are negative, WES or WGS can be considered as second-tier testing platforms [5]. In this
review, we compare the differences between several sequencing methods and review NGS
-identified genetic causes of neurogenetic diseases, including Charcot–Marie–Tooth disease
(CMT), spinocerebellar ataxias (SCA), epilepsy, and multiple sclerosis (MS), introducing
novel pathogenic mutations recently discovered. VUS, de novo mutations (DNMs), con-
genital genetic diseases with complex phenotypes, and single-molecule real-time (SMRT)
sequencing are also discussed.

2. NGS Tools
2.1. Whole-Exome Sequencing

WES employs NGS platforms, such as Illumina, to sequence the protein-coding regions
of the genome. Although initial sequencing and analysis of the human genome revealed
that less than 2% of the genome comprises exons, approximately 85% of the DNA variations
responsible for highly penetrant genetic diseases lie in this small fraction of the genome [6,7].
Currently, WES is the most commonly used mainstream sequencing method in clinical
applications due to its low associated cost and turnaround time, compared with WGS.

For example, WES was applied to advance the current understanding regarding the
genetic basis of amyotrophic lateral sclerosis (ALS), characterized by motor neuron de-
generation. Mutations in the superoxide dismutase 1 (SOD1) gene were the first genetic
mutations linked to ALS in 1993 [8]. The mutant SOD1 protein acquires a toxic function
independent of its normal enzyme activity, while the expression of SOD1 mRNA in the
cerebrospinal fluid serves as an indicator of disease severity in patients with ALS [6,9].
Since 2014, seven new genes associated with ALS have been identified by WES: MATR3,
CHCHD10, TBK1, TUBA4A, NEK1, C21orf2, and CCNF [10]. Mutated TUBA4A interferes
with the formation of microtubules in the cytoskeleton, indicating that therapeutic agents
capable of enhancing the cytoskeleton may prevent, or even reverse, disease progres-
sion [11]. Thus, WES facilitated landmark changes in the management and treatment of
diseases based on the identification of causal genetic factors. With further development of
sequencing technology, the diagnostic rate across diverse clinical laboratories increased to
65.52% [7]. However, the overall diagnosis rate remains low, primarily due to challenges
associated with the detection of pathogenic mutations, which may be classified as a VUS or
appear within the noncoding region, thus escaping capture by WES. Meanwhile, mitochon-
drial DNA (mt-DNA) can be analysed from WES data in a holistic approach [12]. However,
since the mt-DNA can vary between tissue types, likely due to differing energy demands,
a negative result in one tissue type does not preclude the presence of mt-DNA variants in
other tissues. Therefore, when selecting WES as a tool to identify the molecular basis of
neurogenetic diseases, alternative genetic factors should not be ruled out prematurely. In
fact, it is possible to obtain valuable genetic information by combining WES results with
patient clinical data while employing other genetic sequencing methods, if necessary.

2.2. Whole-Genome Sequencing

During WGS approaches, DNA is extracted from cell sources—including peripheral
blood leukocytes—and cut into several pieces before being linking with engineered DNA
to be sequenced (Figure 1 shows a simplified workflow for NGS). The sequencing results
are subjected to sophisticated computerized analysis and careful comparison is made with
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genomic reference sequences (in related databases) to obtain detailed annotation informa-
tion [1,13]. WGS screens the entire genome—including coding and noncoding regions,
regulatory regions, and SVs leading to copy number variations (CNVs)—facilitating the
simultaneous examination of active genes and silent sequences for novel genes, variants,
de novo mutations, and loci associated with specific traits [1].

Figure 1. Simplified schematic diagram of NGS and SMRT. (A) WES: Sample preparation begins with
extracted and purified DNA which is transposed into fragments. Adapters are tagged before adding
motifs. Hybridization is then allowed in the flow cell. After bridge amplification, the Illumina system
finally produces the first read. By contrast, WGS does not require hybridized fragments and is ready
to be sequenced immediately once the library has been prepared. (B) SMRT: Library preparation
begins with a DNA circular structure. When the polymerase encounters a strand of nucleotides
containing modifications, the interpulse duration is be delayed. SMRT has two sequencing modes:
circular consensus sequencing (CCS) and continuous long read (CLR) sequencing. Because CCS can
scroll and copy the same segment along the circular DNA to eliminate errors, its accuracy is higher
than 99%. The advantage of CLR is that it can handle longer reads.

An advantage of WGS is that it detects exonic single-nucleotide variants (SNVs) as
well as noncoding variants, small noncoding regulatory RNAs, CNVs (including deletions,
insertions, duplications, and inversions), repeat expansions, and complex chromosomal
rearrangements. In mitochondrial disease, WGS has been instrumental in identifying three
novel etiologic genes (COX6A1, TIMMDC1, and COQ5); the diagnosis of which relies
on detection of an intronic deletion, a deep intronic variant, and a 3′-UTR duplication,
respectively [14–16]. Moreover, within the American College of Medical Genetics and
Genomics (ACMG) and RefSeq databases, WGS provides more complete coverage than
WES for genes and exons [17]. In particular, WES omits approximately 0.81% of the
disease-causing mutations in the Human Gene Mutation Database which are detectable by
WGS. Furthermore, polymerase chain reaction (PCR)-free WGS can provide more uniform
coverage of exomes compared with WGS using PCR, or WES due to the lower sensitivity of
this technique to GC content, which contributes, in part, to the CNV detection capacity [5].
Additionally, de novo SNVs and CNVs, as a major cause of severe intellectual disability,
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are more effectively diagnosed by WGS with a rate of 42%, compared with WES at only
27% [18]. Accordingly, WGS is currently considered superior to WES in the detection of
CNVs and SNVs.

Familial WGS provides information on the genetic basis of polyneuropathies with
complex traits, such as Parkinson’s disease, ALS, and Alzheimer’s disease [17], with
the rate of genome coverage significantly increased compared with WES. Notably, the
large quantity of variants identified by WGS can restrict their accurate prioritization
and the ability of WGS to provide a clear explanation or interpretation of their relative
influence [19–21]. However, it is expected that the diagnostic rate of WGS will increase as
additional noncoding variants and SVs are interpreted [20,21].

A limited number of studies have reported that the cost associated with WGS has
begun to decrease, whereas the same has not been noted for WES [22]. Hence, it is
predicted that WGS will become a widely accessible test for diagnostic purposes in the
near future and may ultimately have greater utility than gene panels or WES in identifying
pathogenic mutations.

2.3. Gene Panels

Gene panels initially capture a set of relevant disease-associated genes, followed by
large-scale parallel sequencing [23]. Panels are particularly applicable for studying geneti-
cally heterogeneous disorders with well-defined disease-associated genes. These panels can
be used to detect approximately 400 related genes for neuromuscular diseases, including
congenital myasthenia, congenital myopathy, ataxias, periodic paralysis, motor neuron
disorders, spastic paraplegia, Parkinson’s disease, and epilepsy, among others [17,23–26].
Owing to the low cost and high diagnostic rates, gene panel testing is a common NGS tool
used in the field of neurology. For example, comprehensive analysis of the 12 currently
identified genes associated with muscular dystrophy (MD) can be completed at a relatively
low cost to patients [27].

Additionally, gene panels can target, and sequence, more than 80 genes associated with
CMT [28]. Given the high phenotypic heterogeneity of CMT, in which distinct mutations in
different genes can cause the same phenotype, panels can be restricted to specific subtypes
of CMT [25,28]. Meanwhile, the diagnosis rates of certain panels, such as those for MD-
related genes, are similar to those obtained with WES [29]. However, compared with WES
and WGS, gene panels provide superior gene coverage, thereby reducing the likelihood of
missing a mutation [30,31]. Moreover, the diagnostic rates for rare genetic CMT subtypes
are increased 6- to 10-fold compared with those obtained via WES, indicating that targeted
sequencing panels contribute to the identification of undiscovered pathogenic variants,
thus increasing the diagnostic yield [32–34]. However, developing a panel relies on the es-
tablishment of known gene sequences or disease-related gene-targeting templates, making
it imperative that each panel be updated in a timely manner following the publication of
new associated information [35]. With further development, the commercial market can
package several or even hundreds of genes to generate gene panels for diverse applications,
including gene detection for precision medicine, research on hereditary diseases, early
disease screening, and assessment of disease prognosis.

3. Application of Next-Generation Sequencing in Neurogenetic Diseases
3.1. Charcot–Marie–Tooth Disease

CMT encompasses Charcot–Marie–Tooth disease and the related hereditary motor
neuropathy (HMN) and hereditary sensory neuropathy disorders, representing the most
common group of inherited neuromuscular diseases. CMT is characterized by distal
weakness, sensory loss, and a high incidence of foot deformities, including pes cavus [36].
A recent study reported that the CMT1A (PMP22), hereditary neuropathy with liability
to pressure palsy/PMP22 deletion (HNPP), CMTX1 (GJB1), CMT1B (MPZ), and CMT2A
(MFN2) subtypes account for 89.2% of all genetically diagnosed CMT cases [37]. Founder
effect refers to the separation of small groups from a larger original population, which can
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lead to a random selection of certain alleles and ultimately alters the allelic frequency of
the population—a process referred to as genetic drift [38]. To date, more than 100 genes
with pathogenic mutations have been described in relation to CMT. The most common
subtype is CMT1A, which accounts for more than 60% of diagnosed cases [39]. Genetic drift
contributes to the irregular distribution of different CMT subtypes in each geographical
and ethnic population worldwide. In fact, in certain instances, a founder mutation has
been shown to be more prevalent. For example, in Slovakia, NDRG1 and HK1 genes, rather
than CMT1A, are responsible for the majority of Roma cases in some areas [40]. Hence, the
approach taken for diagnosing CMT may differ based on the specific ethnic background of
the patient [28].

According to the phenotype–genotype correlation classification, Pipis et al. [28] clas-
sified CMT-associated genes based on different parts of the body affected. Clinical phe-
notyping is particularly important in the genomic era as identifying subtle or unexpected
distinguishing features of specific genes might help elucidate the underlying genetic mech-
anisms. For instance, NEFL (CMT2E) mutations are reportedly associated with cerebellar
syndrome; however, a novel variant (c.269A>G) was identified in a French woman who
exhibited common symptoms of moderate sensorineural deafness, excluding lower limb
involvement [41]. Additionally, sensorineural hearing loss is reported to be associated with
GJB1. In a Chinese family, the proband with a mutation identified in the nerve-specific
promoter P2 region of GJB1 (c.-170T>G) showed reversible white matter lesions in the brain,
which was suggested to be associated with disruption in gap junction communication
between oligodendrocytes and astrocytes, leading to the inability of these cells to regulate
fluid exchange and ultimately resulting in cell oedema [42].

Symptoms of CMT with autosomal dominant (AD) inheritance are generally milder
and differ from autosomal recessive (AR) types. Kim et al. [43] found that patients with
AD and AR forms of CMT harbouring GDAP1 mutations showed significant differences
in lower limb magnetic resonance imaging (MRI). That is, the posterior-compartment
muscles were affected in AD-CMT patients, whereas AR-CMT patients primarily exhibited
fatty infiltration in the anterolateral-compartment muscles. Meanwhile, combinations of
multiple variants are rarely described. Nevertheless, in a family with CMT, the conditions
of the mother and daughter were characterized by axonal damage, and were associated
with MORC21, MFN2, and AARS1 variants [44]. MFN2 is a member of the mitochondrial
transmembrane protein family, which is widely expressed by eukaryotic cells and plays
an important role in mitochondrial fusion and division-controlled mitochondrial dynamic
remodelling [45]. MORC2, in combination with the MFN2 variant, result in more severe
phenotypes and complex clinical symptoms. The AARS1 variant was also found in healthy
members of the family, suggesting it was not an independent risk factor [44]. However, the
authors were unable to conclusively determine whether the AARS1 variant worsens CMT
based on the presence of other causal mutations.

BAG3 mutations have been shown to be primarily associated with myofibrillar myopa-
thy 6, CMT, and dilated cardiomyopathy 1HH [46,47]. The point mutation of c.625C>T was
reported as a hotspot causing neuromuscular phenotypes focused on the Pro209 residue,
whereas mutations causing dilated cardiomyopathy 1HH were distributed throughout
the gene [46,48]. WGS is more valuable for patients with CMT who have genetic variants
outside of exon regions. For instance, an 11-year-old girl was found to carry a maternally
inherited rare variant (RV) in IGHMBP2 (c.1730T>C) that was predicted to be pathogenic;
however, no variant was identified on the other allele. WGS confirmed the previously
identified IGHMBP2 RV and identified a paternally inherited noncoding IGHMBP2 RV [49].

Recently, mutations in mitochondria-related genes have also been linked to CMT. A
recent study showed that, in addition to the known mitochondrial RNA (ATP6, encoding
a complex V subunit), CMT-related mitochondrial tRNA mutations led to a selective
decrease in tRNA levels. This change affects the addition of valine to the growing peptide
chain and the function of mitotic ribosomes during translation [50]. Therefore, strategies
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for increasing mitochondrial tRNA production may alleviate the effects of this type of
variation.

3.2. Spinocerebellar Ataxias

SCAs generally refer to a group of ataxias with AD inheritance. Additionally, a
portion of AR ataxias is designated as SCAR [51]. There are 48 subtypes of SCAs with
36 pathogenetic genes identified to date. More than 100 SCAR genes have also been
revealed by NGS [52]. Genetically, SCAs are categorized as either repeat expansion or
nonrepeat mutations [51]. Although there is currently no consensus on the optimum
order of genetic tests for SCAs, it is recommended to first test for CAG repeat expansions
due to their high prevalence. If the result is negative, gene panels and WES can then be
considered according to the specific situation [51,52]. A retrospective study published in
2021 estimated the diagnostic yield in 124 SCA patients from 102 families in Italy, with a
reported total diagnosis rate of 52%. AD-SCA patients had the highest diagnostic yield
(64.5%) among the SCA cases, of which the most frequent subtype was SCA2, followed
by SCA1, SCA3, SCA6, and SCA7 [53]. Furthermore, the genetic epidemiology of SCA,
like that of any rare disease, is affected by founder effect. For instance, SCA3 is the most
common subtype globally, as well as in Western Europe, but has not been identified in
Poland. Interestingly, SCA1, caused by ATXN1 gene mutations, is the most prevalent
subtype in Poland compared with any other country and may, thus, represent a potential
founder effect [54].

Gene panels and WES have served as helpful tools for the diagnosis of AD ataxias
(Table 1). SCA6 is caused by CAG-repeat expansion in exon 47 of the CACNA1A gene [55].
Specifically, Saathoff et al. [56] revealed a new pathogenic nonsense variant in CACNA1A
(c.2983G>T), which exhibited segregation with the disease for other family members
with cerebellar syndrome. The case indicated that this nonsense variant might cause
the disease by producing a truncated protein or via nonsense-mediated mRNA decay.
Further, Deng et al. [57] sequenced a three-generation Chinese family with SCA11 and
identified a novel point mutation (c.3290T>C) in TTBK2. The mutation segregated with the
phenotype and was predicted to cause protein damage and functional impact. Additionally,
Shirafuji et al. [58] reported the first nonsense mutation in PRKCG (c.226C>T) that was
suggested to cause SCA14. PRKCG encodes protein kinase C gamma (PKCγ), which was
suggested to cause cell death by suppressing PKC kinase. Satoh et al. [59] investigated
two Japanese families with SCA23 and identified pathogenic variants in the prodynorphin
gene (PDYN). The patient with a homozygous mutation had a younger age of onset and
more serious ataxic symptoms than those of the heterozygous patients in the first family.
Hence, the existing hypotheses of toxic gain or loss of function may not fully explain the
mechanism of SCA23. Furthermore, the authors suggested that the newly discovered
PDYN variant (c.644G>A) contributes to symptom severity via a dosage effect.

SCA48 is a subtype of SCA characterized by cerebellar cognitive affective syndrome
(CCAS) associated with a pathogenic variant in STUB1, which is considered to function in
cognitive and emotion-related areas of the cerebellum. Genis et al. [60] hypothesized that a
mutation in STUB1 causes cerebellar degeneration via loss-of-function or toxic dominant
gain-of-function mechanisms. Additionally, De Michele et al. [61] studied eight patients
from two Italian families and found two novel mutations in STUB1. However, in contrast to
the findings of Genis et al. [60], the clinical features of these patients more closely resembled
those of SCAR16 and SCA17. Although the authors speculated that the mechanism might
be related to dysfunction of the autophagy pathway, they highlighted that the relationship
between mutations in STUB1 and the complex phenotypes observed in SCAR16 and SCA48
remains unclear.

Compared with SCA, SCAR is rarer and more sporadic [62,63]. A recent Japanese
study identified two novel compound heterozygous variants (c.667C>T and c.853del) in
PMPCA. The patient presented with infancy onset and had a more severe and progres-
sive form compared with other reported cases associated with PMPCA variants. The
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authors speculated that variants causing functional impairment of PMPCA and extra cross-
linking in the cells may account for the severe phenotype of the proband [64]. In addition,
Zagnoli-Vieira et al. [65] described an American boy with SCA23 who harboured the same
TDP2 variant previously reported in three Irish siblings. Interestingly, they demonstrated
the impact of the TDP2 mutation on nuclear DNA double-strand breaks using patient
fibroblasts. Subsequently, Ciaccio et al. [66] reported a novel homozygous TDP2 nonsense
variant (c.400C>T) in a 17-year-old girl. The cerebellar atrophy and drug resistance to
antiepileptics in this patient further supported the notion that SCAR23 is a degenerative
disorder, thus, amending the view purported by Zagnoli-Vieira et al. [65]. GRM1 encodes
the metabotropic glutamate receptor type 1 (mGluR1), which is a transmembrane protein
that is highly expressed in cerebellar Purkinje cells. A novel homozygous truncating variant
in GRM1 (c.889C>T) was recently identified in a Tunisian boy. The nonsense variant was
considered pathogenic as it was located in the ligand-binding domain and led to loss of
mGluR1 function [67].

3.3. Epilepsy

More than 65 million people worldwide suffer from epilepsy with 70–80% of these
cases caused by genetic factors [68]. Targeted panels or WES can provide a genetic diagnosis
for up to 30% of patients with early-onset epilepsy and for approximately 25% with de novo
mutations [69]. However, complex genotype–phenotype correlations make the aetiology
and therapy for epilepsy difficult [70–72]. Demographically, a significant discovery includes
positive diagnostic findings closely related to age. Childhood epilepsy, or early-onset
epilepsy, typically has a higher diagnostic yield compared with adult-onset epilepsy [73–75],
suggesting that the molecular mechanisms may differ.

Using NGS platforms, several genes encoding voltage-gated ion channels were defined
as being associated with epileptic encephalopathies (EE) and developmental and epileptic
encephalopathies (DEE) [76,77]. Inuzuka et al. [78] described a patient with an uncommon
form of hyperkinetic focal motor seizure in EE carrying a newly discovered variant of
KCNT2 which affected the putative pore-forming domain of the protein. A group of
diseases characterized by monogenic inheritance and developmental disorders, designated
(DEE), is a main beneficiary of NGS [79]. KCNA2 is a DEE-associated gene that encodes
the voltage-gated K+ channel KV1.2 [76]. For instance, Gong et al. [80] reported the
first known patient with mosaicism in KCNA2, who had two different mosaic mutation
alleles at the same nucleotide in KCNA2: c.1225A>T and c.1225A>C. However, it remains
unclear whether complex mosaicism is a contributor to the clinical underdiagnosis of
KCNA2-related encephalopathy.

Given that the aetiology of most EE is ambiguous, researchers have suggested that
genetic mutations may be responsible for some of these cases. Several EE-associated
genes have also been identified. An epilepsy panel revealed a new de novo pathogenic
heterozygous mutation of the γ-aminobutyric acid type A (GABAA) receptor γ2 subunit
gene (GABRG2; c.917C>T) in an 11-month-old boy [81]. This newly discovered variant
is situated near p.P302L, another de novo variant in GABRG2 that was identified in a
patient with Dravet syndrome—a type of early-onset EE [82]. Both variants affect the
transmembrane segment M2. Additionally, p.P302L was confirmed to result in GABAA
gating impairment, hyperexcitability, GABAA receptor desensitization, and ultimately
formation of the epilepsy phenotype [81,82]. Clinically, Sun et al. [83] investigated 205 ae-
tiologically undetermined cases of DEE and identified four novel mutations in SZT2 in
three patients, all of whom suffered from refractory epilepsy and had special MRI results.
Japanese researchers also identified a de novo variation in NUS1 (c.691+1C>A) in two
unrelated individuals. In contrast with other reported mutations in NUS1 associated with
developmental delays, ataxia, intellectual disability, and DEE, both individuals had scolio-
sis. Hence, this study strongly suggests that loss-of-function variants in NUS1 that result
in loss of the cis-PTase domain in the C-terminus of NgBR may be related to scoliosis and
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represent a new phenotype [84]. These findings expand the phenotypic spectrum of the
NUS1 gene.

In genetic epilepsy, seizures are a primary symptom. Various genetic aetiologies
of genetic epilepsy have been postulated, however, the pathogenic genes in most cases
remain unknown [79]. SCN9A is a Nav1.7 sodium channel protein-encoding gene that is
associated with genetic epilepsy and febrile seizures. Banfi et al. [85] performed a gene
panel assay in a family including a male proband with genetic epilepsy. After a 2-year
treatment with lamotrigine, a Brugada pattern on electrocardiogram (ECG) was observed,
which can be hypothetically regarded as a drug-induced cardiac conduction abnormality.
When pathogenic variants affect sodium channel expression, corresponding auxiliary
investigations, including ECG, should be considered [85]. WES in a Malaysian-Chinese
family with different epilepsy phenotypes identified a novel nonsynonymous substitution
(c.5753C>T, p.S1918F) in SCN1A that was present in all family members with genetic
generalized epilepsy (GGE). The novel mutation was presumably pathogenic, impairing
the function of sodium channels by disturbing the calmodulin-associated pathway [86].
Bonzanni et al. [87] identified another novel de novo mutation in HCN1 in a patient affected
by GGE, which altered neuronal discharge activity.

Approximately half of patients with intractable epilepsy accompanied by intellectual
disability remain undiagnosed. In this context, NGS may provide the means for identi-
fication of etiological factors. Using NGS, Ittiwut et al. [88] identified a de novo variant
(c.467A>T) in ATP6V0C in a patient with intractable epilepsy and intellectual disability,
which was a conserved termination codon mutation. Meanwhile, Wu et al. suggested
that NEXMIF with X-inactivation patterns might have contributed to the mild intellectual
disability [89].

NGS has also played an important role in identifying the rare aetiology of some
neurological diseases accompanied by epileptic seizures. For instance, cerebral folate
deficiency (CFD) is a neuropsychiatric disorder with characteristic low cerebral spinal fluid
and 5-methyltetrahydrofolate (MTHF) levels. FOLR1 mutations are a rare cause of CFD,
and most patients with these mutations share similar clinical phenotypes as those with
other common causes, such as frequent epileptic seizures [90–92]. Mafi et al. [93] attributed
the observed myoclonic seizures to the novel variant (c.197 G>A) in FOLR1 identified by
WES (Table 1).

Table 1. Variants associated with neurogenetic diseases.

Disease Ref (Year) Country Gene Variant NGS Inheritance

CMT

Lerat et al. [41] France NEFL c.269A>G Panel AD
Luo et al. [42] China GJB1 c.-170T>G unclear XD

Miressi et al. [44] France MORC21
Mfn2

c.568C>T
c.1403G>A

Panel
WES -

Fu et al. [46] China BAG3 c.625C>T WES AD
Cassini et al. [49] USA IGHMBP2 c.1235+894C>A WGS AR

Fay et al. [50] Venezuelan mt-tRNA m.1661A>G WES MI

SCA

Saathoff et al. [56] Germany CACNA1A c.2983G>T Panel AD
Deng et al. [57] China TTBK2 c.3290T>C WES AD

Shirafuji et al. [58] Japan PRKCG c.226C>T WES AD
Satoh et al. [59] Japan PDYN c.644G>A Panel AD
Genis et al. [60] Spain STUB1 c.823_824delCT WES AD

De Michele et al. [61] Italy STUB2 c.97G>A
c.682C>T WES AD

Takahashi et al. [64] Japan PMPCA c.667C>T
c.853del WES AR

Ciaccio et al. [66] Italy TDP2 c.400C>T WES AR
Cabet et al. [67] Tunisian GRM1 c.889C>T WES AR
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Table 1. Cont.

Disease Ref (Year) Country Gene Variant NGS Inheritance

Epilepsy

Inuzuka et al. [78] Brazil KCNT2 c.725C>A WES

Gong et al. [80] China KCNA2 c.1225A>T,
c.1225A>C WES

Komulainen et al. [81] Finland GABRG2 c.917C >T Panel

Sun et al. [83] China SZT2

c.1626+1G>A,
c.5772dupA,
c.4209C>A,

c.7307_7308insG

Panel

Den et al. [84] Japan NUS1 c.691+1C>A WES
Banfi et al. [85] Italy SCN9A c.319 T>C Panel
Chan et al. [86] Malaysia SCN1A c.5753C>T WES

Bonzanni et al. [87] Italy HCN1 c.469C>G Panel
Ittiwut et al. [88] Thailand ATP6V0C c.467A>T WES

Wu et al. [89] China NEXMIF c.1063delC WES
Mafi et al. [93] France FOLR1 c.197G>A NGS

This table shows a selection of studies published within 3 years that use next generation sequencing (NGS) as designs to identify rare
variants. Ref, reference; CMT, Charcot–Marie–Tooth disease; SCA, spinocerebellar ataxias; AD, autosomal dominant; AR, autosomal
recessive; XD, X-linked dominant inheritance; MI, mitochondrial inheritance.

3.4. Multiple Sclerosis

The application of NGS in MS currently focuses on identifying microRNAs (miRNAs),
which participate in the pathogenesis of MS through various biological processes influ-
encing immune cells in innate and adaptive immunity [94]. Researchers found that four
circulating miRNA exosome sequences were differentially expressed in relapsing-remitting
multiple sclerosis (RRMS) patients compared with healthy controls. These results indicated
that miRNAs are expected to become a biomarker for predicting and distinguishing MS
relapse [95]. Moreover, secondary progressive multiple sclerosis (SPMS) causes modest
immune activation compared with RRMS. In fact, an NGS study revealed that miRNA
expression declined in the CD4+ T cells of SPMS patients [96]. A study in 2019 confirmed
this conclusion in experimental autoimmune encephalomyelitis—an animal model of
MS—demonstrating that suppressed miRNAs and long noncoding RNAs (lncRNA) were
consistent with alleviated symptoms following cannabidiol treatment. Additionally, class
I/II human leukocyte antigen (HLA) genes contribute to an individual’s susceptibility
for developing MS. A recent study analysed variants of 16 HLA genes and identified
alleles associated with MS risk [97]. However, similar to other studies, an exome-sequence
analysis of four multi-incident MS families did not identify individual disease-causing
gene variants [98–101]. These results highlight the complex genetic aetiology of MS, and
the possibility of a multigenic origin. Hence, current clinical studies have been deficient,
and additional research with larger patient populations is required.

4. De Novo Mutations

DNMs are germline mutations that are present in most cells of an individual but
are absent in the parents. DNMs are more deleterious than inherited variations because
they have avoided stringent evolutionary selection [102]. DNMs can be divided into three
categories: (1) those which occur during spermatogenesis or oogenesis; (2) postzygotic
mutations; (3) those which occur after the separation of embryonic germline and somatic
tissues. Furthermore, DNMs contain various specific mutation types, including single-
nucleotide substitutions, insertions, deletions, and copy-number variants [103]. Genetic
counselling involves the comprehensive assessment of a patient’s genome as the recurrence
risk differs between postzygotic mutations and mutations in germ cells [104]. Additionally,
confirmed somatic mosaicism in a parent carries an increased risk of recurrence after
the birth of an affected child. Moreover, if the germline mosaicism of parents cannot be
excluded, the risk of a second child being affected can be as high as 8.6% [105].
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In adult-onset neurodegenerative disorders, DNMs can explain sporadic cases of
Alzheimer’s disease, Parkinson’s disease, frontotemporal lobar degeneration spectrum
disorders, ALS, and prion disorders. Trio-based whole-exome sequencing (Trio-WES) and
WGS serve to improve the discovery of novel disease-causing genes [102,106–110]. Mean-
while, WGS/WES analysis of the affected proband together with normal parents (trio) is a
common method for identifying de novo DNMs [111]. However, any detected variation
should be verified by biological software or animal experiments [109]. Further, considering
that candidate mutations are not necessarily known genes for diseases affecting brain devel-
opment and brain function, it remains challenging to establish pathogenicity and specific
disease mechanisms without additional research of each mutation individually [107,108].

5. Variants of Uncertain Significance

The interpretation of VUS is challenging as the pathogenicity of variants is not previ-
ously reported and is, thus, considered to be of uncertain significance. There are multiple
potential reasons for the occurrence of VUS: (1) due to the wide application of gene de-
tection technology, increasing numbers of patients undergo multigene detection resulting
in significant differences between individuals; (2) a new guideline for interpreting varia-
tions requires more stringent classification of these variations to ensure the accuracy of
results, which is partially responsible for the current classification of most variations as
VUS. Accordingly, ACMG convened a working group in 2013—including ACMG, AMP,
and a representative of the American Society of Pathologists—to review and revise the
criteria and guidelines for the interpretation of sequence variation. Presently, novel se-
quencing (e.g., long-read sequencing) and informatics can be used to detect variations that
may be difficult to detect with standard methods. Long-read sequencing techniques, such
as PacBio [112] and Oxford Nanopore [113], coupled with chain-reading platform 10×
genomics [114], can improve the resolution of repeat regions, large indels, and structural
variations [114,115].

6. Phenotypic Heterogeneity: Suggesting the Road to Aetiology Exploration

In a rare and extreme condition, patients exhibit phenotypes of two congenital dis-
eases. Thus, when confronting diseases that are difficult to diagnose, it is suggested that
monism should be used to explain the etiological factors. Congenital myasthenia syndrome
(CMS), comprising a group of monogenetic disorders that affect neuromuscular junction,
offers a sound explanation for this condition. Among the 32 known genes in CMS, the
phenotypes associated with DOK7, MUSK, DPAGT1, CHRNE, and GMPPB can coincide
with muscular diseases, such as MD, limb–girdle muscular dystrophy (LMD), and my-
opathy [116]. Some patients with GMPPB or CHRNE mutations present with MD-like
symptoms [117]. The myopathy-like clinical and pathological manifestations of CHRNE,
which are involved in slow-channel congenital myasthenic syndrome, are primarily caused
by calcium overload due to the delayed closure of slow ion channels [118]. In contrast to
the pathway associated with CHRNE, defects in protein glycosylation caused by GMPPB
lead to AChR subunits incorrectly settled, and expressed, on the surface of cells [119].
Approximately 40 genes are associated with MD and are primarily involved in extracellular
matrix and basement membrane proteins [120]. GMPPB is also involved in N-glycation
and O-mannose glycation pathways [121]. In the case of GMPPB, pathological changes of
muscular and neuromuscular junctions can be present simultaneously, with the clinical
manifestations of LMD and CMS overlapping, or concealing, each other. Therefore, in the
complex background of neurogenetic diseases, the pathological mechanisms of different
diseases may intersect. Hence, NGS is extremely important for diseases with more than
one congenital disease phenotype, with the genes screened by WGS potentially providing
insights into new mechanisms. A similar example is that of GARS, which causes distal up-
per limb dyspraxia and was not only found in CMT, but also in autism spectrum disorder,
mitochondrial disease, and motoneuron disease [122–124].
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7. Single-Molecule Real-Time Sequencing

Sanger sequencing is the most effective means to verify the accuracy of sequencing.
Compared with the high cost, low throughput, and difficulty in obtaining data from
Sanger sequencing, NGS provides a low-cost and high-throughput platform. NGS takes
the edge synthesis and sequencing of Illumina as the mainstream, which increases the
error rate of sequencing in PCR amplification. Furthermore, system bias is inevitable
and the read length is short. Recently, third-generation sequencing (TGS) has emerged
as an improved supplement to overcome the shortcomings of NGS. Specifically, long-
read technologies have the potential to identify the ambiguous genome regions that NGS
cannot explain [125]. The major representatives of TGS include single-molecule real-time
(SMRT) sequencing from Pacific Biosciences (PacBio) and nanopore sequencing from
Oxford Nanopore Technologies.

Owing to the characteristic long reads, TGS facilitates the exploration of molecular
mechanisms associated with diseases that are caused by expansion of noncoding repeats.
For example, using both SMRT and nanopore sequencing, Japanese researchers found that
expansion of noncoding TTTCA repeats in an intron of SAMD12 contribute to the onset
of benign adult familial myoclonic epilepsy (BAFME), an AD disorder [126]. However,
nanopore sequencing may cause error reads as researchers have reported substantial
variation in the repeat lengths [126]. Similarly, another study in 2019 used SMRT to
demonstrate that the BAFME4 subtype is caused by insertion of the intronic TTTCA repeats
in YEATS23 [127]. Thus, TGS can be used to explore the pathogenesis of neurogenetics that
NGS is incapable of elucidating.

Although SMRT has been widely used in sequencing repeat expansions, its limita-
tions cannot be ignored. In a study aimed at patients with SCA10, SMRT preferentially
sequenced small repeat-sized alleles while failing to generate circular consensus sequences
of expanded SCA10 repeats containing large (ATCCC) repeat interruptions. Researchers
held that this was due to high GC content [128]. Hence, the constitution of repeats may
influence the utility of SMRT.

In conclusion, SMRT is a vigorous technology that can detect, and characterize, the
expansions of noncoding regions ignored by NGS. To date, this platform has been em-
ployed in studies focused on genetic epilepsy, neurodegenerative diseases, and Parkinson’s
disease [126,127,129,130]. Further research is warranted to explore the complex molecular
mechanisms underlying neurogenetic diseases, particularly single-gene diseases. With the
continuous improvement of technical and biological information tools, long-read sequenc-
ing is likely to become a routine feature of the rare disease genomics tool kit.

8. Concluding Remarks and Future Perspectives

NGS is an integral component for delivering precise therapy options to patients.
Indeed, NGS may one day replace some of the current methods used for disease diagnosis.
An example of this was demonstrated by a population-based study which reported that the
highest epilepsy diagnostic yield was obtained via MRI (65%), and, although WES/WGS
was performed in only 26/116 cases (22%), the associated diagnostic yield reached 58% [74].
Additionally, the diagnosis of certain conditions associated with neuromyopathy, such
as MD, and CMS can avoid the need for muscle biopsy by instead performing genetic
testing [131]. Moreover, NGS may become a tool for early intervention or trial treatment,
thereby greatly reversing disease trajectory [132,133]. As hereditary diseases account
for a significant proportion of morbidity and mortality in infants, rapid whole-genome
sequencing can be employed as a primary test for critically ill newborns, thus accelerating
the delivery of effective treatments and reducing medical costs [133]. Meanwhile, NGS
is gradually realizing accurate symptomatic treatment—perfect examples of which are
advances in treatment for Walker–Warburg syndrome and late-onset Pompe disease [134].
This allows doctors to provide accurate advice on treatment options, long-term outcomes,
and rehabilitation needs [135]. Selecting the correct genetic test based on cost-effectiveness,
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coverage area, and optimal test time ensures that clinicians can accurately assess the risk to
other family members or future generations and provide genetic guidance.
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