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Background: Steady-state pattern electroretinogram (PERG) and frequency doubling 

technology (FDT) perimetry can be used to selectively investigate the activity of the M-Y 

ganglion cells in adult anisometropic amblyopes.

Methods: Fifteen normal subjects (mean 27.8±4.1 years) and 15 adults with anisometropic 

amblyopia (mean 28.7±5.9 years) were analyzed using steady-state PERG and FDT.

Results: The amplitude of steady-state PERG was significantly different not only among the 

control group and both the amblyopic eye (P=0.0001) and the sound eye group (P=0.0001), 

but also between the latter two groups (P=0.006). The difference in FDT mean deviation was 

statistically significant not only between the control group and amblyopic eye group (P=0.0002), 

but also between the control group and the sound eye group (P=0.0009). The FDT pattern stan-

dard deviation was significantly higher in the control group rather than in the amblyopic eye 

(P=0.0001) or the sound eye group (P=0.0001). A correlation was found between the reduction in 

PERG amplitude and the increase in FDT-pattern standard deviation index not only in amblyopic 

(P=0.0025) and sound (P=0.0023) eyes, but also in the healthy control group (P=0.0001).

Conclusion: These data demonstrate that in anisometropic amblyopia, there is an abnormal 

functionality of a subgroup of the magnocellular ganglion cells (M-Y), and the involvement of 

these cells, together with the parvocellular pathway, may play a key role in the clinical expres-

sion of the disease.

Keywords: pattern electroretinogram, frequency doubling technology perimetry, retinogeniculate 

pathways, amblyopia

Introduction
The term “amblyopia” describes a condition characterized by a decrease in best-

corrected visual acuity (BCVA) in one or both eyes caused by abnormal binocular 

interaction, pattern vision deprivation, or both, without any organic disease.1

Traditionally, there are three primary types of amblyopia: anisometropic, strabismic, 

and deprivation amblyopia. Anisometropic amblyopia occurs in the more ametropic 

eye in children having a difference in refractive error between the eyes, typically 

hyperopia or astigmatism. Strabismic amblyopia results from ocular misalignment, 

typically esotropia, in patients with monocular fixation, whereas deprivation amblyopia 

is produced by media opacities such as cataract, corneal opacities, and vitreous hem-

orrhage and is usually the most severe form.2 Unlike the other forms of amblyopia, 

deprivation amblyopia may be bilateral. Strabismic and anisometropic amblyopia 

may be combined, and it is not yet clearly established whether anisometropia is the 

cause of the nonalternating strabismic deviation, or whether a uniocular deviation 
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is the cause of the anisometropic error, since failure to use 

one eye for fixation at an early age prevents completion 

of the emmetropization process. Amblyopia is a complex 

condition involving not only the visual performance of the 

amblyopic eye, but also binocular vision and the function 

of the so-called sound eye, which is not really sound, as it 

shows functional visual abnormalities, even if subclinical 

and above the threshold level of the most common diagnostic 

tests.3 To investigate the locus and/or loci of amblyopia 

in the visual system, several studies have been performed 

either in humans or animal models, and these have shown 

that amblyopic deficits may start as early as in the lateral  

geniculate nucleus (LGN),3,4 but appear to be predominantly 

at a cortical level.5–10 On the other hand, there remain ques-

tions as to whether amblyopia also has a retinal locus.3

The human LGN contains three distinct retinal pathways:4 

the parvocellular (P) pathway originating from the midget 

retinal ganglion cells (RGCs),6,7,11 the koniocellular pathway 

receiving afferents from the RGCs driven by short wave-

length photoreceptors,12–14 and the magnocellular (M) path-

way derived from the parasol RGCs;6,11,15,16 this pathway 

contains two functional cell classes that are similar to cat X 

and Y geniculate cells. About 5% of LGN M cells respond to 

a nonlinear Y-type response,17 thus, the term M-Y cells.

The adoption of psychophysical investigation methods,18 

especially frequency doubling technology (FDT)19 that allows 

the selective stimulation of M-Y ganglion cells,17,20 has pro-

vided clear information on the magnocellular pathway.

FDT has been proposed as a sensitive test for detecting 

early functional changes in M-Y ganglion cells, mainly in 

glaucoma and ocular hypertension,17,21,22 but it has rarely been 

used in amblyopia.23

Electrophysiological exams have been used in amblyopia 

to clarify whether the anatomic site in the visual system 

whose alteration leads to amblyopia has a retinal, genicu-

late, or cortical origin, but data obtained from pattern 

electroretinogram (PERG)24,25 to evaluate RGC activity26–28 or 

from visual evoked potentials to assess cortical activity10,26,29 

has shown contrasting results.

The aim of our study was to use a steady-state PERG with 

a stimulation that creates the frequency doubling illusion 

similar to that achieved using FDT perimetry to selectively 

investigate the activity of the M-Y ganglion cells in adult 

anisometropic amblyopes.

Material and methods
Fifteen visually normal subjects (8 females and 7 males), 

aged between 25 and 31 years (mean 27.8±4.1 years), and 15 

adult patients with anisometropic amblyopia (10 females and 

5 males), aged between 22 and 36 years (mean 28.7±5.9 years), 

were enrolled in the study.

All patients underwent a complete ophthalmological 

evaluation, including BCVA measurement, Goldmann 

applanation tonometry, slit-lamp examination of the anterior 

and posterior segments, cover test, and random dot stereopsis 

measurement. All normal subjects had normal binocular 

vision with random dot stereopsis, absence of retinal and 

optic nerve diseases, and transparent dioptric media. None of 

them had a history of strabismus or amblyopia. Amblyopic 

patients had anisometropic amblyopia and absence of normal 

binocular vision with random dot stereopsis, absence of 

retinal and optic nerve diseases, and transparent dioptric 

media. Inclusion criteria for the anisometropic amblyopes 

were as follows:

1.	 Difference in spherical equivalent (SE) refractive error 

between the eyes $1.5 D but no more than 4 D.

2.	 Visual acuity $0.7 decimals in the amblyopic eye.

We excluded patients affected by strabismus, ocular 

hypertension, glaucoma, retinal and optic nerve diseases, and 

myopia because PERG may be reduced in high myopia.30

BCVA was measured using “E” charts at a distance of 

5 m. All patients also underwent FDT perimetry and steady-

state PERG examination.

The study was approved by the S. Orsola-Malpighi 

Hospital Ethics Committee of the University of Bologna 

and adhered to tenets of the Declaration of Helsinki. Written 

informed consent was obtained from all participants.

Frequency doubling technology
FDT perimetry is a technique designed for the rapid and 

effective identification of visual field impairment in glau-

coma patients,21 and its stimulus consists of a bar grid with a 

low-frequency spatial sinusoidal profile (0.25 cycles/degree), 

subjected to a sinusoidal temporal commutation at a fre-

quency of 18 Hz. FDT is based on the principle of the 

frequency doubling illusion, in which the subject perceives 

twice the number of bars that are actually present.31 Cells 

that present a nonlinear response to the contrast in the test 

image, which are therefore responsible for this illusion, are 

a subgroup of M cells.32

FDT tests (Welch Allyn, Skaneateles Falls, NY, USA) 

were performed using the N-30 full-threshold program, 

in which target stimuli consisted of individual sinusoidal 

gratings, 10 degrees square at 0.25 cycles/degree, alternately 

flashing at 18 Hz, and were in one of the 19 areas within the 

central 30 degrees of the visual field.
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FDT perimetry examination was carried out at the best 

optical distance, and participants underwent three different 

sessions of visual field tests at intervals of 7±2 days to 

become familiar with the procedure, because none of the 

study subjects had previous experience with FDT.

In the healthy group, the eye to be examined was 

randomly chosen, whereas the sound eye was the first tested 

eye in the amblyopic group. For each visual field, mean defect 

(MD) and pattern standard deviation (PSD) were evaluated 

and considered for the statistical analysis.

Steady-state PERG
PERG was recorded using the RetimaxPlus system (CSO 

Instruments, Florence, Italy) by a blinded examiner who 

did not know whether the subject was from the amblyopic 

or the control group.

The patient sat on a chair at a distance of 57 cm from 

the television screen (resolution 1,024×768; size 34 inches) 

and fixed binocularly on a red cross at the center of the 

screen, which subtended a visual angle of 48.89 degrees. The 

generated potential was measured with HK-LOOP ocular 

electrodes; the reference electrode was located near the outer 

canthus and the ground electrode was placed on the ear lobe. 

The interelectrode resistance was less than 5 kΩ. All subjects 

had undilated pupils, measuring between 3 and 4 mm, with 

an appropriate correction for the working distance, and they 

were allowed to blink freely.

The PERG stimulus was first presented as a full-screen 

black-and-white vertical bar pattern (contrast: 20%; spatial 

frequency: 0.3 cycles/degree/cpd; temporal frequency: 

15 Hz). The number of samples acquired, mediated, and 

processed with discrete Fourier transform was 300 and the 

acquisition time was 133 millisecond (ms).

The pattern presentation (approximately 4 minutes) was 

preceded by an unmodulated uniform field (approximately 

1 minute) of the same mean luminance (blank), which was 

used to evaluate the background noise level.33 The noise level 

was 0.08±0.03 μV in both normal subjects and patients.

All participants underwent several recordings during one 

session, each approximately 5 minutes long, and the minimum 

interval between successive presentations was 15 minutes, 

during which time subjects were free to roam indoors while 

keeping the surface electrodes in place. None of the patients 

reported visual strain or problems in maintaining fixation, 

and sweeps contaminated by eye blinks or gross eye move-

ments were automatically rejected over a threshold voltage of 

25 μV. Because PERG was recorded in response to relatively 

fast alternating gratings, the response waveforms were 

sinusoidal-like with a frequency corresponding to the reversal 

rate. Packets were automatically evaluated in the frequency 

domain by discrete Fourier transform to isolate the component 

at the reversal rate (30 Hz), and the amplitude in microvolts 

was displayed as a function of time.

Statistical analysis
Data were analyzed using the MedCalc 10.9.1 statistical 

program (MedCalc Software, Ostend, Belgium). MD and 

PSD of FDT and the amplitude of steady-state PERG were 

statistically analyzed using the Mann-Whitney U-test to 

assess group differences, Wilcoxon’s signed rank test to 

evaluate within-subject comparisons, and Spearman’s 

correlation test, considering P,0.05 as significant.

Results
The mean BCVA and the SE in the control group, amblyopic 

eyes, and sound eyes of the amblyopic group are reported 

in Table 1.

BCVA was significantly lower in the amblyopic eyes 

than in the eyes of the healthy group and in the sound eyes of 

amblyopic patients (P=0.002 for both groups), whereas no 

significant difference in BCVA was found between the eyes of 

the healthy group and sound eyes of amblyopes (P=0.980).

SE was statistically significantly farther from emmetropia 

in the amblyopic eyes than in the eyes of the healthy group 

(P=0.007) and in the sound eyes of amblyopic patients 

(P=0.0005). No significant difference in SE was found 

between the eyes of the healthy group and sound eyes of 

amblyopes (P=0.723).

As regards FDT parameters, MD was very similar in 

amblyopic eyes and sound eyes of amblyopic patients, and 

Table 1 BCVA and diopter spherical equivalent values

Control group Amblyopic eyes P,0.05 Sound eyes P,0.05* P,0.05**

BVCA (decimal) 1.0±0.03 0.8±0.08 0.002 1.0±0.04 0.980 0.002
SE (diopter) +0.75±1.31 2.75±1.12 0.007 +0.75±1.15 0.723 0.0005
CI 95% -0.12/+1.75 +2/+3.5 -0.12/+1.50

Notes: Data presented as mean ± standard deviation unless stated otherwise. *P-values between control group and sound eyes; **P-values between amblyopic eyes and sound eyes.
Abbreviations: BCVA, best corrected visual acuity values; CI, confidence interval; SE, spherical equivalent; SD, standard deviation.
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no significant difference was observed (P=0.276) between 

these groups. On the other hand, a significant difference was 

found between the control group and both amblyopic eyes 

(P=0.0002) and sound eyes (P=0.0009).

Notably, PSD was significantly increased in both ambly-

opic and sound eyes compared to the healthy control group 

(P=0.0001), whereas no difference was reported between 

amblyopic and sound eyes (P=0.121) (Table 2 and Figure 1).

Concerning the amplitude of the wave of the second 

harmonic of steady-state PERG, there was a significant 

difference not only between the control group and both the 

amblyopic eye (P=0.0001) and sound eye groups (P=0.0001) 

but also between the latter two groups (P=0.006) (Table 3 

and Figure 2).

Finally, Spearman’s correlation test showed a significant 

correlation between the reduction in PERG’s wave amplitude 

and the simultaneous increase in PSD values, which 

explains the negative correlation between these entities. This 

correlation was found not only in amblyopic (P=0.0025) and 

sound (P=0.0023) eyes but also in the healthy control group 

(P=0.0001) (Figures 3–5).

Discussion
Anisometropia of 1.0 D appears to be the threshold for devel-

oping amblyopia, by causing a loss of foveal resolution in the 

less focused eye, by favoring the onset of localized mecha-

nisms of foveal inhibition, ie, a suppression scotoma, or by 

inducing loss of stereoacuity and normal binocular function.

Table 2 FDT perimetry values

Control group Amblyopic eyes P,0.05 Sound eyes P,0.05* P,0.05**

FDT-MD dB -0.96±0.56 -5.18±3.98 0.0002 -4.30±2.87 0.0009 0.276
CI 95% -1.27/-0.65
FDT-PSD dB 2.99±0.35 4.46±0.91 0.0001 4.10±0.71 0.0001 0.121
CI 95% +2.79/+3.17

Notes: Data presented as mean ± standard deviation unless stated otherwise. *P-values between control group and sound eyes; **P-values between amblyopic eyes and sound eyes.
Abbreviations: CI, confidence interval; FDT, frequency doubling technology perimetry; MD, mean deviation; PSD, pattern standard deviation; SD, standard deviation.

° ° °

Figure 1 Representation of FDT perimetry in (A) a control eye, (B) an amblyopic eye, and (C) the sound eye. 
Notes: DM indicates MD; DSM indicates PSD.
Abbreviations: FDT, frequency doubling technology; MD, mean deviation; PSD, pattern standard deviation.
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There is evidence for each of these mechanisms in the 

literature.34

The primary psychophysical defect observed in patients 

with anisometropic amblyopia is in the high spatial frequency 

contrast sensitivity. The resolution necessary for BCVA 

represents high contrast between the letters and their 

surroundings at high spatial frequencies (closeness of letters). 

Bradley and Freeman35 tested 10 patients with anisometropic 

amblyopia and found that their greatest defect was at high 

spatial frequencies, whereas at low spatial frequencies there 

were only small differences between the eyes, which could be 

accounted for by optical magnification differences caused by 

the anisometropic defect. The intereye difference in spatial 

frequency contrast sensitivity correlated with the magnitude 

of anisometropia.35

The observation that anisometropic amblyopia is associ-

ated primarily with loss of high spatial frequency contrast 

sensitivity, with resultant defects in stereoacuity and summa-

tion, has also been demonstrated by other investigators.36–38

Functional magnetic resonance imaging studies have 

demonstrated that in amblyopic eyes, high spatial frequency 

chromatic and achromatic stimuli are able to show the main 

abnormalities of both the P and M pathways at the level of 

either LGN4,39 or the visual cortex,40,41 but, unfortunately, 

although it is known that the M pathway plays an important 

role in decoding the information sent along the P pathway in 

the brain, the investigation of the M pathway in amblyopia 

has not received the same attention as has occurred for other 

eye diseases, particularly in glaucoma.42 Indeed, although 

the exact role of the M pathway is not fully elucidated, it 

is known that it carries information on motion perception, 

stereopsis, spatial localization, depth perception, hyperacu-

ity, figural grouping, illusory border perception, and figure/

ground segregation.43 Furthermore, the M pathway plays a 

key role in abolishing saccadic movements.44,45

Although there are controversial debates in literature,26–28 

most agree that there is a disruption or imbalance of the M-P 

systems in many patients with visual functional problems.

The adoption of psychophysical exams,18 especially the 

FDT,19,42,46 that selectively stimulate a cluster of M ganglion cells 

which have a nonlinear response and are called M-Y cells,17,20 

allowed better investigation of the behavior of M cells.

Interestingly, few data on FDT in amblyopia exist in 

the literature and they basically show impaired FDT fields 

with reduced foveal sensitivity and increased MD values in 

strabismic amblyopia.23

Table 3 Steady-state PERG amplitude values

Control group Amblyopic eyes P,0.05 Sound eyes P,0.05* P,0.05**

Amplitude (μV) 0.90±0.090 0.499±0.073 0.0001 0.598±0.091 0.0001 0.006
CI 95% 0.848/0.945

Notes: Data presented as mean ± standard deviation unless stated otherwise. *P-values between control group and sound eyes. **P-values between amblyopic eyes and sound eyes.
Abbreviations: CI, confidence interval; PERG, pattern electroretinogram; SD, standard deviation.

Figure 2 Representation of PERG steady-state response in (A) a control eye, (B) an amblyopic eye, and (C) the sound eye.
Abbreviation: PERG, pattern electroretinogram.
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The results of our study highlight that in both the amblyopic 

and sound eye there is not only a significant decrease in FDT-MD 

but also a significant increase in FDT-PSD values, compared to 

the healthy control group, whereas there were no statistically 

significant differences between amblyopic and sound eyes. This 

is consistent with the results of a previous study.9

On the other hand, to explain the results obtained using 

steady-state PERG, several points should be mentioned. 

Both transient and steady-state PERG are commonly used to 

investigate RGC activity, but these two exams differ mainly 

in the temporal frequency of the pattern stimulus. In detail, 

by using a temporal frequency of 4 Hz, a transient response 

will be obtained, whereas by increasing the frequency to 

8 Hz, a steady-state response will be recorded.47 A second 

difference between the two exams is that transient PERG 

originates from the activity of both ON and OFF pathways 

of the RGCs, whereas steady-state PERG originates mainly 

from the ON pathway of the RGCs.48

In our study we used a vertical bar pattern stimulus with 

a marked increase in the temporal frequency (15 Hz) to 

obtain the frequency doubling illusion17,19 and reduced both 

spatial frequency17 and contrast49 to stimulate the nonlinear 

response of M-Y RGCs.

The question is whether the Y-cells, first identified in 

cats, even exist in the primate’s retina; indeed this is a con-

troversial topic in literature, but recent studies have identified 

Y-like RGCs in primates.20,50–52 Furthermore, experimental 

studies have demonstrated that when reversing contrast 

gratings were presented at high spatial frequencies, every 

recorded (M pathway) RGC displayed the frequency-doubled 

response, which is the main characteristic of Y-cells.50

To further sensitize the examination and to selectively 

stimulate M-Y RGCs, we greatly reduced the contrast, as 

suggested by Porciatti et al.49 The bioelectric impulse coming 

from the M pathway to the cortex will be finally decoded and 

processed in the visual cortex itself, in order to obtain the 

illusion of the “frequency doubling” effect.53,54

Moreover, we found a significant reduction in the 

amplitude of PERG in both the amblyopic and sound eye 

compared to the healthy control group, and a significant dif-

ference between the amblyopic and sound eye, which was 

not observed using FDT perimetry.

Finally, a significant correlation between the amplitude 

of the second harmonic of PERG examination and the PSD 

index in amblyopic, sound, and control eyes was shown.

Figure 3 Scatterplot of Spearman’s correlation test between FDT-PSD and PERG 
steady-state amplitude in amblyopic eyes.
Abbreviations: FDT, frequency doubling technology; PSD, pattern standard 
deviation; PERG, pattern electroretinogram.

Figure 4 Scatterplot of Spearman’s correlation test between FDT-PSD and PERG 
steady-state amplitude in sound eyes.
Abbreviations: FDT, frequency doubling technology; PERG, pattern electroretin
ogram; PSD, pattern standard deviation.

Figure 5 Scatterplot of Spearman’s correlation test between FDT-PSD and PERG 
steady-state amplitude in healthy control eyes.
Abbreviations: FDT, frequency doubling technology; PSD, pattern standard 
deviation; PERG, pattern electroretinogram.
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Electrofunctional studies on RGCs in amblyopic 

patients have shown contrasting results, mostly because 

different methods of examination have been used on very 

heterogeneous study groups with regard to the type of  

amblyopia.4,5,8,9

In detail, most of the previous studies that were conducted 

using transient PERG found a reduction in the amplitude with 

an increase in the latency of the response in the amblyopic 

eye compared to the control eye,26,55 whereas other inves-

tigators showed no difference between the healthy control 

group and amblyopic eyes as regards both amplitude and 

latency.10,27

Unfortunately, the use of steady-state PERG has not yet 

produced clear and definitive data. Some authors observed 

a decrease in the amplitude in the amblyopic eye compared 

to healthy eyes,56 whereas others did not detect any sig-

nificant difference between amblyopic eyes and healthy the 

control group.57

The correlation we reported between the amplitude of 

steady-state PERG and the PSD index confirms the marked 

selectivity of our electrophysiological examination to test 

the M pathway. Indeed, in previous studies, FDT-PSD 

proved to be very sensitive in highlighting early damage of 

M-Y ganglion cells in diseases that alter the visual pathway 

(eg, ocular hypertension and early glaucoma).58,59

Our study shows that, in anisometropic amblyopia, there 

is an alteration in the activity of M-Y ganglion cells and, 

although this abnormality may be detected with either FDT 

perimetry or steady-state PERG, we believe that steady-state 

PERG stimulation using our parameters is more sensitive than 

FDT, as it was also able to detect different responses among 

amblyopic and sound eyes of anisometropic adult amblyopes. 

Furthermore, FDT records the amblyopic deficit as a result 

of anomalous processing of M pathway signals at a cortical 

level, as it is a psychophysical subjective test, whereas 

steady-state PERG records objectively abnormal ganglion 

cell activities.

Conclusion
Our study demonstrates an abnormal activity of M-Y 

ganglion cells in anisometropic amblyopic adult patients, thus 

confirming that the involvement of both P and M pathways 

may play some role in the clinical expression of the disease, 

not only in the retina of the amblyopic eye, but also in that 

of the sound eye.
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