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The budding yeast S. cerevisiae divides
asymmetrically and is an excellent

model system for asymmetric cell division.
As for other asymmetrically dividing cells,
proper spindle positioning along the
mother-daughter polarity axis is crucial for
balanced chromosome segregation. Thus, a
surveillance mechanism named Spindle
Position Checkpoint (SPOC) inhibits
mitotic exit and cytokinesis until the
mitotic spindle is properly oriented, thereby
preventing the generation of cells with aber-
rant ploidies. The small GTPase Tem1 is
required to trigger a Hippo-like protein
kinase cascade, named Mitotic Exit Net-
work (MEN), that is essential for mitotic
exit and cytokinesis but also contributes to
correct spindle alignment in metaphase.
Importantly, Tem1 is the target of the
SPOC, which relies on the activity of the
GTPase-activating complex (GAP) Bub2-
Bfa1 to keep Tem1 in the GDP-bound
inactive form. Tem1 forms a hetero-tri-
meric complex with Bub2-Bfa1 at spindle
poles (SPBs) that accumulates asymmetri-
cally on the bud-directed spindle pole dur-
ing mitosis when the spindle is properly
positioned. In contrast, the complex
remains symmetrically localized on both
poles of misaligned spindles. We have
recently shown that Tem1 residence at
SPBs depends on its nucleotide state and,
importantly, asymmetry of the Bub2-Bfa1-
Tem1 complex does not promote mitotic
exit but rather controls spindle positioning.

Spindle Positioning in
Budding Yeast

In asymmetrically dividing cells, proper
spindle positioning is crucial to ensure the

unequal fate of daughter cells. In stem cells,
derangement of the mechanisms control-
ling asymmetric cell division, including
spindle positioning, affects the develop-
mental fate of daughter cells and can pro-
mote tumorigenesis.(reviewed in ref.1).

The budding yeast Saccharomyces cere-
visiae divides asymmetrically and has long
been used as model system to study the
mechanisms underlying asymmetric cell
division. Because accurate spindle posi-
tioning is critical for asymmetric cell divi-
sion, 2 redundant pathways are
responsible for correct spindle positioning
in S. cerevisiae: a pathway dependent on
the microtubule-binding protein Kar9 and
another pathway requiring the minus end-
directed motor dynein. The Kar9 pathway
is supposed to act mainly in metaphase
and to mediate the sliding of astral micro-
tubule ends along actin cables.2 Con-
versely, the dynein-dependent pathway is
thought to act predominantly in ana-
phase.3 However, its ability to compensate
for the lack of the Kar9 pathway indicates
that is likely already active in metaphase.4

Consistent with the notion that the 2 spin-
dle positioning mechanisms are largely
redundant, kar9 or dynein single mutants
display only mild spindle mispositioning,
while double mutants are lethal.5 One crit-
ical feature of Kar9 is its asymmetric local-
ization to the astral microtubules
emanating only from the bud-oriented
SPB.2,6-8 The asymmetry of Kar9 ensures
that only one pole of the mitotic spindle is
oriented toward the bud. Interestingly,
also dynein is localized asymmetrically at
spindle poles, with a strong bias for the
bud-directed SPB.9 Asymmetry of Kar9
and dynein, however, seems to be con-
trolled by different mechanisms.7,9,10
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The Tem1 GTPase

The budding yeast TEM1 gene was
identified through a genetic screen in 1994
as encoding for a novel GTP-binding pro-
tein.11 The deletion of TEM1 was lethal,
and the tem1 temperature-sensitive
mutants arrested at telophase, indicating
that TEM1 is required to exit frommitosis.
Later on, Tem1 was shown to be indeed a
Rab-like GTPase.12 The counterpart of
Tem1 in S. pombe, named Spg1, is also a
GTPase that is dispensable for mitotic exit
and solely required for cytokinesis.13 In
spite of the essential roles played by these
GTPases in yeasts, no mammalian coun-
terpart has been identified so far.

During the past 2 decades, several stud-
ies shed light on the role of Tem1 as a
molecular switch for activation of the
Mitotic Exit Network (MEN), an essential
kinase cascade that promotes mitotic exit
and cytokinesis and is organized similarly
to the Septation Initiation Network (SIN)
in fission yeast and the Hippo pathway in
metazoans (reviewed in ref.14). The MEN
effector of Tem1 is the Ste20-like kinase
Cdc15,15-18 which in turn promotes the
activation of the downstream Mob1-Dbf2
kinase complex (LATS-NDR in the Hippo
pathway).19,20 that ultimately leads to the
release and activation of Cdc14,21-23 the
main CDK-counteracting phosphatase
that triggers mitotic exit through dephos-
phorylation of mitotic CDK substrates.24

One notable feature of the MEN is that
most of its components, including the
Tem1 GTPase, reside at spindle pole bod-
ies (SPBs), i.e. the yeast microtubule-orga-
nizing centers (Fig. 1A-B). Thus, not only
Tem1 is necessary for cell cycle progres-
sion, but is also ideally localized to get posi-
tional feedback from the spindle poles. Not
surprisingly, Tem1 is the target of the
Spindle Position Checkpoint (SPOC), a
surveillance mechanism that blocks mitotic
exit when the spindle is not properly ori-
ented, in order to prevent the formation of
aneuploid and polyploid cells after cytoki-
nesis (reviewed in. ref.25,26, see below).

Regulation of the Tem1 GTPase

As long as the spindle is not properly
positioned at the bud neck and oriented

along the mother-bud polarity axis,
the SPOC prevents Tem1 activation
(reviewed in ref.25,26), thereby preventing
premature exit from mitosis or aberrant
mitosis. The key actor in this control is
the two-component GTPase-activating
protein (GAP) Bub2-Bfa1 that inactivates
Tem1 by stimulating GTP hydrolysis.12,27

(Fig. 1B). The GAP activity of the Bub2-
Bfa1 complex resides on Bub2, which car-
ries a TBC domain (Tre-2, Bub2 and
Cdc16; reviewed in ref.28), whereas Bfa1
mediates Bub2 interaction with Tem1
and acts as guanine-nucleotide dissocia-
tion inhibitor (GDI), stabilizing Tem1 in
its GDP- or GTP-bound state.12,27,29

Interestingly, Bfa1 can inhibit Tem1 and
mitotic exit also in a Bub2-independent
manner, likely by competing with Cdc15
for Tem1 interaction30 and possibly by
locking Tem1 in the GDP-inactive
state.29

Although activation of most GTPases
requires nucleotide exchange factors
(GEFs) that catalyze the release of GDP
and promote its replacement by GTP, the
identity of the GEF(s) for Tem1, if any,
remains elusive. The ability of recombi-
nant Tem1 to efficiently load guanine
nucleotides in vitro.12,27 raises the possi-
bility that Tem1 does not need a GEF.
The putative GEF Lte1, which activates
Tem1 in vivo and has long been thought
to catalyze Tem1 binding to GTP, does
not seem in fact to bear GEF activity for
Tem1 in vitro.29

The activity of the GAP complex
Bub2-Bfa1 is itself finely regulated by the
partition of the cell in 2 distinct regulatory
compartments: the mother- and the bud-
compartment, which respectively inhibit
and activate Tem1 and the downstream
MEN cascade.31 (Fig. 1A-B). These regu-
latory compartments are defined by the
activity of 2 asymmetrically distributed
proteins, i.e. Kin4 and Lte1, that localize
specifically in the mother cell and in the
bud, respectively.32-36 In the mother com-
partment, the Kin4 protein kinase acti-
vates the Bub2-Bfa1 GAP complex by
direct phosphorylation of Bfa1, thereby
preventing its inhibitory phosphorylation
by the Polo kinase Cdc5.33,35,37 More-
over, it creates a docking site on Bfa1 for
the 14-3-3 protein Bmh1, which in turn
weakens the association of Bfa1 with the

SPB and accelerates the turnover of the
GAP complex at SPBs.38 In the bud com-
partment, Lte1 prevents Kin4 spreading
into the mother cell, thus allowing
the Cdc5 kinase to inactivate the
GAP through Bfa1 phosphorylation.39-41

Therefore, when both SPBs remain in the
mother cell following spindle misposition-
ing (Fig. 1B), Tem1 and the MEN are
kept inactive, while translocation of one
SPB into the bud promotes Tem1 activa-
tion and allows mitotic exit.42 SPB-local-
ized Tem1 thus acts as a sensor that relays
the positional information from the spin-
dle and translates it into a biochemical sig-
nal to license or prevent mitotic exit.

Regulation of Tem1 Localization

Besides on its nucleotide state, Tem1
activity also depends on its localization.
Indeed, Tem1 loading onto the SPBs is an
essential step to trigger the mitotic exit
cascade.43,44 A tem1 mutant that fails to
localize at SPBs is deficient in mitotic
exit,15 while artificially tethering Tem1 to
SPBs is sufficient to drive out of mitosis
cells experiencing spindle misalignment.44

The downstream MEN kinases are also
recruited to SPBs once Tem1 gets acti-
vated. Localization at spindle poles of
MEN components, including the inhibi-
tory GAP Bub2-Bfa1 and the kinase
Kin4, is critical for MEN activity and reg-
ulation and is mainly accomplished at the
cytoplasmic face of the SPBs through
association to the SPB scaffold
Nud1.15,35,43,44 Consistently, nud1 tem-
perature-sensitive mutants fail to exit
mitosis and arrest in telophase.43 Several
observations indicate that Tem1 activation
is necessary but not sufficient to promote
mitotic exit during the unperturbed cell
cycle. Indeed, covalent tethering of Tem1
to SPBs promotes its activation and
increases Cdc15 levels at spindle poles,
but does not promote premature mitotic
exit.44 Similarly, fusion of Cdc15 to the
SPBs leads to premature activation of the
Dbf2 kinase, but not premature mitotic
exit.17 Inhibition of Cdc15 and Dbf2-
Mob1 by cyclinB-CDKs is likely responsi-
ble for the inability of active Tem1 to trig-
ger mitotic exit in metaphase and provides
a safety mechanism to ensure the correct
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order of cell cycle events.45 Indeed,
cyclinB degradation at the onset of ana-
phase is a requisite that must be satisfied
for MEN to get fully active.

Tem1, together with its GAP Bub2-
Bfa1, is present on both SPBs in meta-
phase, when it accumulates preferentially
on the SPB that is most proximal to the
bud.27,46-48 (Fig. 2A). Its localization
becomes even more asymmetric in ana-
phase, when it keeps concentrating on the
bud-directed SPB (Fig. 1A). Conversely,
if the spindle fails to elongate properly
along the cell polarity axis, the Bub2-
Bfa1-Tem1 complex is symmetrically
retained on both SPBs and shows high
turnover, exchanging with its cytoplasmic
pool.42,46,48 (Fig. 1B). Surprisingly, chi-
meric proteins obtained by fusing Bfa1 or
Bub2 to both SPBs cause unscheduled
mitotic exit upon spindle misalign-
ment,46,49 similar to constitutive recruit-
ment of Tem1 to SPBs. These data led to
the idea that the Bub2-Bfa1 complex,
while acting as inhibitory GAP on Tem1,
also stabilizes Tem1 at SPBs where it
becomes active.44,49 Since the Bub2-Bfa1
complex is completely dispensable for

mitotic exit, in its absence Tem1 is likely
recruited to SPBs through another recep-
tor, that has been proposed to be the SPB

scaffold Nud1.44 Consistently, in the
absence of Bub2-Bfa1 Tem1 levels at
SPBs are drastically reduced throughout

Figure 1. Asymmetry of the Tem1 GTPase at SPBs is broken upon spindle misalignment. (A) When cells align properly their mitotic spindles along the
mother-to-bud polarity axis the Tem1 GTPase localizes preferentially to the bud-directed SPB and triggers the Mitotic Exit Network (MEN) kinase cascade
(Cdc15, Dbf2-Mob1) that leads to the activation of Cdc14 phosphatase and mitotic exit. Two separated compartments for inhibition and activation of
the MEN are defined in the mother cell and in the bud by Kin4 and Lte1, respectively, and depicted in red and green. (B) Upon spindle misalignment
Tem1 localizes symmetrically on both SPBs and the Spindle Position Checkpoint (SPOC) inhibits Tem1 through the GTPase-Activating Protein (GAP) com-
plex Bub2-Bfa1, thereby restraining the MEN until the spindle repositions correctly. The GAP is in turn kept active by the kinase Kin4, which counteracts
the inhibitory phosphorylation of the GAP by the Polo kinase Cdc5.

Figure 2. Tem1 asymmetry contributes to asymmetric distribution of Kar9 and proper spindle posi-
tioning. (A) Partial asymmetry of Tem1 at SPBs is already established in metaphase and contributes
to the asymmetry of Kar9 on the bud-directed SPB and the tip of the astral microtubules that nucle-
ate from it. Kar9 asymmetry is in turn necessary for proper spindle positioning in metaphase. (B)
Constitutive activation or SPB tethering of Tem1 breaks its asymmetry at SPBs leading to a more
symmetric distribution of Kar9 and spindle position defects. See text for further details.
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most of the cell cycle, to then sharply rise
in telophase.48 The molecular basis for
SPB-driven Tem1 activation remains elu-
sive. A recent proposal envisions that an
as-yet unidentified GEF for Tem1 resides
at SPBs.50

We have recently shown a close link
between Tem1 activity and the establish-
ment of its asymmetry at spindle poles.49

The hyperactive TEM1-Q79L mutant
allele, where a leucine replaces the catalytic
glutamine in the G domain, is completely
refractory to stimulation of GTP hydroly-
sis by Bub2-Bfa1 both in vitro and in vivo,
without affecting its interaction with the
GAP. The mutant protein shows a
markedly increased symmetry at anaphase
spindle poles and also impairs the asym-
metry of Bub2 and Bfa1.49 Likewise,
mutations abolishing Bub2-Bfa1 GAP
activity perturb the asymmetry of the
Tem1-Bub2-Bfa1 complex, indicating
that GTP hydrolysis promotes asymmetry
of both Tem1 and its GAP at SPBs.27,49

Tem1 in the Control of Spindle
Positioning

Although the most prominent MEN
function is closely coupled with the final
stages of mitosis, recent observations
showed that MEN components also have
important functions earlier on during the
cell cycle. These include a role in orienta-
tion of the mitotic spindle in metaphase
and in establishing Kar9 asymmetry.51

Indeed, MEN downregulation by inacti-
vation of Nud1, Tem1, Cdc15 or Dbf2,
prevents the Kar9 protein to properly
accumulate on the aster microtubules of
the bud-directed SPB in early mitosis and
allows it to bind also the second spindle
pole. This leads to spindle misorientation
due to the ability of both asters to pull
along actin cable in the bud. At the heart
of this mechanism there is the Dbf2-
dependent phosphorylation of Kar9 that
stabilizes its asymmetric binding to the
bud-directed SPB. Consistently, the
downstream Cdc14 phosphatase is not
involved in Kar9 distribution.51 Localiza-
tion of Tem1 and its downstream kinases
at SPBs is likely critical for the control of
Kar9 asymmetry. Indeed, the lack of the
Bub2-Bfa1 complex, which prevents

Tem1 recruitment to SPBs in early mito-
sis, compromises Kar9 asymmetry and
spindle orientation in a similar way to
MEN inactivation.49

Our recent data indicate that Tem1
asymmetry plays a critical role in directing
Kar9 asymmetry. Indeed, chimeric pro-
teins that stabilize Tem1 at both SPBs or
expression of the constitutively active
Tem1-Q79L GTPase that remains more
symmetric at SPBs both impair Kar9
asymmetry and spindle positioning.49

(Fig. 2B). Thus, at a first glance inactiva-
tion or hyperactivation of Tem1 similarly
impact on Kar9 asymmetry. One notable
difference, however, is that while Tem1
inactivation causes only spindle orienta-
tion defects (where orientation is defined
by the angle between the metaphase spin-
dle and the bud neck),51 Tem1 hyperacti-
vation causes in addition spindle
mispositioning (where position is defined
by the distance between the proximal SPB
and the bud neck).49 The molecular bases
of this difference remain to be established.
One possibility to be explored further is
that the absolute amounts and/or turnover
of Kar9 at SPBs differ in the 2 conditions.

Conclusions

One crucial question that remains
unsolved is how Tem1 activity toward
mitotic exit is restrained until telophase
while being already operational in meta-
phase toward spindle positioning. One
possible scenario is that only the fraction
of Tem1 at SPBs gets activated in meta-
phase, while a more global activation of
Tem1 in the cytoplasm is required for
mitotic exit.52 A differential requirement
of different pools of Tem1 in processes
that must occur in different cell cycle
phases would intrinsically ensure the
proper coordination between spindle posi-
tioning and mitotic exit.

Another important issue that remains
to be addressed is what triggers Tem1 acti-
vation at SPBs. As mentioned above, it is
possible that an unidentified GEF resides
at SPBs. Alternatively, Tem1 might not
need a GEF; rather, at SPBs it could be
simply refractory to inhibition by its
GAP. It is worth noticing that the Polo
kinase Cdc5, which downregulates the

GAP activity of the Bub2-Bfa1 com-
plex,41,53 is found at both SPBs during
metaphase54 and is therefore likely part of
this regulatory mechanism. Moreover,
Tem1 itself is subject to post-translational
modifications, such as phosphorylation
and ubiquitylation,55 that could contrib-
ute to its regulation.

The control of Tem1 and the MEN is
a beautiful example of the strategies that
eukaryotic cells have evolved to couple
spindle positioning and cell cycle progres-
sion. Surveillance mechanisms analogous
to the SPOC have been identified in
asymmetrically dividing stem cells,56

highlighting their importance in ensuring
the right fate of a cell lineage and preserv-
ing the proper ploidy of cells.
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