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METHODOLOGY

A general approach for retrosynthetic 
molecular core analysis
J. Jesús Naveja1,2*  , B. Angélica Pilón‑Jiménez2  , Jürgen Bajorath3   and José L. Medina‑Franco2* 

Abstract 

Scaffold analysis of compound data sets has reemerged as a chemically interpretable alternative to machine learning 
for chemical space and structure–activity relationships analysis. In this context, analog series-based scaffolds (ASBS) 
are synthetically relevant core structures that represent individual series of analogs. As an extension to ASBS, we 
herein introduce the development of a general conceptual framework that considers all putative cores of molecules 
in a compound data set, thus softening the often applied “single molecule–single scaffold” correspondence. A puta‑
tive core is here defined as any substructure of a molecule complying with two basic rules: (a) the size of the core is a 
significant proportion of the whole molecule size and (b) the substructure can be reached from the original molecule 
through a succession of retrosynthesis rules. Thereafter, a bipartite network consisting of molecules and cores can 
be constructed for a database of chemical structures. Compounds linked to the same cores are considered analogs. 
We present case studies illustrating the potential of the general framework. The applications range from inter- and 
intra-core diversity analysis of compound data sets, structure–property relationships, and identification of analog 
series and ASBS. The molecule–core network herein presented is a general methodology with multiple applications in 
scaffold analysis. New statistical methods are envisioned that will be able to draw quantitative conclusions from these 
data. The code to use the method presented in this work is freely available as an additional file. Follow-up applications 
include analog searching and core structure–property relationships analyses.

Keywords:  Analog series-based scaffold, Analog searching, Core structure–property relationships (CSPR), RECAP, 
Scaffold, Virtual screening
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Introduction
A general trend in drug discovery through big data is 
emerging [1]. In this context, many exploratory analy-
ses for finding correlations between chemical data and 
biological activity have been applied, often with satis-
factory results [2]. Nonetheless, many of such models 
require numerical molecule representations in vectors, as 
opposed to the complex information enclosed in a chem-
ical structure [3]. Chemical fingerprints, a widely applied 
representation for converting chemical structures into 

information vectors, produce a result even when process-
ing complex structures [4]. It is common that such meth-
ods detect chemical similarity between molecules even 
when a synthetic chemist would struggle to find substan-
tial structure commonalities [5].

In contrast to structural fingerprints, molecular scaf-
folds (and sub-structure methods in general) are alterna-
tive representations intuitively interpretable by a chemist, 
and scaffold analysis is a more chemically conservative 
approach than a computational prediction of structural 
resemblance [5]. Several approaches have been proposed 
to define and generate scaffolds in a consistent manner 
[6–8]. One of the earliest and still most common scaffold 
concepts was proposed by Bemis and Murcko [9] and is 
exemplified in Fig. 1. Section “a” of this figure shows the 
Bemis and Murcko scaffolds for olanzapine and albenda-
zole. Interestingly, this scaffold concept has evolved. For 
instance, hierarchies of scaffolds have been proposed, 
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which allow to associate scaffolds sharing rings and pro-
vide better clustering opportunities than classical scaffold 
definitions [10–12]. A more comprehensive review on 
scaffold analysis can be found in [8].

However, these and other classic definitions of scaffolds 
consider only ring systems, a rather inconvenient feature 
since it is not uncommon that small rings are conceptu-
alized as side chains or part of substituents by synthetic 
chemists. Considering the limitations of classical scaf-
folds, Bajorath et al. developed a novel scaffold concept: 
the analog series-based scaffold (ASBS) [13] illustrated in 
section “b” of Fig. 1. In general, ASBS are found through a 
process that incorporates retrosynthetic information and 
restrictions in the core/molecule size ratio, thus allowing 
the identification of chemical analogs that can be summa-
rized in meaningful R-group tables [14, 15]. Hence, ASBS 
leverage the chemical synthesis and biological relevance 
of scaffolds [16]. A shortcoming of the current imple-
mentation of ASBS is that it depends on the specific data-
set [6]. We show below that this is a direct consequence 
of following the “single molecule–single scaffold” para-
digm during the ASBS generation. When using ASBS for 
analyzing scaffold diversity or comparing scaffolds found 
in different datasets, it should be taken into consideration 
that ASBS are by design dataset-dependent.

The goal of this work is to show how softening the 
“single molecule–single scaffold” paradigm can lead to 
consistent core results that can extend the ASBS to core 
diversity analysis and core-property relationships analy-
sis. Furthermore, original ASBS can be obtained on the 
basis of the generalized approach. Building upon the 
ASBS approach, we propose a conservative yet flexible 
general framework able to obtain synthetically relevant 
cores from chemical libraries, allowing applications such 
as analog searching through the matching of shared 
cores, diversity, and structure–property relationship 
(SPR) analyses.

This Methodology paper is organized into two major 
sections. First, we describe the general approach for con-
structing molecule–core networks. In the second sec-
tion, we introduce the application of the method using 
two case studies, namely: core overlap analysis of two 
natural products datasets and core structure–activity 
relationship (CSAR) analysis of an analog series of Akt2 
inhibitors. Perspectives for the methodology include, for 
example, chemical core diversity analysis, advanced SPR, 
and chemical analog searching. The approach has been 
used already for the identification of analog series and 
corresponding scaffolds [15].

Methods
Core definition
For any given molecule, a putative core is defined by two 
criteria [13], herein termed relevance and synthetic feasi-
bility, further clarified as follows:

Fig. 1  Two scaffolds definitions are applied to two exemplary 
molecules (olanzapine and albendazole). a Bemis–Murcko scaffold; b 
putative cores
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1.	 The relative size of the core as compared to the whole 
molecule is significant (relevance criterion), and

2.	 The core is either the whole molecule or a substruc-
ture obtained from the original molecule through a 
series of predefined retrosynthetic steps (synthetic 
feasibility criterion).

These two criteria ultimately require the user’s input to 
be further specified. Regarding the first criterion, previ-
ous determinations of ASBS have considered a 2:1 ratio 
of the scaffold vs. all substituents’ atoms [13]. The second 
criterion requires predefining sets of retrosynthesis rules, 
such as the widely used RECAP rules [17]. A user may 
implement other sets of available rules [18] or propri-
etary retrosynthetic schemes.

Importantly, given the newly proposed framework, the 
“single molecule–single core” paradigm underlying vari-
ous scaffold definitions is no longer compulsory. On the 
contrary, all substructures of a molecule complying with 

the two criteria above are considered as putative cores, 
illustrated in Fig.  1b for an exemplary molecule. Our 
approach is able to include cyclic substructures in both 
cores and substituents.

A direct consequence of computing putative cores for 
one or more datasets of molecules is analyzing the core 
structures in light of scaffold criteria. Major differences 
compared to the scaffold concept by Bemis and Murcko 
(Fig. 1), are presented in Table 1.

Molecule–core network
If the core definition described above is applied to a set 
of compounds, a bipartite network G = (U, V, E) can 
be drawn, where U is the set of molecules, V the set of 
putative cores, and E the set of edges linking molecules 
to their putative cores. By definition, if two molecules u1, 
u2 ∈ U can be mapped to the same v1 ∈ V, they are con-
sidered analogs. An example of a core network is illus-
trated in Fig.  2, where a set of six exemplary molecules 
is mapped to all possible cores. Separate clusters repre-
sent series. If all compounds in a series can be mapped 
to a single core, then the series is an analog series, and 
the comprehensive core is its ASBS. It has been shown 
that not all sets of related compounds form analog series 
applying this formalism since in some cases, no single 
core represents all compounds [15]. Moreover, to a pre-
defined analog series represented by a single core, new 
molecules might be difficult to add. On the contrary, the 
use of expandable series with multiple cores makes it 
easy to include new compounds, which need only to be 

Table 1  Comparison of  the  Bemis–Murcko scaffold 
and the core framework proposed in this work

Feature Bemis–Murcko 
scaffold

Core framework

Number of cores per molecule 0 or 1 1 or more

Rings can be substituents No Yes

Considers retrosynthesis rules No Yes

The core is a major component of 
the molecule

Yes/no Yes

Fig. 2  Construction of a core–molecule network for an exemplary dataset. Each molecule is connected to all of its putative cores. Thus, series can 
be formed if at least two molecules share a core. Note that not all molecules in a series need be pairwise analogs of each other, but a sequence of 
analogs must exist. For this example, only putative cores mapping to more than a single molecule are included
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decomposed according to the same criteria and incorpo-
rated into the network. This is a consequence of account-
ing for all possible molecule–core relationships.

Computational implementation
An RDKit—Python [19] implementation of the algorithm 
is made available in Additional files 1, 2 (see also section 
Availability of data and materials). The algorithm flow 
is depicted in Fig.  3. The code is fully parallelized and 
runs mostly off-memory, which means it can be used to 
process large chemical libraries. The input is a file with 
molecular structures represented as SMILES strings as 
well as an identifier. A “washing” script was added to 
remove salts, retain the largest molecular component, 
generate canonical SMILES, and omit stereochemis-
try information by default. However, stereochemis-
try can be retained by modifying the data preparation 
script. Canonical SMILES are annotated with an iden-
tifier (WID). Then, each molecule is fragmented inde-
pendently, and only fragments complying with the core 
definition (see “Methods”) are saved. Unique cores are 
annotated with another identifier (MID). Finally, through 
network analysis, analog series are identified as disjoint 
subgraphs (clusters). The output is: (1) a file containing 
molecule–core associations (suffix: “cores.tsv”); (2) a file 
containing analog series–molecule associations (suffix: 

“ASW.tsv”); (3) a file containing analog series–cores asso-
ciations (suffix: “ASM.tsv”).

Results
The newly introduced framework has a number of poten-
tial applications such as structural analysis of compound 
databases including structural diversity analysis (based 
on the new cores), structure–property(–activity) rela-
tionships (SP(A)R), and virtual screening [12]). In this 
section of the Methodology paper, we discuss selected 
applications of the core framework.

Core content analysis
Exemplary core overlap analysis in natural product data sets
To illustrate a core overlap analysis we present an exam-
ple using two publicly available natural product datasets 
including NuBBEDB [20] and BIOFACQUIM [21], which 
contain information about Brazilian and Mexican natural 
products, respectively.

The motivation of pursuing a scaffold overlap analysis 
would be to identify common and unique chemotypes in 
these databases. As shown in Table 2, NuBBEDB and BIO-
FACQUIM share 49 (~ 5%) Bemis–Murcko scaffolds and 
around 106 (~ 1%) cores. By design, the number of unique 
Bemis–Murcko scaffolds can only be as high as the total 

Fig. 3  Algorithm steps for the generation of core–molecule associations

Table 2  Core and Bemis–Murcko scaffold overlap of NuBBEDB vs BIOFACQUIM databases

Measurement BIOFACQUIM NuBBEDB Both

Unique molecules intraDB 399 2018 2417

Unique molecules interDB 344 1963 2362 (55 shared)

Cores Cores intraDB 1356 15,758 17,114

Unique cores intraDB 1153 11,738 12,289

Unique cores interDB 1047 11,632 12,785 (106 shared)

Bemis–Murcko scaffolds Scaffolds intraDB 396 1921 2317

Unique scaffolds intraDB 176 754 930

Unique scaffolds interDB 127 705 881 (49 shared)
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number of unique molecules, while this is the minimum 
number of cores that can be found. This explains why 
more cores than Bemis–Murcko scaffolds are found. 
Remarkably, if a core is shared between two databases, an 
analog series might be constructed for that core (Fig. 4a). 
On the other hand, a shared Bemis–Murcko scaffold, 
which does not consider the core-to-substituents ratio by 
design, might not represent a meaningful analog series 
(Fig. 4b).

Similar overlap analysis can be performed with other 
larger natural product databases such as the Dictionary 
of Natural Products [22], the Universal Natural Product 
Data Set [23] or basically any other compound collection. 

Here, we illustrate the method with two natural product 
datasets as examples. Of note, quantitative diversity met-
rics remain to be developed, similar to those available to 
quantify scaffold diversity based on Bemis–Murcko scaf-
folds [24].

Core structure–property (activity) relationship analysis: 
“hit‑to‑lead cores”
Substructure and scaffold-based representations are 
commonly used in many areas of chemistry. An example 
is R-group tables to assist in the analysis of SPRs [25, 26]. 
Considering cores changes the view of SPR analysis. For 
instance, every collection of molecules linked to a single 

Fig. 4  Exemplary overlapping cores and scaffolds from two datasets. a For any overlapping core, an analog series can be found with the core itself 
as its ASBS; b This is not necessarily the case for overlapping Bemis–Murcko scaffolds
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core can be considered an analog series, for which SPR 
can be conducted using an R-group table. Moreover, mol-
ecules can be assigned to more than a single core. There-
fore, the progression of an analog series can be readily 
visualized from the core perspective (Fig. 5). Analyzing a 
database and identifying the most relevant analog series 
with a given activity, can be considered “lead discovery”. 
Such an approach prioritizes activity of the analog series 
over its size measured in the number of analogs it con-
tains. This can be accomplished best by considering the 
properties in the whole molecule–core network and then 
selecting enriched cores. Such cores will represent an 
analog series where the desired property tends to appear, 
plus different decorations on the scaffold retain the prop-
erty. Therefore, these cores could be considered leads for 
drug discovery programs. We call these cores “hit-to-lead 
cores”, as they can also resemble a hit in the sense that it 
can be found from exploratory and high-throughput drug 
discovery campaigns.

Exemplary CSAR analysis
Herein, we illustrate the application of CSAR analysis 
with a dataset of Akt2 inhibitors extracted from ChEMBL 
24 [27, 28]. For preprocessing of the data, only com-
pounds with reported IC50 values and standard type “=” 
were considered. Furthermore, duplicates were removed 
and the maximum ChEMBL activity values were kept. 
The dataset was first run through the cores.py script (see 
Additional files 1, 2) and the output was used for CSAR 
analysis. A Jupyter Notebook with the CSAR analysis is 
provided as an Additional files 1, 2 as well.

79 series had at least two compounds, and 24 series had 
at least five. The largest series contained 42 compounds. 
We analyzed the SAR of this largest series and found that 
only six cores were connected to more than a single com-
pound. As shown in Fig. 5a, a bipartite network is con-
structed, where one part of the network is the molecules 
and the other their putative cores. Edges map molecules 
to their putative cores. In this way, for any given property, 
a statistical distribution can be obtained for each core 
through analogs mapping to the core. Also, the bipartite 
network allows examining the relevance of the cores. In 
the example shown in Fig. 5a, the core labeled M406 rep-
resents a larger subset of molecules (represented by red 
dots at the top of the figure). Note that the cores labeled 
M807, M808, M160, and M161 are mapped to the same 
subset of molecules (Fig. 5a).

The molecule–core bipartite network can be condensed 
to a core network representation. Figure  5b illustrates 
a molecule–core network taken the information from 
Fig.  5a. The network shows the relationship of the core 
labeled M406 with five other cores. An edge between two 
cores means that they share at least one molecule. As in 

Fig. 5  Core structure–activity relationship visualization for the 
largest series in a dataset of Akt2 inhibitors. a Molecule–core bipartite 
network. Molecules are shown as small red dots, while cores are 
represented as larger dots and colored by the median of the pIC50 of 
the molecules represented by them. b Core network obtained from 
the molecules-cores bipartite network. Nodes are putative cores and 
edges are drawn between nodes that share at least one compound 
in the dataset; c final CSAR visualization. Redundant cores were 
omitted and chemical structures were added to the core’s network
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Fig. 5a, the dots in Fig. 5b are colored by the median of 
the pIC50 of the associated molecules using a continu-
ous color scale. The core network shows that three sub-
regions in the CSAR can be found. Furthermore, in this 
case, there is a gradient, where the most active cores 
(M807 and M808) are connected to cores with medium 
activity (M406) but not to those with low activity (M160 
and M161).

Figure  5c shows a more detailed CSAR visualization 
for this series in Fig. 5a, adding the chemical structures 
to the core’s network and removing redundant cores by 
keeping only the largest. In this example, Fig. 5c indicates 
that the four Akt2 inhibitors sharing the core M161 with 
an amine substitution in the imidazopyridine ring (aver-
age pIC50 = 6.51) are less active than the two molecules 
having the related core M808 but with a substituent with 
negative partial charges (average pIC50 = 7.05).

Identification of analog series and corresponding scaffolds
In a recent publication, a direct application of the core 
framework for finding ASBS was introduced [15]. By def-
inition, analog series must have a common scaffold and 
be disjoint from each other according to the paradigm of 
“single molecule–single scaffold” paradigm. To this end, 
the initial bipartite network of molecules and their puta-
tive cores can be used as a starting point. Then, the num-
ber of putative cores has to be reduced to the minimum, 
and subnetworks are not allowed to overlap. This can be 
achieved by an iterative greedy selection of cores accord-
ing to which cores that are more represented in the data-
set persist and disqualify secondary cores.

Discussion
Scaffold content and diversity analysis are common prac-
tice to explore the chemical space of compound data sets 
and perform classifications based on a structure repre-
sentation that is highly intuitive [29–31]. There are mul-
tiple ways of defining chemical scaffolds or cores (see 
[32] for a comprehensive review). Of note, hierarchical 
scaffolds might allow each molecule to have more than a 
single scaffold. Nevertheless, the level a scaffold occupies 
in the hierarchy is arbitrary and depends on the dataset. 
In our general core approach, core structures are fol-
lowed horizontally, rather than following a hierarchy, as 
they progress (see Fig. 2). A further issue that remains to 
be addressed is matching of cores with small chemical 
changes in rings.

Herein, we have introduced a novel framework for 
performing scaffold analysis, which is an extension and 
generalization of the ASBS approach. Several exem-
plary applications of the approach were presented. In 

contrast to the generation of ASBS, where the main 
objective is representing analog series in a given dataset, 
our approach avoids any possible information loss as a 
consequence of not considering all possible molecule–
core relationships. In consequence, the new approach 
generates and stores more data than required for ASBS, 
but this ensures consistency and interoperability among 
datasets. Also, for newly generated or updated chemi-
cal libraries it is possible to extend the library of cores 
by only processing new molecules that were added. Only 
in the context of a chemical dataset, cores can be chosen 
that represent as many molecules as possible. Reducing 
the number of cores might be feasible for SPR analysis, 
but not for comprehensively comparing core overlap 
between databases.

Among the limitations of the newly presented core 
framework is the often increased computational cost 
compared to chemical fingerprint methods or conven-
tional scaffold analysis following Bemis and Murcko. 
Nonetheless, the off-memory and parallel nature of the 
scripts make it feasible to process a database as large as 
ChEMBL_24 on a desktop computer in less than 24  h. 
Furthermore, the results depend on the definition of the 
retrosynthetic rules to be considered and the specific 
core-to-fragments ratio. We anticipate that the definition 
of these two parameters impacts the performance of the 
approach in a given project. Also, as with any approach 
extracting knowledge retrospectively from a dataset, data 
quality will obviously affect the analysis.

The method is expected to have the potential for a vari-
ety of applications. Given the scope of this Methodology 
paper, we present two exemplary applications in diver-
sity and SAR analysis. Also, this new framework opens 
the door to new and more informative SAR visualiza-
tion approaches. For instance, constellation plots have 
recently been proposed as a novel approach for visualiz-
ing analog series in the chemical space [33].

Conclusions and perspectives
In this study, a new and general method inspired by the 
ASBS concept is introduced. Exemplary applications are 
shown to establish a proof-of-concept using data from 
medicinal and natural product chemistry. Scaffold con-
tent and diversity analysis are fundamental to charac-
terize compound databases. The results of the recently 
developed definition of ASBS have proven the chemical 
and biological usefulness of identifying core scaffolds 
through retrosynthetic rules and size restrictions. Other 
applications include the identification of ASBS for hit 
identification and structure–property analysis. Using the 
proposed framework, new questions can be answered 
when comparing datasets, such as how many molecules 
in a dataset match a synthetic analog in another dataset, 
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or how often cyclic substructures are found as substitu-
ents of a particular core in the context of a given dataset.

Going forward, the new core framework might be sys-
tematic to analog searching and core hopping.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1332​1-019-0380-5.

Additional file 1. Source code for getting core data.

Additional file 2. A zip file containing a Jupyter Notebook with the exem‑
plary CSAR analysis for the Akt2 dataset, as well as the data and secondary 
scripts required.
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