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Abstract

The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI–
carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show
considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial
oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI
sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene
order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating
that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that
has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric
epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic
rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed
signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be
under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted
to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two
genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and
host interactions of cagPAI proteins, including several whose function is still unknown.
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Introduction

Helicobacter pylori persistently infects more than one half of all

humans, and can cause ulcer disease, gastric cancer, and MALT

lymphoma [1]. The H. pylori cag pathogenicity island (cagPAI) is an

intriguing virulence module of this obligate host-associated

bacterium [2–4]. H. pylori strains that possess a functional cagPAI

are particularly frequently associated with severe sequelae, notably

gastric atrophy and cancer [4–7]. The cagPAI is ,37 kb long, and

contains ,28 genes [3]. These genes encode multiple structural

components of a bacterial type IV secretion system (t4ss) as well as

the 128 kDa effector protein, CagA [7]. After H. pylori has adhered

to a host cell, the Cag t4ss translocates CagA into that cell. CagA is

subsequently phosphorylated by host cell kinases and interacts

with multiple targets (e.g. SHP-2, Grb2, FAK), profoundly altering

host cellular functions [8,9]. The alterations induced by the cagPAI

are thought to ultimately contribute to malignant transformation

[4,10], and CagA has been designated a bacterial oncoprotein

[11].

H. pylori has a high mutation rate, which has resulted in

extensive genetic diversity [12], and also recombines frequently

with other H. pylori [13]. H. pylori isolates have been subdivided

into distinct biogeographic populations and subpopulations with

specific geographical distributions that reflect ancient human

migrations [14–16]. The global population structure of H. pylori is

now well understood based on multilocus haplotypes from seven

housekeeping genes. However, very little is known about the

biogeographic variation of virulence factors, such as the cagPAI,

nor has the impact of genetic variation on disease outcome and

host adaptation been adequately addressed. Previous analyses on

the basis of comparative genome hybridization have demonstrated

marked differences between biogeographic populations with
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respect to the cagPAI [17]. Microarray analysis of 56 globally

representative strains of H. pylori revealed that the cagPAI was

present in almost all strains from some biogeographic populations

and subpopulations in Africa and Asia, while it was variably

present in other populations [17]. The cagPAI was lacking in all

isolates of hpAfrica2, which is distantly related to the other

populations [17]. Currently, nine complete cagPAI sequences are

publicly available [2,18–22], whose isolates belong to hpEurope (7

sequences), hspWAfrica (1) and hspEAsia (1) (see Results), and no

sequence data is available for the cagPAI in the other six

populations and subpopulations where the cagPAI is present.

Here we analyze complete cagPAI sequences from 38 isolates

representing all known H. pylori populations and subpopulations

and compare their genetic polymorphisms with measures of

functional expression. Our data show that the cagPAI has shared a

long evolutionary history with the H. pylori core genome, and

displays a remarkable global conservation of gene content,

structure and function, with minor exceptions. We provide

evidence that the cagPAI was acquired by ancestral H. pylori in a

single event that occurred before modern humans migrated out of

Africa. Sequence comparisons identified domains in multiple

components of the t4ss that are likely to be under diversifying

selection, and these findings can guide future research into the

function of t4ss components.

Results

Distribution of the cagPAI in a global collection of H.
pylori

In order to define the occurrence of the cagPAI in H. pylori, we

screened a globally representative collection of H. pylori isolates

from 53 different geographical or ethnic sources [15,16] (Figure 1).

877 isolates were tested for the presence of the cagPAI by a

PCR approach. Strains were classified as cagPAI-positive if we

succeeded in separate PCR amplifications for the 59 and 39 ends of

the cagPAI, or as cagPAI-negative if we succeeded in amplifying an

empty site with primers from the flanking regions. The cagPAI was

present in at least 95% of strains assigned to the hpAfrica1

(hspWAfrica plus hspSAfrica), hpEastAsia (hspEAsia, hspMaori)

and hpAsia2 populations. In contrast, none of the hpAfrica2

strains possessed the cagPAI, and it was only variably present in

strains from the populations hpEurope (225/330 strains; 58%),

hpNEAfrica (58/72: 81%), and hpSahul (32/49; 65%) or the

hspAmerind subpopulation of hpEastAsia (5/18; 28%).

Based on their multilocus sequence typing (MLST) haplotypes,

seven strains with published cagPAI sequences belong to the

hpEurope population (NCTC11638 from Australia [2]; 26695

from England [18]; and DU23, DU52, Ca52, Ca73 [20] and

HPAG1 [21] from Sweden). J99 from the U.S.A. [22] belongs to

hpAfrica1, and F32 [19] from Japan belongs to the hspEAsia

population of hpEastAsia. None of these published cagPAI

sequences were from strains of the hpNEAfrica, hpSahul, or

hpAsia2 populations, from the hpEastAsia subpopulations hspA-

merind or hspMaori, or from the hpAfrica1 subpopulation

hspSAfrica, although those populations are also potentially

important for our understanding of the evolutionary history of

H. pylori. We therefore selected 29 strains from our global strain

collection to supplement these nine published cagPAI sequences

and provide a globally representative sample of cagPAI diversity

(Figure 1). These strains included all known biogeographic

populations, except for the cag-negative hpAfrica2. The entire

cagPAI, approximately 37 kilobasepairs in length, was sequenced

and annotated from each of the 29 strains, either after shot-gun

cloning of overlapping long-range PCR products or via direct

amplification of multiple, smaller PCR products.

Conserved synteny and low macrodiversity in the cagPAI
The 38 complete cagPAI sequences were compared by pairwise

sequence alignments and by a multiple alignment in KODON

relative to the cagPAI from J99 used as a scaffold sequence

(Figure 2). The general pattern of gene content and gene order

(signifying macrodiversity) was similar in most sequences, with

only limited variation due to changed synteny or deletions.

Synteny changes resulted from genomic rearrangements, horizon-

tal genetic exchange (e.g. replacement of HP0521 by HP0521b),

possibly in conjunction with IS (insertion sequence) element

insertion, or gene inversions, such as for HP0535. Insertions,

deletions, point mutations, frameshift mutations or disruption

through insertion elements (Figure S1) were also observed in some

of the cagPAI sequences, some of which should have resulted in

pseudogenes. We therefore tested all strains for their ability to

induce interleukin-8 (IL-8) in gastric epithelial cells (Figure 2,

Figure 3), as an indicator of PAI function [23]. Most of the strains

containing a cagPAI were able to induce IL-8, indicating that many

of the mutations did not drastically reduce the general function of

the cagPAI (Table 1).

Fixed and transient variants in cagPAI sequence
organization

Most new mutations are deleterious, whether associated with

single nucleotide polymorphisms, mobile elements or genomic

rearrangements, and will be removed by purifying selection.

However, mutations without a drastic effect on fitness, so-called

neutral or nearly neutral mutations, can remain as rare variants

within a population for long time periods. The vast majority of

such mutations remain at low frequency until they are (usually) lost

due to genetic drift. Rare neutral mutations can become more

frequent over time, or even become fixed, also due to genetic drift

[24]. Still other mutations are under positive selection. These

rapidly become frequent or fixed due to Darwinian selection. In

isolated clonal populations, Muller’s ratchet can even result in

some deleterious mutations rising to high frequency [25] and the

same is true of extreme bottlenecks, which can fix deleterious

Author Summary

Most humans are infected with Helicobacter pylori. The H.
pylori cag pathogenicity island (cagPAI) encodes a
secretion apparatus that can translocate the CagA protein
into host cells. Humans infected with cagPAI–carrying H.
pylori are at increased risk of severe disease, including
gastric cancer. We analyzed the nucleotide sequences and
functional diversity of the cagPAI in a globally represen-
tative collection of isolates. Complete cagPAI sequences
were obtained for 29 strains from all known H. pylori
biogeographic populations. The gene content and ar-
rangement of the cagPAI and its function were highly
conserved. Diversity in most cag genes consisted in large
part of synonymous polymorphisms. However some
genes—in particular those that encode proteins predicted
to be secreted or located on the outside of the bacterial
cell—had particularly high frequencies of non-synony-
mous polymorphisms, suggesting that they were under
diversifying selection. Our study provides evidence that
the cagPAI was only acquired once and provides an
important resource that can guide future research on the
biological roles and host interactions of cagPAI proteins,
including several whose function is still unknown.

Worldwide Diversity in cag PAI of H. pylori
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mutations immediately. These basic evolutionary principles

indicate that the demographies of rare versus frequent mutations

differ and should be examined separately.

Frequent variants
A number of frequent cagPAI macrodiversity variants were

found, some of which were present in all isolates of at least one

sub-population, or almost all isolates (Table 1). These included

insertion events due to one of three variants of IS606 [26] or of a

mini-IS605 insertion [27,28], an inversion of gene HP0535 plus its

flanking non-coding DNA, a deletion of either the complete

HP0521 ORF (D2; Figure 2) or part of that ORF, or the

replacement of HP0521 by the unrelated ORF HP0521B

(Figure 2, Table 1). Additionally, most of the 39 (right) half of

the cagPAI is lacking in all three hspAmerind strains due to one of

two similar 11.2 kb deletions with distinct 39 ends (D4, D5;

Figure 2). These large deletions terminate within HP0546, and are

associated with a second (intergenic) deletion of 410 bp or a

620 bp deletion that terminates within the N-terminal part of

HP0547 (cagA). In strains V225 and HUI1769, a copy of the

deleted segment plus the HP0546 and HP0547 ORFs have

translocated to a separate, currently unidentified, location of the

chromosome, leaving a shortened version of HP0546 at the

original location (Figure 2). It is interesting to note that IL-8

Figure 2. Conservation of the cagPAI genetic organization across H. pylori biogeographic populations. The sequences were aligned in
KODON using the cagPAI of strain J99 as a scaffold sequence. Individual isolates are grouped according to biogeographic (sub-)populations. The
continuity of the cagPAI was disrupted in isolates PAL3414, V225 and HUI1769, and fragments found in secondary locations are displayed in grey-
shaded boxes on separate lines. The two cagPAI sequences from reference strains J99 and 26695 were extracted from whole genomes. Genes
essential for a basic function of the cagPAI type IV secretion system (IL-8 induction; [3]) are labeled with an asterisk*. Activity of the Cag t4ss (IL-8
secretion; + or 2) was monitored during experimental infection of AGS cells with H. pylori. Obs., observed IL-8 secretion; exp., IL-8 secretion expected
from the cagPAI sequence; red, genes in forward orientation; blue, genes in reverse orientation; light blue, shorter gene version; white, different gene
HP521B [20] in this locus; yellow, pseudogenes; black, IS elements; green, cagPAI insertion sites. Diamonds: frameshift mutations leading to
pseudogenes. D followed by numbers 1 through 10 indicate different deletions (manifestation of macrodiversity) and are consecutively numbered as
mentioned in the text and Table 1. a,b,c,d: strains not functionally tested in this study possess functional cagPAIs according to the following
references: a [20]; b [21]; c [2]; d [19].
doi:10.1371/journal.pgen.1001069.g002

Figure 1. Distribution of the cag pathogenicity island in a global collection of H. pylori strains from different populations. (A)
Neighbor joining (NJ) tree of neutral genetic relatedness of H. pylori strains, including information about the presence or absence of the cagPAI. The
NJ tree was calculated from concatenated sequences of seven housekeeping genes (length 3406 bp) from 877 isolates of H. pylori [16] plus 9
additional isolates from which either cagPAI sequences [20] or whole genome sequences had been published (indicated by arrows; [2,18–22]. Each
strain was scored for presence (filled triangles) or absence (empty circles) of the cagPAI based on the results of PCR reactions that span the ends of
the cagPAI. Population assignments based on Bayesian analyses [15,16] are indicated by the color coding of symbols that correspond to the labels
next to the tree; red symbols indicate all strains whose cagPAI sequences are now available, including the 29 strains that have been newly selected for
cagPAI sequence analysis. (B) Geographic sources of strains whose cagPAI sequences are now available. Each dot indicates the source of isolation of
one of the 38 cagPAI sequences that were analyzed. The dots are color-coded by population or subpopulation as in (A).
doi:10.1371/journal.pgen.1001069.g001
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Figure 3. Variability of Cag t4ss function in H. pylori strains from different biogeographic populations. (A) IL-8 induction in human
gastric epithelial cells by diverse H. pylori strains from different biogeographic populations. IL-8 secretion induced at 20 h post infection by live H.
pylori in gastric epithelial cells (AGS, shown here, and MKN28, data not shown) was determined as a read-out for Cag t4ss activity. The two strains J99
and 26695A, for which entire genome sequences are available, were included as positive controls. CagA EPIYA motifs for each strain are indicated on
top of the graph. Exceptions in the genetic integrity of some of the islands and other explanations for an observed loss of functionality are indicated
above the single bars. Colored bars designate the population assignments of strains. Coincubation experiments were performed independently at
least three times for each strain, with similar results, and one representative experiment, performed in triplicates for each strain, is shown. IL-8
secretion is depicted in relative values, as a multiple of the negative control (mock), which was set to 1. (B,C) Assessing underlying causes of loss of
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induction was not eliminated by any of these frequent mutations

(Figure 2, Figure 3, Table 1), suggesting that they are not

deleterious to cagPAI function, and might be neutral or even under

positive selection.

Rare variants
Rare variants were present in only one or two strains, are

probably transient, and will tend to disappear during genetic drift

[29]. The rare variants included frameshift mutations in multiple

ORFs within three single isolates (CC42C, HPAG1 and L72) and

IS elements (mini-IS605, IS605, IS606, IS607 or IS608 [26]) that

have integrated at distinct locations in 7 other isolates (Table 1;

Figure S1). Our dataset consisted of only 38 isolates, and it was

possible that these rare mutations might be more widely

distributed. We therefore screened 95 other globally representa-

tive strains for the presence of IS605, IS606, IS607 or IS608 at

those locations, but only identified two additional strains with IS

element insertions, one each for IS605 (MOR3055 – hspWAfrica)

and IS607 (BASQ9523 – hpEurope) (data not shown). Thus,

strains carrying these particular insertion mutations really are

rare.

We also found two rare, distinct genomic rearrangements

(Table 1). One of these was in strain NCTC11638 from Australia

and has been reported previously [2]. It splits the cagPAI between

ORFs HP0534 and HP0535 into two segments, one of which is

translocated elsewhere in the genome, and is distinct from the split

of the cagPAI in the hspAmerind strains. Previous analyses

identified the same rearrangement in 4/40 strains from Italy [2],

but it was not found in any of the other 38 cagPAI sequences

analyzed here nor in any of the 95 other, globally representative

strains that we investigated by PCR. The other rearrangement

separated HP0547 (cagA) through HP0549 plus flanking DNA

from the rest of the cagPAI. It has been previously described for

two hpEurope strains from Sweden and one from Australia [20].

We found the same pattern in a fourth hpEurope strain isolated in

Palestine (PAL3414). Both of these rearrangements were present in

less than 5% of isolates.

The 17 rare mutations were identified in a total of 12 isolates.

Only three of those, CC42C, HUI1692 and L72, did not induce

IL-8, indicating that the majority of the rare sequence changes also

did not cause a severe loss of cagPAI function. This observation is

compatible with most of the rare mutations being selective neutral

or near-neutral.

Genomic decay
Three overlapping small deletions (D1, D2, D3) that removed

the HP521 ORF were found in all but one hpEastAsia isolate, one

hpEurope isolate and the hpSahul strain (Figure 2; Table 1), but

those did not abolish cagPAI function (see above). Eight other

deletions were found in four individual strains (Figure 2). Two of

these isolates were unable to induce IL-8: CC42C (hspSAfrica)

contains multiple frameshift mutations and an insertion of IS606

as well as deletion D11, which removes part of cagA (HP547). D4

and D6 deleted half of the cagPAI in hspAmerind strain HUI1692.

The cagPAI is clearly decaying in both CC42C and HUI1692. In

contrast, although deletions D5 and D7–D10 also removed large

parts of the cagPAI in hspAmerind strains V225 and HUI1769,

these deletions occurred in a segment that has been duplicated to a

separate location (see above) and these two isolates remain able to

induce IL-8. Thus, with one exception (D1), these deletions are

rare and seem to be associated with accelerated decay of non-

functional cagPAI genes. In addition, the cagPAI in non IL-8-

inducing strain L72 also contained one frameshift and one

premature stop codon in a coding region, and seems to be

undergoing decay.

Signatures of selection within individual cagPAI genes
Darwinian selection for variation in coding regions can also be

exerted at the nucleotide or protein level. We therefore analyzed

sequence polymorphisms (microdiversity) in individual cagPAI

genes for traces of such selection (Materials and Methods). Similar

to housekeeping genes [30], almost all alleles of each cagPAI ORF

were unique to one isolate among the 38 strains. Exceptionally, we

identified duplicates of a single allelic sequence in six genes; in

each case, the strains possessing the duplicate alleles were from a

common population (Table S4). Occasional duplicate alleles

within populations have also been described for housekeeping

genes [30] and are considered to represent homologous recom-

bination. Again, similar to housekeeping genes, most cagPAI genes

seemed to be under purifying selection because their Ka/Ks ratios

were #0.2 (Table 2). However, five genes (HP0534-0535,

HP0538, HP0546-0547) showed signs of positive or diversifying

selection because their overall Ka/Ks ratios were greater than 0.2;

of these, cagA (HP0547) had the highest proportion of non-

synonymous polymorphisms (Ka/Ks = 0.45). However, Ka/Ks

ratios are relatively insensitive indicators of Darwinian selection,

which can act at the level of single protein epitopes or

conformational domains. We therefore used a Bayesian method

(PAML/CODEML [31]) to search MLST and cagPAI genes for

codons that might be under diversifying selection (indicated by v
.1). Only two of the seven MLST housekeeping genes (trpC,

yphC) contained an appreciable frequency (3.9%; 5.3%) of codons

with posterior probabilities of v .1 being above 0.95 (Table 2).

In contrast, .5.3% of the codons matched this criterion in 10 of

the 28 cagPAI ORFs (Table 2), including four of the five ORFs

with high overall Ka/Ks ratios (HP0535, HP0538, HP0546,

HP0547).

We also tested eleven cagPAI ORFs, including nine with high

frequencies of codons under selection according to PAML, and

two with lower frequencies (HP0524, HP0525) with a second

Bayesian program, OmegaMap [32,33], which unlike PAML

also takes into account the occurrence of recombination (r)

between different alleles (Table S5). OmegaMap detected fewer

codons with high probabilities of positive selection, but the

codons that it identified often overlapped with codons that had

been identified as being under positive selection by PAML

function of cagPAIs in some H. pylori strains. (B) CagA translocation assays performed after infection of AGS cells with the two selected H. pylori strains
D3A and M49. These displayed loss of cagPAI-related activity in IL-8 release assays. Both strains were unable to translocate CagA into human gastric
epithelial cells. Strains SU2, N6, and 26695A wild type (wt) were used as positive controls for CagA translocation. Strains SU2Dcag and 26695ADcag
(isogenic cagPAI deletion mutants to SU2 and 26695A) were included as negative controls. (C) transcript amounts of single cagPAI genes. 30 strains (4
strains shown here – for complete results see Table S3) were studied using semiquantitative RT PCR for each gene with known function in the Cag
t4ss (refer to Table 2 for gene names). Two strains with loss of t4ss function, CC72C, and M49, are shown. TAI196 and 26695A are depicted as positive
controls. TAI196, a strain with a high propensity to induce IL-8, shows relatively high transcript amounts for the majority of genes. Strains CC42C and
L72 (not shown) which have pseudogenes and lost the ability to induce IL-8, showed low or undetectable transcript amounts for some genes
including the pseudogenes. M49 displayed low transcript amounts for a number of essential genes of the t4ss located predominantly in the right half
of the cagPAI (genes HP0528, and HP0537 to HP0544).
doi:10.1371/journal.pgen.1001069.g003
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Table 1. Genetic macro- and minidiversity variants (gene order and orientation, gene identity, insertion elements) within the H.
pylori cagPAI with regard to population assignments.

Frequency Type Occurrence (population or strain) Gene and/or position in J99 IL-8 induction

Frequent Mini-IS606a hspWAfrica (3/4), hpEurope (7/12), hspAmerind (3/3) 41–232 (192 bp) +

Mini-IS606b hpAsia2 (6/6), hspEAsia (4/6), hspMaori (3/3) 21300 (140 bp) +

Mini-IS606c hpAfrica1 (6/6), hpEurope (8/12), hpAsia2 (6/6), hpNEAfrica (1/1),
hspAmerind (3/3)

36969–37098 (130 bp) +

Mini-IS606d hspEAsia (6/6), hspMaori (3/3), hpEurope (3/12) 36969–37098 (303 bp) +

Inversion hpEastAsia (11/12)1 HP0535 +

Deletion 2 (D2) hpEastAsia (11/12) HP0521, 843–1467 +

Shortened gene hpAsia2 (6/6), hspEAsia (1/6), hpEurope (2/12), hspWAfrica (1/4)2 HP0521 +

Rearrangement HspAmerind (2/3) HP0536 – HP547, 21182–36740 +

Mini-IS605 hpEurope (5/12), hpNEAfrica (1/1), hpAsia2 (1/6) 37003 +

Replacement hpEurope (5/12), hpNEAfrica (1/1)3 HP0521B, 797–1392 +

Rare Frameshift CC42C HP0524, 5166 (+1, 7C R 8C) 2

Frameshift CC42C HP0527, 12851 (+1, 3A R 4A) 2

Frameshift CC42C HP0529, 16416 (+1, 2T R 3T) 2

Frameshift CC42C HP0537, 22392 (21, 7A R 6A) 2

Frameshift HPAG1 HP0527, 11326 (21, 6A R 5A) +4

Frameshift HPAG1 HP0544, 30118 (21, 3A R 2A) +4

Frameshift L72 HP0547, 34034 (21, 7A R 6A) 2

Stop codon L72 HP0530, 16932, CGA R TGA 2

Mini-IS605 MOR3457 17505 +

Mini-IS606e 26695 36969–37003 (35 bp) +

IS605 NCTC11638, HUI17695 20345 +

IS606 Ca52 3605 +

IS606 CC42C 30450–33503 2

IS607 RE120016 37718 +

IS608 HUI1769 32724 +

Rearrangement NCTC116387 HP0535 – HP0549, 20345 +

Rearrangement DU52:2, PAL3414 HP0547 – HP0549, 33360 +

Deletion 1 (D1) Ca52 618–1467 +

Deletion 3 (D3) CC42C 30450–33503 2

Deletion 4 (D4) HUI1692 21182–33406 2

Deletion 5 (D5) V225, HUI1769 21182–32492 +8

Deletion 6 (D6) HUI1692 33593–34247 +

Deletion 7 (D7) V225 33596–34318 +

Deletion 8 (D8) V225 33450–34247 +

Deletion 9 (D 9) HUI1769 32669–33116 +

Deletion 10 (D10) HUI1769 33692–34100 +

a, b, c, d, e represent different genetic variants of mini-IS606; mini-IS606 variants c, d and e were collectively referred to as ‘‘remnant IS606* within the cag right end
segment’’ by Kersulyte et al. [26].
1Also in 8/11 strains from Japan [19]. The inversion encompasses a total of 1230 bp that are present in hpAsia2 and consists of HP0535 plus 483 bp of upstream and
381 bp of downstream flanking non-coding DNA. The homologous stretch in J99 contains flanking non-coding DNA stretches of 50 bp upstream and 160 bp
downstream that are replaced by 490 bp and 460 bp, respectively, in hpAsia2 strain KAZ3173 (see Figure S1).

2357 bp versus 659 bp for HP0521 in J99.
3Also in 34/63 strains from Sweden [20].
4IL-8 induction is according to data published by Oh et al. [21]. However, HP0527 and HP0544 possess frameshift mutations that would normally prevent induction of IL-
8.

5Found in 1/95 additional strains from a global survey (this study) and 11/40 strains from Italy [2].
6in 1/95 additional strains from a global survey (this study).
7also found in 4/40 strains from Italy [2].
8Deletion would prevent IL-8 induction. IL-8 induction is observed because of the presence of HP0536 – HP0547 in another genomic location.
doi:10.1371/journal.pgen.1001069.t001
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(Table S5). Finally, we employed a sliding window along codons

of PAML posterior probabilities of v to identify clusters of sites

with signs of diversifying selection (Figure 4). The combination of

three forms of analysis (criteria: Ka/Ks .0.2, or likelihood of at

least 95% for v .1 in $5.3% of codons, or at least two clusters

of two or more adjacent amino acids (aa) predicted under

diversifying selection in PAML) identified 13 cagPAI genes that

are likely to have evolved under diversifying selection: HP0520,

HP0522, HP0523, HP0527, HP0528, HP0534, HP0535,

HP0536, HP0538, HP0539, HP0540, HP0546 and HP0547.

Of these, functions or structural contributions are known only

for HP0523 (virB1), HP0527 (virB10), HP0539 (virB5), HP0546

(virB2) and HP0547 (cagA) [7,34–38]. The percentage of codons

with high likelihood of positive selection was highest in cagA

(26.9%), followed by cagY (15.5%) and a gene of unknown

function, cagQ (HP0535; 9.9%) (Table 2).

Table 2. Sequence diversity, Ks/Ka ratios, and codons under diversifying selection in cagPAI and housekeeping genes (37 strains).

Gene no. in
strain 26695

Gene
name

Component of
type IV
secretion
system

Mean sequence
diversity (p) Ka Ks

Ratio
Ka/Ks

No. of
codons

Codons under
diversifying selection
(v.1) (PAML) r *

Number %

HP05201 cagf u 0.030 0.016 0.084 0.190 115 10 8.70 0.36

HP0522 cagD u 0.047 0.019 0.147 0.131 481 9 1.87 0.72

HP05231 cagc VirB1 0.089 0.036 0.279 0.127 169 9 5.33 0.45

HP0524 cagb VirD4 0.041 0.007 0.164 0.045 748 4 0.53 0.64

HP0525 caga VirB11 0.025 0.005 0.124 0.044 330 2 0.61 0.71

HP0526 cagZ u 0.021 0.010 0.065 0.148 199 8 4.02 0.64

HP05271 cagY VirB10 0.049 0.017 0.097 0.171 2797 433 15.48 0.62

HP0528 cagX VirB9 0.024 0.006 0.092 0.068 522 10 1.92 0.74

HP0529 cagW VirB6 0.025 0.008 0.080 0.102 536 17 3.17 0.25

HP0530 cagV VirB8 0.024 0.006 0.093 0.066 252 9 3.57 0.50

HP0531 cagU u 0.032 0.012 0.095 0.123 218 4 1.83 0.60

HP0532 cagT VirB7 0.026 0.006 0.101 0.061 280 9 3.21 0.61

HP0534 cagS u 0.025 0.015 0.070 0.210 199 4 2.01 0.68

HP05351 cagQ u 0.061 0.039 0.153 0.254 101 10 9.90 0.38

HP05361 cagP u 0.031 0.011 0.079 0.138 117 7 5.98 0.43

HP0537 cagM u 0.026 0.008 0.097 0.078 376 4 1.06 0.52

HP05381 cagN u 0.034 0.021 0.081 0.263 306 34 11.11 0.57

HP05391 cagL VirB5 0.032 0.016 0.087 0.185 237 21 8.86 0.17

HP05401 cagI u 0.032 0.017 0.087 0.196 381 23 6.04 0.40

HP0541 cagH u 0.027 0.010 0.087 0.110 370 10 2.70 0.26

HP0542 cagG u 0.029 0.010 0.097 0.102 143 0 0.00 0.57

HP0543 cagF u 0.029 0.014 0.095 0.143 268 10 3.73 0.52

HP0544 cagE VirB3/VirB4 0.026 0.005 0.103 0.049 984 9 0.91 0.62

HP0545 cagD u 0.039 0.016 0.122 0.134 209 5 2.39 0.38

HP05461 cagC VirB2 0.051 0.031 0.112 0.277 116 7 6.03 0.33

HP05471 cagA effector 0.088 0.067 0.150 0.448 1389 381 27.43 0.40

Merged cagPAI genes 0.040 0.012 0.115 0.106 - - - 0.65

HP1134 atpA 0.021 0.002 0.111 0.016 209 1 0.48 0.61

HP0177 efp 0.032 0.001 0.141 0.007 136 0 0.00 0.54

HP0142 mutY 0.058 0.018 0.198 0.089 140 0 0.00 0.61

HP0620 ppa 0.028 0.004 0.117 0.036 132 0 0.00 0.48

HP1279 trpC 0.069 0.030 0.204 0.149 152 6 3.95 0.57

HP0071 ureI 0.029 0.007 0.102 0.066 195 0 0.00 0.40

HP0834 yphC 0.042 0.015 0.140 0.107 170 9 5.29 0.64

Merged hk genes 0.041 0.011 0.141 0.076 - - - -

Mantel test (r*) between matrices of individual cagPAI genes versus concatenated housekeeping genes.
r* Pearson correlation coefficient of p-distance matrices from individual genes versus concatenated housekeeping genes. R values for the housekeeping genes were
calculated from matrices of concatenated sequences jackknifing from the respective gene. 1cag genes predicted to be under diversifying.selection (p.95% in . = 5.3%
of codons in PAML). u = genes of partly or completely undefined function. Total number of codons per gene refers to alignment length used for PAML.
doi:10.1371/journal.pgen.1001069.t002
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In addition to a high frequency of putative codons under

diversifying selection, HP0527 (cagY) and HP0547 (cagA) also

exhibited variable gene lengths. This was due to variable numbers

of repetitive modules within the genes, as previously reported

[35,39]. In the CagA protein, the number of phosphorylation sites

(C-terminal EPIYA repeat motifs) differed, as did the types of these

repeats (Figure 3). As previously described [39], the third EPIYA

motif of CagA was type D in most (13/17) Asian strains whereas

type D was not found in isolates from any other population. This

reflected the preponderance of type D EPIYA in isolates assigned

to the hpEastAsia and hpAsia2 populations. If the EPIYA type D

motif were ancestral in Asian populations, this finding might

reflect horizontal acquisition of cagA by the four exceptional Asian

strains from Western strains. Homologous recombination involv-

ing the cagPAI has also been reported in isolates from Mestizos in

Peru [40] and might reflect selection due to functional differences

that are related to ethnic specificity.

Comparison of cagPAI and housekeeping gene
phylogeny

We next asked whether the phylogeny of cagPAI genes was

similar to that of housekeeping genes. Concatenated sequences of

the cagPAI genes yielded a tree (Figure 5B) that is very similar to

the tree based on a concatenate of the seven MLST housekeeping

genes (Figure 5A). Similarly, matrices of pairwise genetic dis-

tances of the concatenated cagPAI genes were highly correlated

with corresponding matrices of pairwise distances of concatenat-

ed housekeeping genes (R = 0.65, p,0.001) (Figure 5C). These

data show that 42% of the variance among cagPAI genes can be

attributed to a linear relationship with housekeeping genes. The

correlations for individual cagPAI genes ranged from R = 0.17 to

R = 0.74 (Table 2). While most cagPAI genes thus fell into the

range observed for the individual housekeeping genes (0.46 to

0.69), the correlations were lower for particular cagPAI genes (e.g.

cagL, R = 0.17), which might reflect selection and/or recombi-

nation between cagPAIs from different bacterial populations.

These observations indicate a generally similar genealogy of

cagPAI and housekeeping genes, which would imply that the

cagPAI has accompanied H. pylori since before human migrations

out of Africa some 60,000 years ago [17]. In agreement, the

genetic diversity of the cagPAI genes per population decreased

significantly with distance from Northeast Africa (data not

shown).

cagPAI sequence variation and type IV secretion system
function

Only five of the strains tested here were not able to induce IL-8

(Figure 3). The same five strains did not translocate CagA into

AGS cells, a second marker of t4ss function (Figure 3B). For three

of the five strains (CC42, L72 and HUI1692), a lack of function

can be explained by sequence features of coding sequence (CDS)

decay. The cagPAI of CC42C contains multiple pseudogenes,

some of which are crucial for t4ss function [3]. Half of the cagPAI

including numerous essential t4ss genes is lacking in strain

HUI1692. For strain L72, a point mutation results in a premature

stop codon in gene HP0530, which is essential for t4ss function. In

contrast, the cagPAI sequences did not offer obvious explanations

for the lack of induction of IL-8 by strains M49 and D3a. We

therefore investigated the transcript abundance of all 14 genes

involved in IL-8 induction and of cagA for 28 sequenced strains as

well as for the reference strains 26695A and J99 (Figure 3C; Table

S3). The inability of strain M49 to induce IL-8 can be accounted

for by very low transcript levels for 7/15 cagPAI genes (Figure 3C;

Table S3); the cause of this low transcription is unknown.

However, we are unable to explain the inability of strain D3a to

induce IL-8, because it was not impaired in cagPAI transcription

(Table S3). We are also not readily able to explain the considerable

variation of transcript levels among the other strains that did

induce IL-8 (Table S3), except that it did not correlate with the

macrodiversity patterns described above (data not shown).

Similar to the variable transcript levels, the levels of IL-8

induction also varied dramatically (Figure 3). This variation did

not correlate with strain assignments to biogeographic populations

or with the type and number of EPIYA motifs within CagA

(Figure 3A; [39]). Nor did they correlate with quantitative values

for adhesion of the strains to AGS or MKN28 gastric epithelial

cells (data not shown).

Discussion

Since its discovery in 1996 [2], the cagPAI has probably been the

most intensively studied segment of the H. pylori genome. The

virulence functions of the Cag t4ss and its translocated effector,

CagA, have been investigated in great detail, and numerous

studies have correlated cagPAI-associated polymorphic markers

with disease risk. However, all these studies focused on one or only

few genes within the cagPAI (such as cagA), and were performed

with strains from one or few geographic regions. We therefore

Figure 4. Sliding window map of maximum likelihood analysis of codons to be under diversifying selection for complete cagPAIs
and housekeeping genes. Codons calculated by CODEML (model M3) to have a high likelihood p.95% of being under diversifying selection in
each gene of the cagPAI or housekeeping genes of all analyzed strains are highlighted by black symbols.
doi:10.1371/journal.pgen.1001069.g004
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anticipated that a comparative analysis of complete cagPAI

sequences from a globally representative and well characterized

collection of strains would provide valuable information about the

evolutionary history of the cagPAI and its variability within a

phylogeographic context. The complete cagPAI sequences of 29

strains were determined and combined with 9 published complete

sequences to yield a large and comprehensive dataset of cagPAI

diversity, which was analysed at the levels of both macrodiversity

(differences in gene content, synteny and function), and micro-

diversity (sequence polymorphisms).

Phylogeographic implications of H. pylori cagPAI diversity
It has previously been noted from limited samples that different

populations of H. pylori differ in the frequency of possession of the

cagPAI [14,17]. Our data on 877 isolates from all known H. pylori

populations and subpopulations provide unambiguous evidence

for this variability. Carriage of the cagPAI varies from almost

universal presence in hpEastAsia and hpAfrica1 through interme-

diate presence (hpEurope) to complete absence (hpAfrica2)

(Figure 1). The cagPAI is also absent in the related species H.

acinonychis [17], which resulted from a host jump from humans to

large felines [41]. The absence of the cagPAI from hpAfrica2 and

H. acinonychis has been interpreted as the ancestral state, i.e. H.

pylori acquired this genomic island by horizontal gene transfer from

an unknown source after H. pylori had established itself in humans

[17]. But when was it acquired, and on how many occasions?

The data presented here indicate that the cagPAI was only

acquired once because its microdiversity correlated with micro-

diversity within housekeeping genes (Figure 5). That acquisition

was prior to 60,000 years ago, the time when H. pylori

accompanied modern humans during their migrations ‘‘out of

Figure 5. Pairwise correlation of genetic distances and phylogeographic diversity between H. pylori housekeeping genes and
concatenated cagPAI genes. (A) neighbor-joining (NJ) tree analysis of concatenated housekeeping genes for all strains, whose complete cagPAIs
were analyzed. (B) NJ tree analysis of concatenated cagPAI genes for all strains. (C) Mantel comparison of pairwise genetic distances in housekeeping
genes and cagPAI genes.
doi:10.1371/journal.pgen.1001069.g005
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Africa’’ [16], because cagPAI sequence microdiversity diminished

with distance from North East Africa. An important implication of

this conclusion is that, with the exception of hpAfrica2, the

variable presence of the cagPAI in H. pylori populations usually

reflects secondary loss, rather than inheritance of the ancestral

virgin state.

Macrodiversity versus fitness and function
Previous analyses have shown that strains that circulate within

the same communities, and even within the same stomach, can be

mixed in respect to possession of the cagPAI [30]. This observation

indicates that cag positive bacteria do not outcompete cag negative

bacteria in all environments. Nevertheless, our data support the

inference [17] that a functional cagPAI provides a fitness advantage

to H. pylori in most human populations: macrodiversity variants

that inactivated t4ss function through deletions or insertion of IS

elements were rare, whereas macrodiversity variants that were

frequent did not affect t4ss function. For instance, shortening,

complete loss or replacement (by HP0521b) of gene HP0521 was

observed in almost all populations but this did not reduce cagPAI

functionality, suggesting that this gene is not important for t4ss

functions. Similarly, the genetic organization of the cagPAI was in

general strongly conserved, and insertion elements did not play a

decisive evolutionary role for the cagPAIs, unlike previous

conclusions [2]. Even separation of the cagPAI in two parts did

not lead to loss of function, except when a deletion was involved.

cagPAI t4ss microdiversity and signatures of positive
selection

High variation at the level of sequence microdiversity was found

along the cagPAI, but this is also true of housekeeping genes, and

might possibly result from the high frequencies of mutation and

recombination in H. pylori [14,16]. However, unlike most

housekeeping genes, multiple cagPAI ORFs showed signs of

Darwinian diversifying selection, as indicated by higher Ka/Ks

values and codon-based analyses, which identified specific amino

acids or regions of particularly high non-synonymous diversity in

13 cagPAI genes (Figure 4, Table 2). In the following we attempt to

interpret these measures of selection by mapping them onto known

components including structural features of the t4ss encoded by

the cagPAI.

Seventeen of the cagPAI genes are essential for the known t4ss

functions (IL-8 induction, CagA translocation [3]), of which 12

have been characterized in structural or functional terms

(virB1,2,4,5,6,7,8,9,10,11 and virD4 orthologs, cagA). In Figure 6,

we present a schematic structural model of the cagPAI t4ss

apparatus including all known structural Cag proteins plus the

effector CagA. Different shades of grey indicate the proportion of

amino acids which are likely to have undergone diversifying

selection according to PAML.

CagA
The translocated effector protein CagA (HP0547), which

interacts with various host proteins [42], had the highest

proportion of such amino acids of the entire cagPAI. These were

distributed along its entire length, suggesting functional adaptation

or modulation. CagA binds to host cell integrins [42] and is

translocated into host cells by the cagPAI t4ss. Within the host cell,

individual domains of CagA interact with intracellular proteins

such as SH-2 proteins and protein kinases (e.g. Src, Abl [19],

MARK2/PAR1b kinase family [7,9]). These interactions render it

potentially subject to diversifying or positive selection due to host

polymorphisms which could even result in modified host protein

interactions. A prominent example of amino acid diversity noted

previously are the EPIYA motifs in the C-terminal half of CagA,

which differ between Asian (hpAsia2; hpEastAsia) (type D) and all

other populations [43]. The D type EPIYA repeat binds SHP-2

phosphatase more avidly than other types [19]. A clear bipartite

‘‘Eastern’’/‘‘Western’’ separation in the present global dataset was

not only observed in phylogenetic trees based on the C-terminal

half of CagA containing the divergent EPIYA repeat motifs, but

also in its less well-characterized N-terminal moiety. Interestingly,

CagA from the ancient and isolated hpSahul population [15]

localised in between the Eastern and Western type CagA clusters

(not shown).

The global strain selection provided further evidence of

functional adaptation in a different CagA motif. Recently,

structural analyses of a second CagA subdomain (CM domain,

aa 885 to 1005) in complex with its interaction partner from the

human host, the cellular kinase MARK2, were performed [44].

This analysis revealed the crucial contribution of specific residues

in CagA (MKI motif; [44]) to the physical interaction with the

kinase. The short CagA peptide that could be mapped in the

cocrystal (Phe948–Lys961) is characterized in our strain collection

by high amino acid variability (Figure 7A and 7B). Superposition

of the amino acids under selection (according to PAML) onto the

structure of the peptide [44] revealed that all but five of the 14

amino acids in this MARK2 binding domain of CagA have a high

posterior probability of being under diversifying selection

(Figure 7A). Interestingly, Arg952 and Val956, which both strongly

influence MARK2 binding [44], have a likelihood of 1.0 and 0.81,

respectively, of being under positive selection whereas two other

MARK2 binding residues, Leu950 and Leu959, were not under

diversifying selection. This result suggests that, although some

specific MARK2 binding sites in CagA do have a lower propensity

of being under positive selection, the binding strength of CagA to

MARK2 can still be influenced by H. pylori protein variation,

indicative of functional fine-tuning. These predicted functional

implications of global variation in the MKI motif are in agreement

with an earlier study by Lu et al. [9] who observed differences in

CagA PAR1b binding and function when they exchanged two

Western and Eastern phylogeographic variants of the CagA

MARK2/PAR1b binding region within CagA chimeras. We

therefore expect that other regions of CagA that are under

selection (Figure 4) also warrant detailed structural and functional

analyses. The observed CagA diversity, which is proposed to allow

functional fine-tuning, may not only be associated with different

host ethnicities but also with niche-dependent intrahost diversifi-

cation during long-term colonization (e.g. stomach antrum versus

corpus) [45,46].

Other cag genes
A prior general comparison of component diversity in type III

and IV secretion systems from different bacterial species [47]

found that core structural proteins located in the bacterial

cytoplasm or the inner membrane exhibit significantly lower

diversity than do structural proteins exposed on the surface of the

bacteria or secreted effector proteins [47]. Two well-characterized

cag genes whose gene products are exposed on the cell surface have

experienced strong selection: cagY (HP0527), which encodes a

VirB10 ortholog that is a structural component of the cagPAI t4ss

[36], and cagC (HP0546), which encodes a VirB2 pilin subunit

ortholog [35,38]. CagY is under selection due to host antibodies

and/or direct host interactions [35,36]. In cagC, those codons with

the highest likelihood of diversifying selection (amino acids 21 to

42; Table S5) overlap with codons forming surface-exposed and

highly strain-specific epitopes in the N-terminus of mature CagC
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[38]. The virB2 (HP0546) and virB5 (HP0539) orthologs of the

cagPAI show signatures of diversifying selection in the present

study; they encode surface-exposed pilin and pilus tip structural

components of the Cag apparatus [48] and their sequence

homology with functionally related VirB2 and VirB5 proteins

from other bacteria is so low that they had to be identified by non-

sequence-based approaches [37,38]. We also find that 9 other

cagPAI genes are under diversifying selection but their function is

largely unclear. These include HP0520, HP0522 (part of the Cag

outer membrane subcomplex [49]), HP0523 (cagc; proposed to

code for a virB1 orthologous peptidyglycan hydrolase [34,50]),

HP0528 (virB9), HP0534, HP0535, HP0536, HP0538 (encodes a

membrane protein [50,51]), and HP0540 [52]. Of these, HP0535

exhibits extensive non-synonymous variation and a clear bipartite

Eastern-Western subdivision, similar to cagA. This gene is not

involved in IL-8 induction or CagA translocation and is not

predicted to possess a signal peptide. It may be a non-canonical

secreted protein (score of 0.48 by SecretomeP). Based on the signs

of selection and high diversity, we hypothesize that the HP0535-

encoded protein interacts closely with CagA or is a novel effector

protein that is translocated into host cells by the Cag t4ss. Of the

other genes under diversifying selection whose function is

unknown, HP0520 might be a non-canonical secreted protein

because its SecretomeP score was also high (0.92).

In contrast to the genes just described, genes encoding cagPAI

proteins that are not thought to be exposed on the bacterial surface [3]

should be subject to purifying selection. In agreement with this

expectation, other cagPAI genes including virD4 (HP0524) and virB11

(HP0525) orthologs [36,50], displayed lower non-synonymous diversity

and fewer codons under positive selection (Figure 6; Table S5).

Figure 7. Diversifying selection in the MARK2 kinase binding domain of CagA. (A) amino acids (aa) in CagA predicted to be under
diversifying selection (PAML, Model 3) were mapped onto the crystal structure of a short peptide within the CagA C-terminal domain (aa 948 to aa
961, MK1 peptide; aa under positive selection colored in pink, aa not predicted to be under positive selection colored in green), in complex with its
interaction partner, the human kinase MARK2 [44]. Four residues critically involved in this interaction (Leu950, Arg952, Val954, Leu959) are labelled.
Several amino acids involved in this interaction (e.g. Arg952 and Lys955, Ref. 44) are predicted to be under diversifying selection and are highly
variable in our global strain collection. (B) amino acid alignment of the MARK2 binding region in the analyzed global strain collection. Black asterisks:
amino acids involved in MARK2 binding. Pink dots: amino acids predicted to be under positive selection. Small dots in alignment: residue identical
with reference strain 26695 (blue line on top). Hyphen: aa missing in respective strain.
doi:10.1371/journal.pgen.1001069.g007

Figure 6. Model of the Cag t4ss of H. pylori, highlighting diversifying selection on outer and secreted components of the t4ss
apparatus. Each defined component of the cagPAI-encoded secretion system was shaded in grey according to averaged probability values,
indicating the proportion of amino acids likely to be under diversifying selection for each individual protein; the probability values were calculated for
each gene by the software CODEML (Table 2). 10 cagPAI genes which do not participate in the structure or are of unknown function are not included
in the model. The model of the Cag t4ss is based on [3,48–50,61,62].
doi:10.1371/journal.pgen.1001069.g006
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In conclusion, the present work reports a genetic and functional

approach within a global population genetic perspective to study

diversity in a complex secretion system. This comprehensive

library of data allowed the identification of genes with a high

probability of having undergone diversifying selection. cagPAI

genetic diversity is accompanied by modulations in functionality,

but rarely by complete loss of function. Functional modulation of

the t4ss appears to be an important feature in vivo and is predicted

to rely not only on protein diversification but also on strain-

dependent transcript level diversity in the cagPAI. These data will

be a resource for future research on the biological roles and

variable host interactions of individual cagPAI proteins. It will also

foster research on the phylogeographic variability and evolution of

determinants of host interaction in other microbes. The diversity

in this dataset will also be useful to evaluating predictions by recent

evolutionary models based on the structure of proteins, such as

neutral networks of protein folds [53,54]), which might be able to

distinguish selection processes that favor structural versus functional

conservation.

Materials and Methods

Bacterial isolates, sequencing, and RT–PCR
Bacterial isolates and sequences of seven housekeeping gene

fragments (atpA, efp, mutY, ppa, trpC, ureI, yphC) have been described

previously [13,16,55]. Strains were checked for the presence of the

cagPAI by PCR, amplifying the 59 (Primers O2872 + O2902) and

39 (O2899 + O3326) flanking regions, or for absence (empty site)

(primers O2872 + O3326). Primer sequences are provided in

Table S1. Strains were chosen to represent all currently defined H.

pylori populations possessing the cagPAI (Figure 1, Figure 2). The

complete cagPAI was amplified for sequencing as two overlapping

long range PCR products of ,20 kb each with primers O2903 +
O3048 and O3047 + O2904 (Table S1), respectively in 50 ml

reactions with the EXL long range polymerase kit (Stratagene)

using the following conditions: bacterial DNA 20 ng, Primers

20 mM each, 6 ml of 2mM dNTPs, 5 ml Buffer 1, 1 ml stabilizing

solution, 1 ml EXL Polymerase, H2O to 50 ml. An initial

denaturation for 1 min at 94uC was followed by 30 cycles of

45 sec at 94uC, 1 min at 65uC and 17 min 30 sec at 68uC. Long

range PCR fragments were subjected to shotgun cloning. DNA

fragments ranging from 0.8 to 1.2 kb were end repaired and

cloned into the pGEM T-Easy vector (Promega), inserts were

sequenced to 10-fold coverage by MWG Biotech. Alternatively,

the cagPAIs were amplified as overlapping PCR products of ,5 kb

each with additional primers listed in Table S1 (primer

combinations available on request) and sequenced with an

extended set of primers (Table S1) by gene walking. The cagPAI

sequence of strain PNGhigh85 was obtained by shotgun 454

sequencing of the whole genome (unpublished). Sequences were

assembled with GAP4 (Staden Package, GCG Wisconsin). The

individual cagPAI sequences have been submitted to the EMBL

Nucleotide Sequence Database (accession numbers FR666825 -

FR666857). Details for RNA preparation and RT-PCR are given

in Text S1. RT-PCR primers and cycling conditions for transcript

analyses of the cagPAIs are listed in Table S2.

Multiple sequence alignment, sequence analysis,
annotation, and phylogenetic analyses

CDSs were annotated in ACT and in KODON (Applied Maths

BVBA, Sint-Martens-Latem, Belgium), automatic multiple se-

quence alignment of individual cagPAI genes was performed in

BIONUMERICS (Applied Maths BVBA, Sint-Martens-Latem,

Belgium) and corrected manually after visual inspection, where

necessary. Sequence comparison and graphical output of multiple

complete cagPAI sequences was performed in KODON. We only

included one of eleven cagPAI sequences (F32) available from

Japanese strains [19] because information is lacking on the

phylogeographic population assignment of the remaining 10

strains. Pairwise genetic distances, phylogenetic trees and FST

were calculated in MEGA3 [56] and in Arlequin [57],

respectively. Pairwise geographic distances and distance from

North East Africa (Addis Ababa, Ethiopia), as well as confidence

intervals were calculated as previously described [16]. For analyses

of increasing diversity with geographic distance from East Africa,

the dataset was stripped of recent migrants [16] which resulted in

the use of 33 out of the 37 cagPAI sequences. Pseudogenes were

excluded from the dataset in all phylogenetic analyses.

Evolutionary analyses
Ks/Ka ratios were determined in DNASP4.0 [58] and SWAAP,

including a sliding window analysis. The number and location of

potential codons under selection (v) in each cagPAI gene were

determined using the program CODEML in PAML 3.15 [59],

implementing a sliding windows graphic representation. This

software calculates the ratio of maximum likelihood of different

evolutionary algorithms (models) for each codon (site) of a coding

sequence to be under positive selection (v.1), followed by Naive

Empirical Bayes (NEB) and Bayes Empirical Bayes (BEB) analyses

of posterior probabilities. Sites with a posterior probability P.0.95

by the CODEML codon substitution models M3 (discrete) or M8

(beta and v) of v.1 were considered as being under positive or

diversifying selection. The likelihood of codons under diversifying

selection in the presence of recombination was further analyzed

using OmegaMap (V 0.5; [32]). This software uses a Bayesian

modeling algorithm to calculate the probability of codons to evolve

under diversifying selection (v.1) in the presence of recombina-

tion (r). By explicitly modeling recombination, this method has a

low rate to detect false positives. The settings used in the program

were: norders = 100, thinning = 100, rhoprior = inverse,

omegaprior = inverse, block length = 3 and 100,000 or

250,000 iterations. 5,000 iterations were deduced after each

calculation as the burn-in phase. The model type used for both v
and r was ‘‘variable’’. Three repetitions of the calculations with

different settings were initially performed for control genes of

defined structural properties and where some information is

available about their function (e.g. HP0546), to exclude high

variations in the calculations due to inadequate settings.

Pseudogenes were excluded from the dataset.

Housekeeping genes and population structure
Fragments of the housekeeping genes atpA, efp, mutY, ppa, trpC,

ureI, and yphC were amplified and both strands were sequenced

from independent PCR products as described [55]. Alternatively,

comparable sequences were extracted from the published genomes

(26695, HPAG1, J99). These sequences were assigned to

populations and subpopulations by STRUCTURE [14].

Functional assays of the cagPAI t4ss
IL-8 induction assay using the human gastric epithelial

carcinoma cell line AGS (isolated from adenocarcinoma from a

Caucasian patient) was performed for all strains of the sequencing

project. Strain 26695A [60] was used as a reference. Cells were

cultured in RPMI 1640 medium (buffered with 25 mM HEPES,

supplemented with 10% heat-inactivated fetal bovine serum

(medium and serum: Biochrom, Berlin, Germany). Details for

bacterial culture conditions are given in Text S1. Cell infection

experiments for IL-8 secretion measurement were performed on
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subconfluent cell layers (70%–90% confluence) in 24-well tissue

culture plates. Cells were washed three times and preincubated in

fresh medium with serum for 30 min prior to infection. By the

addition of exponentially growing bacteria that were resuspended

in cell culture medium (RPMI 1640, 25 mM HEPES, 10% heat-

inactivated serum), the infection was started (MOI of 50). To

synchronize the infection, the incubation plates were centrifuged

at 500 x g, 20uC, for 3 min. The coincubation was carried out for

20 h. Non-infected cells (mock coincubated) were used as negative

control. Supernatants were harvested, cleared of cell debris by

centifugation, immediately frozen and stored at 220uC until use.

Release of IL-8 into the cell supernatants was quantified by using

BD OptEIA IL-8 enzyme-linked immunosorbent assay kit (BD

Pharmingen; San Diego, USA) according to the company’s

instructions, using appropriate dilutions. The assays were

performed in triplicate and the means and standard deviations

of at least six independent coincubations were calculated.

Adherence of the strains was tested in a high throughput assay,

but no correlation was found between adherence and the IL-8

induction (data not shown).

To study CagA translocation, AGS cells were cultured in six-

well plates and infected with H. pylori at a multiplicity of infection

(MOI) of 100. After 4 h of coincubaction, non-adherent bacteria

were removed by washing twice with PBS-Dulbecco (pH 7.4;

Biochrom, Berlin, Germany). Cells were harvested with a cell

scraper and resuspended in 1 ml PBS (pH = 7.4; Biochrom, Berlin,

Germany). After centrifugation (250 x g, 4uC, 5 min), cells were

resuspended in 300 ml of modified RIPA buffer (20 mM Tris-HCl

[pH 7.5], 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1%

Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM b-glycerol

phosphate, 1 mM sodium orthovanadate, 1 protease inhibitor

tablet per 10 ml buffer (Complete, Roche, Mannheim, Germany),

1 mM PMSF). During lysis, cells were incubated on ice for

30 min. Lysates were cleared by centrifugation (10 min, 21,900 x

g, 4u) and the pellets were carefully separated from the

supernatants. The pellet fraction was resuspended in 100 ml RIPA

buffer and the fractions were immediately frozen at 280uC. To

determine the amount of protein, a BCA protein assay was

performed using the BCA Protein Assay kit (Pierce, Rockford, IL,

USA) according to the manufacturer’s instructions.

Western blot analysis of CagA translocation
Equal amounts of cleared cell lysates (see above; corresponding

to 10 mg of protein) of infected cells were resuspended in 5 x SDS

loading buffer (0.31M Tris-HCl, pH6.8, 37.5% glycerol, 10%

SDS, 0.05% bromophenol blue, 20% b-mercaptoethanol) and

boiled for 10 min. For determination of molecular mass,

BenchMark pre-stained Protein Ladder (Invitrogen, Karlsruhe,

Germany) was used. Samples were separated on 10.4% denaturing

SDS-polyacrylamide gels and transferred to nitrocellulose mem-

branes (Protran BA 85, Whatman, Dassel, Germany) by semi-dry

blotting. Membranes were blocked with 5% non-fat dried milk in

TBS-T (20 mM Tris-HCl, 13.7 mM NaCl, 0.1% Tween 20, pH

7.4) for 1 h and subsequently incubated with specific primary

antibody. Anti-CagA-antibody (Rabbit anti-H. pylori Cag antigen

IgG fraction [polyclonal], Austral Biologicals, San Ramon, USA)

was used at a dilution of 1/1,000 for the detection of CagA

protein. To detect phosphorylated CagA, PY99-antibody (Santa

Cruz Biotechnology, Heidelberg, Germany) was used (dilution 1/

250). Goat-anti-Rabbit-HRP antibody (dilution 1/10,000, Jackson

Immunoresearch Laboratories, Suffolk, Great Britain) or Goat-

anti-mouse-HRP-antibody (dilution 1/5,000, Dianova, Hamburg,

Germany) were used as secondary antibodies. Signal detection was

performed with Enhanced SuperSignal West chemiluminescence

substrate (Pierce, Rockford, IL, USA), and detection was on X-ray

film (Hyperfilm, Amersham Biosciences, Buckinghamshire, UK).

Supporting Information

Figure S1 Distribution of IS and mini IS elements and repetitive

sequences in diverse cagPAIs. Repetitive sequences and sites where

insertion (IS) elements and mini IS elements have integrated are

indicated by symbols. Green: cagPAI insertion site containing

repetitive sequence; red rectangles: mini IS606 insertions; blue

triangles: mini IS605 insertion sites. Mini-IS607 and mini IS608

elements were not identified. a,b,c,d,e: different genetic variants of

IS606 insertion elements.

Found at: doi:10.1371/journal.pgen.1001069.s001 (0.14 MB

PDF)

Table S1 List of primers.

Found at: doi:10.1371/journal.pgen.1001069.s002 (0.04 MB

XLS)

Table S2 Primer list for transcript analyses of cagPAI genes.

Found at: doi:10.1371/journal.pgen.1001069.s003 (0.02 MB

XLS)

Table S3 Transcript table for selected cag genes with a role in

cag t4ss function (IL-8 induction) and for cagA.

Found at: doi:10.1371/journal.pgen.1001069.s004 (0.02 MB

XLS)

Table S4 List of all identical alleles in single cag genes of the 38

analyzed cagPAIs.

Found at: doi:10.1371/journal.pgen.1001069.s005 (0.03 MB

DOC)

Table S5 Congruence between PAML (CODEML model M8)

and OmegaMap analyses for probabilities of diversifying selection

of sites in H. pylori cagPAI genes.

Found at: doi:10.1371/journal.pgen.1001069.s006 (0.04 MB

XLS)

Text S1 Supplementary Materials and Methods.

Found at: doi:10.1371/journal.pgen.1001069.s007 (0.02 MB

DOC)
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