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A B S T R A C T   

This paper presents a comprehensive investigation of mesoporous Silica utilizing a multi-scale 
modeling approach under periodic boundary conditions integrated with machine learning algo
rithms. The study begins with Molecular Dynamics (MD) simulations to extract Silica’s elastic 
properties and thermal conductivity at the nano-scale, employing the Tersoff potential. Subse
quently, the derived material characteristics are applied to a series of generated porous Repre
sentative Volume Elements (RVEs) at the microscale. This phase involves the exploration of 
porosity and void shape effects on Silica’s thermal and mechanical properties, considering in
homogeneities’ distributions along the X-axis and random dispersion of pore cells within a three- 
dimensional space. Furthermore, the influence of pore shape is examined by defining open and 
closed-cell models, encompassing spherical and ellipsoidal voids with aspect ratios of 2 and 4. To 
predict the properties of porous Silica, a shallow Artificial Neural Network (ANN) is deployed, 
utilizing geometric parameters of the RVEs and porosity. Subsequently, it is revealed that Silica’s 
thermal and mechanical behavior is linked to pore geometry, distribution, and porosity model. 
Finally, to classify the behavior of porous Silica into three categories, quasi-isotropic, orthotropic, 
and transversely-isotropic, three methodologies of decision tree approach, K-Nearest Neighbors 
(KNN) algorithm, and Support Vector Machines (SVMs) are employed. Among these, SVMs 
employing a quadratic kernel function demonstrate robust performance in categorizing the 
thermal and mechanical behavior of porous Silica.   

1. Introduction 

Silica hold diverse and vital applications in fields such as biomedical industry and microelectromechanical systems [1]. Their utility 
extends to the fabrication of bone scaffolds for repairing damaged bones and reinforcement in dental resin composites [2–5]. 
Therefore, exploring the transition of this material from its non-porous to porous state is a significant endeavor, as porosity exerts a 
profound impact on its mechanical, thermal, and electrical properties, thereby giving rise to mesoporous Silica [6,7]. On the other 
hand, porous Silica mitigates the drawbacks of its non-porous, which are seen in the traditional non-porous Silica. Notably, the limited 
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surface of these ceramics imposes challenges on the optimization of catalytic and adsorption processes. Besides this limitation, their 
inherent non-porous nature, limits their versatility in accommodating diverse molecular species, thereby limiting their utility in ap
plications requiring high-level reactivity [8–13]. Addressing these drawbacks is critical to the advancement of materials science, 
prompting the exploration of new porous silica-based materials to overcome the inherent limitations of traditional non-porous ones. 

The introduction of porosity into materials significantly impacts their mechanical performance. Among the elastic properties, 
Young’s modulus of porous materials follows a consistent trend, showing a decrease as porosity increases. However, Poisson’s ratio 
exhibits more diverse behaviors, with the potential to either increase or decrease as porosity varies. This complex relationship between 
porosity and elastic properties is a key aspect of understanding the behavior of porous materials [14]. To further illustrate, the trend of 
Poisson’s ratio in porous materials is highly dependent on the Poisson’s ratio of the matrix material, which serves as the constituent 
material for the porous structure. In this way, there exists a definition regarding the matrix material’s Poisson’s ratio known as the 
critical Poisson’s ratio, which suggests that if the matrix material’s Poisson’s ratio remains below 0.2, as porosity increases, Poisson’s 
ratio values tend to rise. Therefore, when attempting to model the mechanical behavior of porous Silica, it is essential to have a 
thorough understanding of the Poisson’s ratio of non-porous Silica, particularly when monitoring variations in this property. However, 
it is noteworthy that the open literature contains a wide range of reported Poisson’s ratio values for bulk Silica, ranging from 0.16 to 
0.33 [15]. As a result, the necessity for a scheme to accurately determine the Poisson’s ratio of Silica becomes imperative. 

In addition to experimental studies that have investigated the mechanical and thermal properties of Silica, various theoretical 
methods have been employed for computational analysis. Molecular Dynamics (MD) simulations and micromechanical approaches 
have been widely used to explore Silica’s behavior. Several MD simulations have been conducted to assess both non-porous and porous 
Silica, with a particular focus on its thermal properties. Two primary approaches, Equilibrium Molecular Dynamics (EMD) [16] and 
Non-Equilibrium Molecular Dynamics (NEMD) [17] have been applied in these studies. NEMD, in particular, has received significant 
attention and has been used to investigate Silica’s thermal properties using different potential functions to describe the interactions 
among Silica atoms, silicon, and oxygen atoms. Notable potential functions and forcefields, such as Vashishta [18], BKS [19], Tersoff 
[20], and REAX [21–23], have been employed to simulate these thermal properties. 

Furthermore, these potential functions have been successfully employed in simulating tensile tests at the atomistic scale, and their 
results have shown good agreement with existing literature data [24,25]. On the other hand, an alternative approach for investigating 
the thermal and mechanical properties of Silica involves combining Finite Element Analysis (FEA) with a micromechanics approach. 
This method typically begins with the reconstruction of an appropriate microstructure referred to as a Representative Volume Element 
(RVE). Two well-established algorithms for RVE generation are Random Sequential Adsorption (RSA) and modified Random 
Sequential Adsorption (mRSA) [26]. These algorithms aim to reconstruct a mesostructure containing various types of inhomogeneities, 
such as reinforcement inclusions, fibers, or voids, in the case of heterogeneous materials [27,28]. Once an RVE is generated and a Finite 
Element (FE)-based problem is solved, macroscopic properties of heterogeneous materials, typically mechanical and thermal prop
erties, can be calculated by applying the principles of mean-field homogenization [29,30]. Since pores can be regarded as in
homogeneities, the creation of diverse RVEs with different pore shapes enables the study of the overall behavior of porous materials, 
including porous Silica, at varying porosities [31,32]. Similar studies utilizing micromechanical modeling have demonstrated the 
ability to make accurate predictions of material properties [33]. 

While the existing body of literature has examined the thermal properties of both non-porous and porous Silica, limited attention 
has been given to the influence of pore shape on these properties. Furthermore, there has been a lack of discussion regarding the impact 
of the type of porosity, specifically the distinctions between open and closed-cell models of porous materials, particularly at high 
porosity [34–37]. However, some studies have primarily concentrated on the thermal properties of closed-cell porous Silica when it 
serves as the matrix material in composite materials, with minimal focus on the characterization of standalone Silica’s properties [38]. 
Additionally, investigations into the effects of Silica matrix’s Poisson’s ratio on the properties of porous Silica across a wide range of 
porosity, particularly in cases where a random distribution of voids is a central concern, have been conspicuously absent from the 
literature. Consequently, a solid data-set on the porous Silica’s thermomechanical behavior will have been brought about if one could 
perform a comprehensive study such an irregular porous material considering various factor regarding a its microstructure. Also, from 
the view point of adopted methods, by which porous Silica has been studied, most of the open literature’s articles have merely focused 
on single-scale study of porous Silica by solving problems at the nano-scale or micro-scale, which further underscores the need for a 
comprehensive study on porous Silica, where multi-scale approaches are employed [22,23,36,37,39–42]. 

As one of the powerful approaches in consolidating this hypothesis in investigating porous materials (i.e., the need for performing a 
comprehensive multi-scale study on porous Silica), machine learning, particularly through the employment of supervised learning, 
including Artificial Neural Networks (ANNs), decision tree approach, K-Nearest Neighbors (KNN) algorithm, and Support Vector 
Machines (SVMs), has emerged. In other words, this methodology is considered a transformative tool in the field of materials by design 
and computational modeling for predicting and classifying the thermal and mechanical behaviors [43–46]. The significance of these 
approaches lies in their unparalleled capacity to decipher complex relationships and nonlinear dependencies, which are inherent in the 
material’s properties, but often intractable using traditional analytical methods. ANNs provide an adaptable and data-driven approach 
to capture and model the multifaceted interdependencies among various input parameters and material characteristics, which is 
essential when dealing with materials design, characterized by their diverse microstructures [47,48]. In parallel, decision tree 
approach, KNN algorithm, and SVMs deliver a robust framework for classifying porous Silica into distinctive behavioral categories 
such as quasi-isotropic, orthotropic, and transversely-isotropic. This classification becomes paramount for understanding the me
chanical and thermal responses of porous Silica, guiding its utilization across diverse applications. The synergy between supervised 
machine learning approaches facilitates a profound alignment between multiscale computational simulations and real-world material 
behaviors, ultimately advancing our comprehension of porous Silica’s characteristics. Hence, these machine learning tools stand as 
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indispensable in driving materials science and engineering forward, offering a more precise and efficient avenue for predicting and 
classifying the thermal and mechanical behavior of porous Silica, thereby; enabling the design and development of innovative ma
terials and structures. 

The primary objective of this study was to comprehensively investigate porous Silica using a multi-scale approach, combining MD 
simulations and micromechanical modeling. The initial phase involved the extraction of thermal and mechanical properties of bulk 
Silica at the atomic level, employing MD theory. Subsequently, mRSA algorithm was developed to generate porous RVEs featuring 
spherical and ellipsoidal voids, spanning porosity within the range of 0–60%. Then, mechanical and thermal periodic boundary 
conditions were applied to the RVEs’ boundaries to calculate Young’s modulus, Poisson’s ratio, and thermal conductivity for porous 
Silica across various void shapes and porosities. Furthermore, the influence of Silica matrix properties, derived from MD simulations, 
on the corresponding Poisson’s ratios of open-cell and closed-cell porous RVEs was explored. Lastly, the study employed ANNs for the 
prediction of porous Silica’s thermal and mechanical behavior, utilizing parameters such as porosity, pore cell aspect ratio, porosity 
type, and porosity distribution. In addition, decision tree approach, KNN algorithm, and SVMs were deployed to classify the behavior 
of porous Silica into three categories: quasi-isotropic, orthotropic, and transversely-isotropic. A notable innovation in this study was 
the multi-scale analysis of porous Silica, encompassing both nano and micro-scales, along with utilizing supervised machine learning 
schemes. In other words, this comprehensive approach took into consideration a wide range of factors, including spherical and 
ellipsoidal pore shapes, diverse porosity levels, and the incorporation of both open and closed-cell models. Furthermore, the study 
introduced the utilization of supervised learning algorithms to facilitate the design of porous Silica, with a particular emphasis on its 
thermal and mechanical behavior. 

2. Multi-scale modeling scheme 

2.1. Molecular dynamics simulation 

2.1.1. Configuration of the simulation 
Initially, the construction of the simulation box for Silica was undertaken using Avogadro software, with an initial dimension of 59 

Å × 59 Å × 59 Å, housing a total of 1250 atoms, as depicted in Fig. 1a. Subsequently, the atomic coordinates generated were imported 
into the Large Scale Atomic/Molecular Massively Parallel Simulator, known as LAMMPS [49]. Interactions between Silicon and Ox
ygen atoms were modeled utilizing the Tersoff potential, as established by prior studies [50,51], and the system underwent optimi
zation employing the conjugate gradient optimization technique. The rationale behind selecting this potential over others was driven 
by several factors that aligned with the specific goals of this research. The Tersoff potential has been widely used and validated for 
simulating silicon-based materials, including SiO2, demonstrating a well-established track record in accurately describing the in
teractions in silicon and oxygen systems, and relevant studies in the literature have successfully employed the Tersoff potential for 
simulating SiO2, providing a solid foundation for its reliability and accuracy [52–55]. Also, this potential is computationally efficient, 
making it suitable for large-scale simulations and enabling us to explore the elastic properties and thermal conductivity of silica at the 
nano-scale within a reasonable computational time frame [56–59]. 

Subsequently, a procedure akin to that outlined in Refs. [60,61] was employed to equilibrate the system. In brief, the equilibration 
process commenced with a simulation conducted at 5000 K, employing the canonical ensemble (NVT), lasting for 500 ps. This was 
succeeded by two additional simulations conducted under the conditions of the NPT and NVE ensembles. To elaborate, in the NPT 
ensemble, the system pressure was maintained at 0 bar, while the temperature was kept constant through the utilization of the 
Langevin thermostat in the NVE ensemble, both spanning a duration of 500 ps. Subsequently, the system underwent gradual cooling to 
300 K following a similar procedure, involving consecutive runs of NPT and NVE ensembles, each lasting 500 ps. It is noteworthy that a 
time step of 1 fs was adopted throughout all the aforementioned simulations, which was adopted based on the similar papers in the case 
of MD simulation of Silica, resulting in a relaxation time of the Silica system over a period of 6 ns [62,63]. Also, the bulk density of 
Silica was determined utilizing the chunks method, Finaly, Radial Distribution Function (RDF), coordination number, and bond angles 

Fig. 1. A 3-D representation of the generated MD simulation box of Silica; (a): after equilibration, (b): after deformation under uniaxial tensile test.  
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were calculated. 

2.1.2. Simulation of the tensile test 
Following the equilibration process, periodic boundary conditions were concurrently imposed on all boundaries of the simulation 

box, encompassing Silicon (Si) and Oxygen (O) atoms along the X, Y, and Z-axes. This was executed to assess Young’s modulus and 
Poisson’s ratio for bulk Silica under tensile deformation conditions. Subsequently, three strain rates of 0.01, 0.05, 0.1, and 0.2 Å/ps, 
were applied to the equilibrated Silica within the framework of the isothermal-isobaric ensemble (i.e., NPT, in which the number of 
atoms, pressure of the system and temperature is remained constant). In this study, the pressure of the system was 0 bar and the 
temperature was held at 300 K, with damping values of 1 and 10, respectively. Also, the time step used for this tensile test was the same 
as the value adopted during the equilibration process of the system under investigation (i.e., a time step of 1 fs), and the tensile test was 
simulated over 100,000 steps to extract the resultant stress-strain curves of Silica for 100 ps. It is worth noting that the tensile tests 
were performed along the X, Y, and Z axes, and the mean values obtained for the elastic properties were reported. See Fig. 1b, where 
the simulation box after deformation of the Silica along an arbitrary direction is shown. 

2.1.3. Simulation of the heat conduction 
In this phase of the research, our objective is to address a heat transfer problem at the atomistic level and ascertain the thermal 

conductivity of bulk Silica through the utilization of a simulation box featuring periodic boundaries. Our approach in tackling this 
problem closely aligns with the methodology outlined in Refs. [64,65], which is rooted in the NEMD concept. In this framework, the 
simulation box was partitioned into four primary regions: fixed, hot, central, and cold, as illustrated in Fig. 2. The temperature of the 
hot region was maintained at 320K, while that of the cold region was set at 280K, achieved through the application of the Nosé–Hoover 
thermostat. Consequently, a temperature gradient was induced within the central region due to the 40K temperature difference be
tween the hot and cold regions, leading to the occurrence of heat conduction phenomena. The chosen time step for the simulations 
related to the thermal behavior of Silica was 0.5 fs [22], and the total simulation duration spanned 1500 ps. To calculate the thermal 
conductivity of Silica, we employed Fourier’s law, represented by Eq. (1), where k signifies thermal conductivity, J denotes heat flux, 
and ∂T/∂x represents the temperature gradient. 

k= −
J

∂T/∂x
(1)  

2.2. Finite element-based micromechanical approach 

Porosity exerts a notable influence on the mechanical and thermal characteristics of materials. Accordingly, a series of RVEs were 
reconstructed, featuring varying porosities of 0%, 15%, 30%, 45%, and 60%. These voids were generated in both spherical and 
ellipsoidal shapes with aspect ratios of 2 and 4. Subsequently, the mRSA algorithm was implemented to randomly position the voids 
within a three-dimensional configuration, a process facilitated by the utilization of an orientation tensor, as detailed in Refs. [66,67]. 
The rationale behind this approach was to conduct a comprehensive investigation into the effect of the spatial distribution of these 
inhomogeneities on the ensuing mechanical and thermal responses of the RVEs when subjected to periodic boundary conditions. To 

Fig. 2. Configuration of the MD simulation box for heat transfer problem.  
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achieve this, the voids were distributed along the X-axis, as well as being dispersed randomly throughout the RVEs. This dual dis
tribution strategy was adopted because, in scenarios, where inhomogeneities are longitudinally distributed within an RVE, the ma
terial exhibits transversely isotropic behavior. Conversely, when these inhomogeneities are randomly distributed within the 
representative volume, the resulting material behavior turn out to be quasi-isotropic or orthotropic, as described by Refs. [68,69]. The 
whole details of the microstructural parameters considered to design porous Silica were reported in Table 2. 

In the context of the closed-cell model for cellular materials, wherein voids do not intersect, ensuring the non-overlapping state of 
the generated voids is a crucial consideration to prevent any potential intersection of these inhomogeneities. These conditions were 
integrated into the code developed for generating the RVEs, involving the establishment of a minimum distance between voids based 
on the radii of the respective inhomogeneities, as elaborated by Refs. [70,71]. However, in the case of our investigation into both 
closed-cell and open-cell states of porous Silica, some flexibility was introduced, permitting overlapping of pore cells during the 
reconstruction of open-cell porous RVEs. This divergence in approach was deliberate and aligned with the specific research objectives. 
Furthermore, the principle of “separation of length scales” was adhered to during the generation of RVEs. This principle, as detailed in 
Ref. [72], emphasizes that the length scale of the pore cells must be substantially smaller than that of the RVE itself, which was 
employed to eliminate any size effects that could potentially affect the FEA results. Also, to ensure the periodicity of the RVEs, 
thorough checks were conducted on boundary faces, edges, and vertices. This periodicity was established to enable the repetition of the 
generated meso-structures across all three dimensions, ultimately leading to the formation of the macrostructure of the porous Silica. 

In our research, we concentrated on addressing the finite element-based homogenization problem of porous Silica at the micro- 
scale, and for this purpose, we employed the ABAQUS/Standard 6.14 commercial software as our finite element solver [73]. Utiliz
ing the mean-field homogenization concept, a relationship was established between the average stress within the RVE and its cor
responding mean strain value. These average properties were derived by computing their volume averages within the elastic 
deformation region, as described by Eqs. (2)–(4). Given the linear nature of the problem, the effective elastic response (C) of the porous 
Silica was determined using Eq. (4). 

〈σ〉=
1

VRVE

∫

VRVE

σ(x) dV (2)  

〈ε〉=
1

VRVE

∫

VRVE

ε(x) dV (3)  

C=
〈σ〉
〈ε〉

(4) 

Continuing with our analysis, periodic boundary conditions were applied to the RVEs in terms of both mechanical and thermal 
states, and this was achieved through in the ABAQUS software using Python scripting. Consequently, the reconstructed RVEs un
derwent a periodic tensile deformation by imposing constraint equations on their vertices, edges, and faces. Specifically, the applied 
displacement magnitude to the RVE was set at 0.03 along the X-axis, while all other strain components were maintained at zero. 
Subsequently, constraint equations were linked to three pre-defined Reference Points (RPs) located in the xy, yz, and xz planes. In more 
technical terms, the difference between two corresponding displacements on the vertices, edges, and faces of the RVEs was contingent 
upon the displacement of the reference points, accounting for their degrees of freedom. To provide further clarity, the constraint 
equations, expressed in their generalized form as shown in Eq. set of (5), denoted by + and -, representing two sets of arbitrary vertices, 
edges, or faces situated on the front and rear, upper and bottom, as well as the right and left sides of the RVEs, all of which were 
constrained with respect to an RP. 

⎧
⎪⎪⎨

⎪⎪⎩

u+
x − u−

x = uRP
x

u+
y − u−

y = uRP
y

u+
z − u−

z = uRP
z

⎫
⎪⎪⎬

⎪⎪⎭

(5)  

In addition to the mechanical periodic boundary conditions, thermal periodic boundary conditions were applied to the boundaries of 
the RVEs by introducing a heat flux. To elaborate, at the interfaces between adjacent sides of the RVEs, it was ensured that the 
temperature remained continuous in all three spatial directions, as expressed in Eq. set of (6). Furthermore, the heat flux denoted as J 
in all three directions was continuous across these boundaries, as detailed in Eq. set of (7), so that we were able to establish a 
continuous temperature and heat flux distribution throughout the 3D RVEs with periodic geometries. This approach enabled us to 
analyze the thermal behavior of the microstructure as if it were infinitely or periodically repeated in three dimensions, obviating the 
need to model the entire microstructure of the porous Silica. In the final phase of our analysis, the average induced heat flux and 
temperature gradient across the desired microstructure and derived homogenized thermal properties were computed. Leveraging Eq. 
(1), we subsequently calculated the thermal conductivities of the porous RVEs at the micro-scale in the x, y, and z directions, and 
extrapolated these results to determine the macroscopic thermal behavior of porous Silica. 
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⎧
⎪⎪⎨

⎪⎪⎩

T+
x − T −

x = 0
T+

y − T −
y = 0

T+
z − T −

z = 0

⎫
⎪⎪⎬

⎪⎪⎭

(6)  

⎧
⎪⎪⎨

⎪⎪⎩

J+
x − J−

x = 0
J+

y − J−
y = 0

J+
z − J−

z = 0

⎫
⎪⎪⎬

⎪⎪⎭

(7) 

Above all, it is important to highlight that in order to apply the periodic boundary conditions effectively, periodic elements were 
generated on the boundaries, which is a critical prerequisite for this purpose, as outlined in Ref. [14]. Specifically, for both mechanical 
and thermal loadings, tetrahedral and quadratic elements were employed, denoted as C3D10 and DC3D10, respectively, in accordance 
with the notation used in the ABAQUS. 

Other than the finite element-based models developed, Hashin-Shtrikman bound [74–76] and Power-law formulation [77–79] 
were employed to provide rough estimations of Young’s modulus and thermal conductivity for porous Silica. These estimations were 
obtained from the equations represented in Eqs. (8)–(11), in which HS, P, and ξ correspond to the Hashin-Shtrikman model, power-law 
formulation, and the porosity of the RVEs, respectively [80]. Furthermore, Young’s modulus (E*) and thermal conductivity (k*) for 
porous Silica were compared to the respective characteristics of bulk Silica with zero porosity, represented as Es and ks, respectively. 
This comparison between these models and the micromechanical approach, considering both open-cell and closed-cell models of Silica 
with various pore shapes, was depicted in Fig. 3(a–d). 

(

E∗
/Es

)

HS
=

1 − ξ
1 + ξ

(8) 

Fig. 3. Reconstructed RVEs with 15% porosity; (a): closed-cell model and (b): open-cell model having spherical-shaped voids, (c): closed-cell model 
and (d): open-cell model having ellipsoidal-shaped voids. 
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(

k∗/ks

)

HS
=

1 − ξ
1 + ξ/2

(9)  

(

E∗
/Es

)

P
=(1 − ξ)2 (10)  

(

k∗/ks

)

P
=(1 − ξ)3/2 (11)  

3. Supervised learning scheme 

3.1. Shallow ANNs 

Here, ANNs were utilized to predict the thermal and mechanical properties of porous Silica. Specifically, a feed-forward neural 
network was employed, with input parameters encompassing the porosity of Silica in the range of 0%–60%, the aspect ratios of pore 
cells (1, 2, 4), the distribution of pore cells (X-aligned and Random), and the type of porosity (open-cell and closed-cell). The output 
layer of these ANNs consisted of homogenized orthotropic elastic properties (E∗

i , υ∗ij, and μ∗
ij) as well as effective orthotropic thermal 

conductivities (k∗
ii). Following the feed-forward neural network concept, the inputs were linked to the outputs through one or more 

hidden layers, each containing processing units known as neurons. Given that the dataset for this study comprised fewer than 10,000 
data points, a shallow architecture was chosen for the implemented ANNs, featuring just one hidden layer. The optimal number of 
neurons in this hidden layer was determined through an iterative trial-and-error process, ranging from 8 to 17, to achieve the best 
model performance. In this way, when it came to analyze the robustness of a trained neural network, trend of the Mean Squared Error 
(MSE) values during the training process along with calculating absolute error and also R-squared factor were tracked. In the case an 
underfitted or overfitted prediction was made, the predictions proposed by the neural network could not be trusted. In other words, 
where MSE values of the training data were significantly lower than the other two categories’, namely test and validation, overfitting 
was encountered. Accordingly, the results could not be trusted. On the other hand, if it underfitted neural network was employed for 
the prediction process, the results would not be exact, as well. Therefore, in the case, the same order MSE values for test, train, and 
validation data were seen, the neural network’s predictions could be accepted. Above all, R-squared factor expected to be close to 1, 
along with low values for Absolute Error (AE). 

During the training process of the ANNs, the Levenberg-Marquardt algorithm was employed as the learning rule. The dataset was 
randomly divided into three sets: the train data (70%), the test data (15%), and the validation data (15%). The primary objective of the 
Levenberg-Marquardt algorithm was to minimize the discrepancy between the network’s predictions and the data obtained from the 
multi-scale modeling scheme. This alignment was assessed by calculating various metrics, including the AE, Mean Absolute Error 
(MAE), MSE, and the R-squared (R2) factor. In general, the expectation was that MSE and AE would gradually decrease, while R2 would 
increase and ideally reach a value of 1, without encountering overfitting issues, as previously mentioned. In essence, the robustness of 
the trained shallow network was evaluated based on these criteria, as described in Eqs. (12)–(15). 

AE=Xi
Multi− scale modeling − Xi

Shallow neural network (12)  

MAE=
1
n

∑n

i=1

(
Xi

Multi− scale modeling − Xi
Shallow neural network

)
(13)  

MSE=
1
n

∑n

i=1

(
Xi

Multi− scale modeling − Xi
Shallow neural network

)2
(14)  

R2 = 1 −

∑n

i=1

(
Xi

Shallow neural network − Xi
Multi− scale modeling

)2

(
YMulti− scale modeling − Xi

Multi− scale modeling

)2 (15)  

3.2. Classification 

Upon obtaining the results from the investigation of Silica using a multi-scale approach in both its porous and non-porous states, it 
became evident that both isotropic and non-isotropic behaviors were observed from the thermal and mechanical perspectives. In 
essence, the behavior of porous Silica was found to be highly dependent on the distribution of inhomogeneities and their aspect ratios. 
This observation prompted the consideration of the classification algorithms such as decision tree, KNN, and SVMs to assist in 
identifying the behavior of porous Silica. To achieve this objective, a typical form of decision tree approach, KNN algorithm with 
Cosine and weighted operating function, as well as SVMs with various kernels of Gaussian, Linear, Quadratic, and Cubic were adopted 
to categorize porous Silica into three distinct classes: quasi-isotropic, orthotropic, and transversely-isotropic. In this way, all the data 
gathered from the multi-scale simulations were categorized in 116 data sets and 20% of this data were used for validation of the 

A. Khalvandi et al.                                                                                                                                                                                                    



Heliyon 10 (2024) e28995

8

predictions. Generally speaking, the goal was to utilize these supervised learning techniques to classify the material behavior based on 
its unique characteristics and behavior patterns, enabling a more comprehensive understanding of how the distribution and shape of 
inhomogeneities influenced its properties. In evaluating the performance of the classifiers, several metrics were considered to assess 
their accuracy and effectiveness. Firstly, the accuracy of each model was examined. To gain further insights into the classification 
results, Receiver Characteristic Curve (ROC) and Area Under Curve (AUC) were analyzed. The ROC curve is a graphical representation 
that showcases the trade-off between the true positive rate and the false positive rate for different classification thresholds. A desirable 
classifier would yield a diagonal confusion matrix with zero off-diagonal elements. Additionally, for an ideal classifier, we would 
observe the highest possible distance between the reference line (the green dashed) and the solid lines representing each class. See 
Fig. 10(a–f). A robust classifier also aims for the highest possible AUC, which represents the area under the ROC curve. 

4. Results and discussions 

4.1. Atomistic simulations 

In this investigation, the initial bulk property analyzed for Silica was its density. As elucidated in subsection 2.1, the density of bulk 
Silica was meticulously determined utilizing the chunks method, yielding a calculated value of 2.27 g/cm3. This computed density 
exhibits strong agreement with experimental observations [81,82], underscoring the robustness and accuracy of the simulation 
methodology employed in this study Furthermore, the coordination number for Silica was determined to be 4, indicative of the 
arrangement of atoms within the material, while the bond angles between Si–O–Si and O–Si–O were measured to be 141◦ and 109.3◦, 
respectively, as reported in Ref. [81]. Visualization of the radial distribution functions (RDFs) for Si–Si, O–O, and Si–O, as depicted in 
Fig. 4, showcased trends consistent with previous investigations on the SiO2 system [83], thereby reinforcing the fidelity and reliability 
of the molecular dynamics (MD) simulations conducted herein. These findings collectively underscore the validity of the computa
tional approach adopted and provide valuable insights into the structural properties of Silica at the bulk level. 

To visually represent the MD simulation box before and after deformation, Fig. 1 was created using OVITO [84]. Additionally, the 
stress-strain curves resulting from a tensile test conducted at the atomistic scale were presented in Fig. 5(a–c). These stress-strain 
curves provide valuable insights into the material’s mechanical behavior under tension and contribute to the comprehensive anal
ysis of Silica’s thermal and mechanical properties. It is also worth noting that various strain rates were employed during the tensile test 
simulations, leading to different values for Young’s modulus, as shown in Fig. 5d. These Young’s moduli values were determined by 
defining linear offsets to the resulting stress-strain curves and calculating the corresponding slope within the linear elastic deformation 
region. When comparing these calculated Young’s moduli to values found in the open literature [85], it was observed that the MD 
approach provided results closest to experimental studies for cases in which strain rates of 0.05 and 0.1 Å/ps were applied during the 
simulations. Among these two rates, the strain rate of 0.05 Å/ps was considered the most similar to the conditions typically 
encountered in experimental tests, as strain rates higher than 0.1 Å/ps are not easily applicable in experimental studies [86]. 
Therefore, the strain rate of 0.05 Å/ps was chosen as the desirable rate, as it is more likely to yield results that closely resemble those in 
real-world scenarios. Using this strain rate, the calculated Young’s modulus was determined to be 66.17 GPa. Alongside Young’s 
modulus, the calculated Poisson’s ratio at the 0.05 Å/ps strain rate was found to be 0.192, which closely aligned with data reported in 
the literature [70,87,88], as illustrated in Fig. 5e. These findings underscore the accuracy and validity of the MD simulations in 
capturing the mechanical properties of Silica. 

As mentioned earlier, the thermal conductivity of bulk Silica was determined using the NEMD method over a simulation duration of 

Fig. 4. RDF obtained for the simulated SiO2 system.  
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1500 ps, resulting in a value of 1.215 W/m⋅K. When comparing this value to similar studies, it became evident that there was a 
reasonable agreement between our simulation results and the findings of others, as depicted in Fig. 5f. This figure serves as confir
mation that the Tersoff potential employed to define the interactions between silicon (Si) and oxygen (O) atoms yields acceptable 
values for thermal properties. Consequently, it is possible to estimate the thermal conductivity of Silica without resorting to the REAX 
forcefield, which demands higher CPU time, while still satisfactory level of computational efficiency and precision is achievable [89, 

Fig. 5. Stress-strain curves of bulk Silica attained from the tensile test at various strain rates along x, y, and z directions employing molecular 
dynamics approach and the calculated material properties of bulk Silica at the atomistic scale; (a–c): the resultant stress-strain curves, (d): Young’s 
modulus, (e): Poisson’s ratio, and (f): thermal conductivity. 
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90]. 

4.2. Micromechanical modeling 

In this section, the data from Table 1, obtained through MD simulations, were incorporated into ABAQUS 6.14 software to analyze 
the elastic and thermal properties of porous Silica under periodic boundary conditions. Fig. 3(a–d) illustrates the successfully 
generated porous RVEs featuring random void distributions in a three-dimensional space, inspired by closed-cell and open-cell foams. 
To validate the accuracy of the FEA results, including Young’s modulus, Poisson’s ratio, and thermal conductivity, three RVEs were 
generated for each porosity with both spherical and ellipsoidal void shapes. Upon scrutinizing the FEA results, it became evident that 
the discrepancies in the calculated elastic and thermal properties among the first, second, and third trials were less than 3% with 
respect to each other. This close agreement between the trials served as strong evidence of the accuracy and reliability of the simu
lations conducted in this study [14,91,92]. Moreover, to trust the simulation’s results, a mesh sensitivity analysis was conducted, and 
the optimal number of the quadratic tetrahedral elements were found to be over the interval of [250− 580] × 103. 

The normalized Young’s moduli of the RVEs along the X direction, represented as E*/Es, at porosities of 0%, 15%, 30%, 45%, and 
60%, were depicted in Fig. 6a. This figure illustrates a non-linear decreasing trend on the relationship between porosity, aspect ratio as 
well as distribution of the pores and E*/Es, where E* is the effective Young’s modulus of the porous material, and Es is the Young’s 
modulus of the non-porous (i.e., 0% porosity) models. It is worth noting that the maximum reduction in Young’s modulus was observed 
at a porosity of 60%. This particular case pertained to an open-cell porous model of Silica with a pore cell aspect ratio of 4, where E*/Es 
decreased by as much as 87.34% compared to the 0% porosity models. Furthermore, it could be inferred that as porosity increased, the 
discrepancy in E*/Es between ellipsoidal and spherical-shaped pore RVEs became more pronounced. This trend was particularly 
evident in models with the highest adopted pore cell aspect ratios. These findings underscored the significant influence of both porosity 
and pore shape on the thermal and mechanical properties of porous Silica. 

As discussed in subsection 2.2, Hashin-Shtrikman and power-law formulations were employed to compare their predictions of 
Young’s moduli with the results obtained from the micromechanics approach. According to Fig. 6a, several observations could be 
made. Firstly, power-law formulation turned out to underestimate the proportion of E*/Es in most cases. This could suggest that the 
power-law formulation provided conservative estimations for the Young’s modulus of porous materials compared to the micro
mechanical models considering the shape effects of inhomogeneities and the type of porosity in their structure. Secondly, Hashin- 
Shtrikman model offered a series of normalized Young’s moduli that fell between the results obtained from the FE-based micro
mechanical models, which presented a mean value for the Young’s moduli. This positioning suggested that Hashin-Shtrikman model 
provided a reasonable compromise between the micromechanics approach, in which the actual shape of inhomogeneities and the 
porosity type were taken into account, and the power-law formulation. It is also important to note that the proposed FE-based 
micromechanical models offer a more detailed understanding of how porosity, pore shape, and porosity type affect the elastic 
properties of porous materials. Overall, Hashin-Shtrikman and power-law formulations may be suitable for problems involving porous 
materials with low aspect ratios of pore cells, where a high level of precision may not be necessarily required in the estimation of elastic 
properties and provide a balance between computational efficiency and accuracy when dealing with porous materials featuring 
spherical and ellipsoidal pore shapes. 

The normalized thermal conductivities of Silica, represented as k*/kS, with the same policy as the Young’s moduli were reported in 
Fig. 6b, following a similar non-linear trend as observed for the normalized Young’s modulus (E*/Es) with varying porosity, pore 
shapes, and void distribution. The most significant reduction in thermal conductivity was observed for the RVEs featuring pore cells 
with an aspect ratio of 4 and a random distribution of interconnected inhomogeneities. Additionally, the results of the micromechanics 
approach were graphically compared to the Hashin-Shtrikman model and the power-law formulation. Based on the findings, these two 
models exhibited a similar trend for predicting thermal conductivity, closely resembling the behavior observed for Young’s modulus. 
Consequently, it can be concluded that these formulations are most applicable for low porosity materials, while at high porosities, they 
may not accurately capture the variations in thermal conductivity based on the interconnection of the voids and the effects of pore cell 
shapes as well as their predictions. 

Indeed, Poisson’s ratio was an essential elastic property that garnered our attention in this study. When interpreting the Poisson’s 
ratio of porous materials, it is crucial to consider a concept suggesting that the trend of Poisson’s ratio variations at different porosity is 
highly dependent on the critical value of Poisson’s ratio. This critical value significantly influences the behavior of effective Poisson’s 

Table 1 
Input data for micromechanical modeling, driven from MD simulation of Silica.  

Density (g/cm3) Young’s modulus (GPa) Poisson’s ratio Thermal conductivity (W/m.K) 

2.27 66.17 0.192 1.215  

Table 2 
Range of variations of the paramters considered to study porous Silica.  

Porosity (%) Type of porosity Distribution Aspect ratio of the pore cells 

0, 15, 30, 45, 60 Open/Closed-cell X-aligned/Random 3D 1, 2, 4  
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ratio concerning the porosity. In cases where the critical value is higher than the Poisson’s ratio of the matrix material, it would be 
observed that the Poisson’s ratio tends to increase as the porosity increases. Conversely, when the critical value is lower than the 
Poisson’s ratio of the matrix (i.e., Silica), the Poisson’s ratio decreases as the porosity increases. This behavior is indicative of the 
complex interplay between the material’s intrinsic properties and the effects of porosity on its mechanical response [93,94]. The 
critical Poisson’s ratio for porous materials with spherical or ellipsoidal void shapes is typically considered to be 0.2 [95]. According to 
the results from the performed MD simulations, the Poisson’s ratio of bulk Silica was determined to be 0.192. When comparing the 
Poisson’s ratio of the Silica matrix to the critical value characteristic of porous materials with spherical or ellipsoidal-shaped voids, an 
increasing trend of Poisson’s ratio at higher porosity should be anticipated, deviating from the matrix Poisson’s ratio. As expected, the 
Poisson’s ratio variations among the analyzed RVEs exhibited an increasing and non-linear trend, with higher porosity leading to a 
higher Poisson’s ratio. Furthermore, it is noteworthy that the Poisson’s ratio values of materials with ellipsoidal-shaped voids, across 
various porosity and in both open-cell and closed-cell models, were consistently higher than those of the corresponding RVEs featuring 
spherical-shaped voids, as depicted in Fig. 8(d–f). This difference in behavior mostly underscored the significant influence of void 

Fig. 6. Homogenized elastic properties of Silica versus porosity; (a): normalized Young’s moduli along the loading direction, (b): normalized 
thermal conductivity. This figure aims to simultaneously depict the effects of Aspect Ratio (AR) of the pore cells, their distributions, and porosity on 
the Young’s modulus and thermal conductivity. X stands for X-aligned distribution of the pores and R also stands for a Random distribution of the 
pores. Additionally, C is for a Closed-cell model of porous Silica and O represents an Open-cell model. Accordingly, the XC columns report the cases, 
in which pore cells have been distributed along the X-axis and do not have any intersections with each other. 
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shape and porosity on the Poisson’s ratio of porous Silica. 
As a concluding remark on the adopted multi-scale modeling scheme on the porous Silica, the presence of porosity indeed led to a 

reduction in Young’s modulus and thermal conductivity, which aligned with the expected behavior in porous materials, signifying a 
decrease in stiffness due to porosity and a reduction in heat transfer capabilities in the presence of voids. Notably, open-cell models 
experienced a more pronounced decrease in Young’s modulus and thermal conductivity compared to RVEs with non-overlapping 
voids. However, Poisson’s ratio did not necessarily follow a similar trend. Instead, the behavior of Poisson’s ratio in a porous mate
rial could vary, depending on the matrix Poisson’s ratio, alongside the porosity and the type of porosity. This behavior revealed the 
complex and non-uniform response of Poisson’s ratio in porous materials, highlighting the importance of considering both the matrix 
properties and the characteristics of the voids when analyzing the thermal and mechanical behavior of porous materials such as Silica. 

4.3. Prediction by supervised learning 

In this paper, supervised learning was applied to predict the behavior of porous Silica in two distinct stages. The first stage aimed to 

Fig. 7. Results of the trained shallow neural network; (a): Architecture of the network with four inputs, 15 neurons in the hidden layer, and 12 
output parameters, (b) Trend of the MSEs regarding the three data categories of train, test, and validation, (c): the calculated AE between the 
network’s predictions and the multi-scale modeling data, and (d); Applied linear regression to the all the predicted properties and the data from 
simulations. 
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estimate various thermal and mechanical properties of porous Silica, including the normalized elastic properties (E∗
i / ES, υ∗ij, and μ∗

ij/ μS) 
and the normalized thermal conductivity (k∗ii/kS). These properties were predicted based on several input parameters, namely porosity, 
pore cell’s aspect ratio (1, 2, 4), porosity type (open-cell or closed-cell), and the distribution of porosity (X-aligned or random). The 
relationships between these input parameters and the predicted properties are depicted in Fig. 7a. Furthermore, decision tree, KNN, 

Fig. 8. The trained ANN’s predictions, which depict the correlation of the pore cells’ aspect ratios and the porosity with the under-investigation 
thermal and mechanical properties of porous Silica; (a–c): Young’s moduli, (d–f): Poisson’s ratios, (g–i): shear moduli, and (j–l): thermal con
ductivities. It is seen that most of porous Silica’s properties continuously decrease with increase of the porosity, expect the Poisson’s ratio, whose 
trend is related to the Poisson’s ratio of the Silica at its non-porous state. 
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and SVMs were employed to classify the thermal and mechanical behavior of Silica according to the calculated effective elastic 
properties and thermal conductivities into three classes: quasi-isotropic, orthotropic, and transversely-isotropic. Accordingly, super
vised learning served as a valuable tool for both predicting the material’s properties along with categorizing the material’s behavior 
based on its properties, aiding in the understanding of the thermal and mechanical response of porous Silica. 

4.3.1. ANNs 
In the initial phase, a series of shallow ANNs were developed based on the conditions described in subsection 3.1. The first ANN had 

8 neurons in the hidden layer, and the number of neurons in the hidden layer gradually increased, eventually reaching 17. However, 
the most favorable predictions were achieved with a network that contained 15 neurons in its hidden layer, whose training state in 
accordance with the iterations was depicted in Fig. 7b. One of the primary reasons for selecting this network as the most robust one was 
the calculated R2 factor, which was approximately 0.979. A high R2 factor, close to 1, is typically expected when seeking high-precision 
predictions for material properties that closely align with those obtained from the multi-scale simulations on porous Silica. In other 
words, R2 values close to 1 indicate a strong correlation between the predicted values and the actual results, signifying the model’s 
capability to provide accurate predictions. Accordingly, this model could be relied upon to generate high-precision estimations for the 
material properties of porous Silica, which closely matched the outcomes of the extensive multi-scale simulations conducted on the 
Silica. 

Certainly, the robustness of the trained networks was not solely assessed based on the R2 factor. The MSE values played a critical 
role in evaluating the reliability of the trained networks. These MSE values were monitored at each iteration during the training 
process to ensure that the network did not overfit the data. A decreasing trend in MSE values over iterations is generally expected as the 

Table 3 
Accuracy and AUC of the employed classifiers.  

Classifier Operating function Accuracy (%) AUC 

Quasi-isotropic Transversely-isotropic Orthotropic 

Decision tree – 77.6 0.761 0.819 0.875 
KNN Cosine 81 0.956 0.848 0.917 

weighted 83.6 0.925 0.899 0.986 
SVM Linear 79.3 0.920 0.910 0.921 

Quadratic 88.8 0.968 0.924 0.975 
Cubic 84.5 0.942 0.885 0.973  

Fig. 9. Confusion matrices derived from classifiers of; (a): decision tree, (b–c): KNN, and (d–f): SVM to categorize the porous Silica’s thermal and 
mechanical behaviors in three classes of quasi-isotropic, orthotropic, and transversely-isotropic. 
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network learns from the data. However, it is important to emphasize that achieving low MSE values does not necessarily indicate 
overfitting. To assess the robustness of the trained networks, it is crucial that the MSE values of the training, testing, and validation 
data sets hold a similar order. When the MSEs for these data categories are of the same order, it suggests that the trained ANN has 
successfully generalized and avoided overfitting. In our case, the MSEs for the training, testing, and validation data sets were 1.2 e− 4, 
1.4 e− 4, and 1.1 e− 4, respectively. This consistency in MSE values among the data sets further indicates that the trained ANN 
effectively avoided overfitting. As a final checkpoint for assessing the trustworthiness of the trained ANN’s predictions, the AE between 
the predicted values and the results obtained from the micromechanical approach was considered. The majority of AE values fell 
within the range of ±0.05, which is generally considered acceptable and suggests that the trained ANN provides reliable predictions. 
This thorough evaluation demonstrates the robustness of the network in estimating material properties accurately, depicted in Fig. 7c 
and d. 

The contour plots represented in Fig. 8(a–l) provide a visual representation of the predicted values generated by the trained shallow 
ANNs for various properties of Silica. These plots depict the behavior of the material in relation to porosity and aspect ratios of the pore 
cells. From the contour plots, it is evident that the majority of Silica’s properties (i.e., E∗

i , μ∗
ij, and k∗

ii) exhibit a continuous decreasing 
trend as porosity increase and/or the aspect ratios of the pore cells change. This trend is consistent with the general behavior of porous 
materials, where increasing porosity tends to reduce mechanical and thermal properties. However, one interesting exception is 
observed in the case of the obtained values for Poisson’s ratio, increasing as porosity elevates. As mentioned in subsection 4.2, this 
behavior is linked to the critical Poisson’s ratio of the Silica matrix, which was below 0.2. Consequently, the observed increasing trend 
of the Poisson’s ratio sounds reasonable. 

4.3.2. Classification 
Given the diversity of behaviors seen in the results of the micromechanical models for porous Silica (i.e., quasi-isotropic, ortho

tropic, or transversely-isotropic), a robust classifier was indeed needed to categorize the material based on its thermal and mechanical 
properties. To achieve this, decision tree approach, KNN algorithm, and SVMs with multiple operating algorithms were employed. 
Allocating 20% of the data to the validation set helps ensure the reliability of the classification results, allowing for a more 
comprehensive understanding of Silica’s behavior under different conditions. 

According to the values obtained for accuracy of the implemented classifiers reported in Table 3, it was found that the SVM 
equipped with a quadratic kernel function achieved the highest accuracy at 88.8%, indicating a strong performance in classifying 
Silica’s behavior [96–99]. Consequently, the other classifiers holding accuracies below 88.8% failed in being evaluated based on their 
performance. If we move on the next metric in choosing an SVM with quadratic kernel as the best classifier, we should focus on re
ported confusion matrix. From Fig. 9(a–f), it was seen that while some cases were misclassified by quadratic SVMs, the majority of 
Silica’s thermal and mechanical behaviors were correctly classified, with a high number of diagonal elements, in comparison to other 
five classifiers. As mentioned in subsection 3.2, the ROC curves are another valuable metric in evaluating classifier performance. 

Fig. 10. ROC curves, in which the true positive rate versus false positive rate was depicted for the classifiers of (a): decision tree, (b–c): KNNs with 
cosine and weighted functions, and (d–f): SVMs holding linear, quadratic, and cubic kernels. 
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Accordingly, the SVMs with a quadratic kernel function demonstrated the best performance in this regard, achieving the maximum 
AUC values. For instance, AUC values for the quasi-isotropic, orthotropic, and transversely-isotropic classes were approximately 0.968, 
0.975, and 0.924, respectively. See Fig. 10(a–f). These high AUC values indicate that the SVMs with quadratic kernel functions are 
effective in distinguishing between different classes of Silica’s behavior, demonstrating their robustness in classification. 

5. Conclusion 

This study employed simulations at both nano and micro scales to investigate the thermal and mechanical behavior of Silica in its 
porous and non-porous states. In summary:  

• Mechanical and thermal properties of bulk Silica were calculated through MD simulations and micromechanics approaches for 
various porosities (0%, 15%, 30%, 45%, and 60%) under periodic boundary conditions.  

• As Silica became porous, Young’s moduli and thermal conductivities exhibited a non-linear reduction, while Poisson’s ratio 
increased. Higher porosity led to higher Poisson’s ratio values in a non-linear trend compared to models with 0% porosity, while 
Young’s modulus and thermal conductivity decreased.  

• A shallow ANN was developed to predict the thermal and mechanical behavior of porous Silica effectively. The robust ANN model, 
with four input parameters and 15 neurons in its hidden layer, achieved an R2 of 0.979 and a low Mean Squared Error (MSE) of 
approximately 1e-3, indicating the model’s accuracy and the avoidance of overfitting.  

• Decision tree approach, KNN algorithm, and SVMs were employed for classifying the behavior of porous Silica into three categories: 
quasi-isotropic, orthotropic, and transversely-isotropic. SVMs with a quadratic kernel function exhibited the best classification 
performance, with an accuracy of 88.8% and the lowest number of misclassified properties.  

• These findings contribute to a better understanding of Silica’s behavior in porous states and demonstrate the effectiveness of 
machine learning approaches in predicting complex material properties. 
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