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A B S T R A C T

The emergence of the SARS-CoV-2 Omicron variant poses a striking threat to human society. More than 30
mutations in the Spike protein of the Omicron variant severely compromised the protective immunity elicited by
either vaccination or prior infection. The persistent viral evolutionary trajectory generates Omicron-associated
lineages, such as BA.1 and BA.2. Moreover, the virus recombination upon Delta and Omicron co-infections has
been reported lately, although the impact remains to be assessed. This minireview summarizes the characteristics,
evolution and mutation control, and immune evasion mechanisms of SARS-CoV-2 variants, which will be helpful
for the in-depth understanding of the SARS-CoV-2 variants and policy-making related to COVID-19 pandemic
control.
1. Introduction

Since the outbreak of COVID-19 in December 2019, 504 million cu-
mulative cases and 6.2 million deaths have been reported globally (https
://covid19.who.int/). The etiological pathogen causing the pandemic is
a novel human coronavirus, named SARS-CoV-2 (also known as 2019-
nCoV), which uses angiotensin converting enzyme 2 (ACE2) as a recep-
tor to invade host cells (Chen et al., 2020a; Zhou et al., 2020). The origin
of SARS-CoV-2 remains unclear, but bats are suspected to be its natural
host due to the high sequence similarity between SARS-CoV-2 and some
other SARS-related bat coronaviruses (Chen et al., 2020a; Zhou et al.,
2020; Lu et al., 2020a; Wu et al., 2020). Several bat ACE2 orthologs can
support the entry of SARS-CoV-2. Yet, there is still no direct evidence
showing an initial SARS-CoV-2 spillover from bats to humans or other
animals that can be served as intermediate hosts (Yan et al., 2021a; Liu
et al., 2021a; Wrobel et al., 2020).

During the COVID-19 pandemic, the sequence of SARS-CoV-2 is
constantly changing over time. The mutations change various viral fea-
tures such as transmissibility, disease severity, drug resistance, and an-
tigenicity. SARS-CoV-2 variants are defined by diffident lineages based
on the sequences of the Spike protein, and the Pango nomenclature is the
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half of Wuhan University. This is
most commonly used (Rambaut et al., 2020). However, mutations also
occur in regions beyond spike proteins and contribute to the variants'
distinct features. The World Health Organization (WHO) is collaborating
with researchers around the world to assess the increasing risk of
SARS-CoV-2 variants and announces the specific variants of interest
(VOIs) and variants of concern (VOCs) to fight against the pandemic. To
date, there have been five VOCs, including Alpha (B.1.1.7), Beta
(B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.529). The
Delta variant was once the dominant lineage, while the Omicron variant,
which carries more than 30 mutations in the Spike protein, has taken
over its place for months. Moreover, Omicron-associated lineages, such
as BA.1, BA.1.1, and BA.2, BA.3 and XE (BA.1 and BA.2 recombinant), are
still emerging. New variants such as the Deltacron originated from the
recombination in the Delta and Omicron coinfected patients, although its
risk has not been fully assessed. (Bolze et al., 2022; Colson et al., 2022).
Recently, the outbreak by the Omicron variant has created great pressure
on China's dynamic zero COVID-19 strategy, especially the latest wave of
Omicron BA.2 infection in Shanghai. Most likely, the Omicron will not be
the last variant of concern. Systematical and continuous study of the
features of SARS-CoV-2 variants and the mutation mechanisms are
necessary to minimize their damage to humans.
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2. Why do SARS-CoV-2 variants constantly emerge?

2.1. The high mutation rate of RNA viruses

All viruses change their genomic sequences over time, especially RNA
viruses with lower replication fidelity. The misinsertion rate during RNA
synthesis is between 10�3 and 10�5 substitutions per nucleotide and per
round of duplication, much higher than that for DNA viruses (10�5 to
10�8) (Domingo and Holland, 1997; Duffy, 2018; Domingo, 2000; Duffy
et al., 2008; Gago et al., 2009). Although the low replication fidelity is
associated with an increased chance of error catastrophe leading to viral
extinction, it also contributes to the viral adaption under different se-
lective pressures (Robson et al., 2020). SARS-CoV-2, as an RNA virus, has
been changing its sequences from the very beginning of the COVID-19
outbreak. As shown in Fig. 1, mutations have been identified
throughout the genome of VOCs, and the mutations tend to cluster on the
structural proteins, especially the Spike protein. However, previous
studies on coronaviruses showed that the mutations occur without
sequence specificity (Smith et al., 2013; Denison et al., 2011). A
reasonable explanation is that the mutations found in VOCs were
retained mutations that do not impair the amplification of SARS-CoV-2.
The non-structural proteins (nsps) of coronaviruses are more conserved
than the structural proteins (Chen et al., 2020b), which indicates that
mutations in nsps are more likely to be lethal to the viruses and thus not
retained during viral evolution. For example, several mutations in key
sites of the N7-methyltransferase or exonuclease of coronavirus nsp14
will affect the coronavirus’ virulence and replication efficiency to vary-
ing degrees, and reverse mutations can be observed after long term
Fig. 1. The mutation site in the genome of five variants of concern (Alpha, Be
Omicron (EPI_ISL_10819657). Based on sequences from GISAID. ORF, open readin
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passage (Zhang et al., 2021a; Ogando et al., 2020; Lu et al., 2020b;
Becares et al., 2016; Pan et al., 2022). The mutations in some regions of
structural proteins are more easily retained as long as they do not affect
viral replication. In addition, some mutations in Spike increasing the
viral fitness will rapidly outcompete their parental viruses. For example,
the D614G substitution became the dominant form within a few months
worldwide because of its advantage in viral transmission and entry ef-
ficiency (Yurkovetskiy et al., 2020; Plante et al., 2021).

Meanwhile, the host RNA editing machinery is considered another
source of mutations on coronaviruses (Brant et al., 2021; Mourier et al.,
2021; Li et al., 2022). The adenosine deaminases acting on RNA (ADAR)
deaminates adenosine (A) residues to inosine (I) on dsRNA disrupting A
to uracil base pairing. I is interpreted as guanosine during RNA replica-
tion and translation, and the A→I editing thus entails transition of A to
guanosine (A-to-G)(Ringlander et al., 2022). And the APOBECs (the
apolipoprotein-B (ApoB) mRNA editing enzyme, catalytic
polypeptide-like proteins) can deaminate cytosine to uracil (C-to-U)(Kim
et al., 2022). Notably, sequence preference was observed in the host RNA
editing machinery (Ringlander et al., 2022), but the detailed mechanism
is yet to be revealed. The reactive oxygen species (ROS) also can oxidate
guanine to 7,8-dihydro-8-oxo-20-deoxyguanine (oxoguanine), causing
G-to-T transversions (David et al., 2007).

2.2. The features of representative mutations in the Spike

There are many studies on mutations in the SARS-CoV-2 Spike,
especially several representative mutations. Here, we summarize the
features of key amino acid sites and representative mutations in the
ta, Gamma, Delta, and Omicron) and the newly found recombined Delta-
g frame; S, Spike protein; N, nucleocapsid.
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VOCs' Spikes (Table 1). These substitutions can achieve typical conse-
quences, such as the alteration of viral entry efficiency, the increase of
immune evasive ability, or both. For example, the mutation E484K in the
SARS-CoV-2 receptor binding domain (RBD) enhances binding affinity
with hACE2 and increases the viral infectivity, but reduces the binding
affinity of many neutralizing antibodies (Liu et al., 2021b; Chen et al.,
2021; Zhu et al., 2021; Wang et al., 2021a). Notably, the Omicron har-
bors over 30 amino acid substitutions in the Spike, 15 of which are in the
RBD. Consequently, Omicron showed a higher hACE2-binding affinity,
more remarkable immune-escape ability and weaker fusogenicity than
the Delta (Du et al., 2022; Cao et al., 2021a; Liu et al., 2021c; Cui et al.,
2022; Ma et al., 2022). Recent studies indicate that P681H, as well as
mutations surrounding the S1/S2, S2’ cleavage site, and heptad repeat 1
(HR1) in Omicron (N679K, P681H, N856K, Q954H, N969K, and L981F)
contribute to the weaker fusogenicity of the Omicron, resulting in a
weaker pathogenicity (Du et al., 2022).

The RBD critical for Spike-ACE2 binding is composed of a well-folded
core structure, and a distant loop serves as a receptor-binding motif
(RBM) that interact with ACE2 (Liu et al., 2021a). As shown in Fig. 2,
although many mutations are presented in the Spike of different variants,
the core structure of the RBD is not much affected. The RBMs
(aa437~aa508) loops of theWT, Delta, and Omicron variant also showed
a high similarity structure in the hACE2-Spike complex (Xu et al., 2021;
Wang et al., 2022a; Yin et al., 2022). In addition, the highly conserved
key amino acids (G447, Y449, A453, Y475, N487, Y489, T500, and
G502) maintained their relative position when interacting with hACE2.

Many COVID-19 vaccines have been developed based on the original
SARS-CoV-2 strain, including inactivated vaccines, mRNA vaccines,
protein subunit vaccines, and viral-vector vaccines (Li et al., 2021; Rus-
sell et al., 2021; Callaway, 2020). The widely used COVID-19 inactivated
vaccines (Wang et al., 2020a; Xia et al., 2021), mRNA vaccines (Polack
et al., 2020; Walsh et al., 2020), and protein subunit vaccines (Cao et al.,
2021b; Yang et al., 2021) are generally safe and elicit effective humoral
immunity against SARS-CoV-2, and mRNA vaccines have been reported
able to elicit long-term cellular immunity (Strengert et al., 2021; Stumpf
Table 1
The features of key amino acid sites and representative mutations in SARS-CoV-2 Sp

Site Mutation VOCs Featu

Key sites with
representative mutations

H69–V70 Deletion Alpha, Omicron Incre
G339 D Omicron Incre

et al.
K417 N Beta, Omicron Decr

antib
T Gamma Decr

(Desh
G446 S Omicron Lead
L452 R Delta Incre

Deng
E484 K Beta, Gamma Incre

et al.
A Omicron Decr

G496 S Omicron Incre
N501 Y Alpha, Beta, Gamma,

Omicron
Incre
et al.

Y505 H Omicron Decr
Dejn

D614 G Alpha, Beta, Gamma,
Delta, Omicron

Prod
(Yurk

P681 R Delta Facil
2022

H Alpha, Omicron Sligh
sprea

Highly conserved key sites G447 No
mutation

Alpha, Beta, Gamma,
Delta, Omicron

Basic
WanY449

A453
Y475
N487
Y489
T500
G502
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et al., 2021). However, the unbalanced distribution of vaccines, the
failure of keeping social distance, and the infection of immunocompro-
mised patients limited the effect of SARS-CoV-2 vaccines and led to the
further evolution of the virus under selective pressures. Through Spike
mutations, SARS-CoV-2 variants can escape from the immune protection
elicited by the vaccines or prior infection to varying degrees (Liu et al.,
2021b, 2021c; Cao et al., 2021a; Hoffmann et al., 2021; Wang et al.,
2021b; Planas et al., 2021; Cele et al., 2021), resulting in breakthrough
infections (SARS-CoV-2 infection or reinfection in vaccinated individuals
or SARS-CoV-2 convalescents) (Abu-Raddad et al., 2021; Butt et al.,
2021; Shastri et al., 2021). In addition, the possibility of reverse muta-
tions should be considered (Bashor et al., 2021).

2.3. The mutations beyond the Spike

Unlike the Spike mutations, mutations in the nsps, noncoding se-
quences, and other structural proteins are not extensively studied. As
mentioned above, it is more difficult for the nspsmutations to be retained,
and the known mutations or deletions in pp1a and pp1a/b are relatively
rare. However, it is still important to study these mutations or deletions,
considering their importance in coronavirus’ replication and regulation.
For example, Lucy et al. found that B.1.1.7 evolved beyond the Spike
coding region to more effectively antagonize host innate immune re-
sponses through upregulating specific subgenomic RNA synthesis and
increasingproteinexpressionof key innate immuneantagonists, including
Orf9b, Orf6, and the nucleocapsid (N) protein (Thorne et al., 2021).

3. How does SARS-CoV-2 “control” the mutation rate?

A finely tuned balance between replication fidelity and variability is
critical for SARS-CoV-2 adaptation and evolution. Coronavirus stands for
the known RNA virus with the largest (~30000 nt) genome, and the
unique 30–50 exonuclease (ExoN) proofreading function plays an impor-
tant role in the stability of the genome (Chen et al., 2020b; Chen and Guo,
2016). The unique proofreading activity can be attributed to the N
ike.

res (compared to wild-type)

ases Spike infectivity (Meng et al., 2021)
ases hACE2 binding (Cao et al., 2021a); leads to evasion of antibody neutralization (Cui
, 2022)
eases hACE2 binding (Liu et al., 2021b; Cui et al., 2022; Barton et al., 2021); evade
ody neutralization (Cao et al., 2021a; Yi et al., 2021)
eases hACE2 binding (Barton et al., 2021); leads to evasion of antibody neutralization
pande et al., 2021)
s to evasion of antibody neutralization (Cao et al., 2021a)
ases hACE2 binding; leads to evasion of antibody neutralization (Motozono et al., 2021;
et al., 2021)
ases hACE2 binding; leads to evasion of antibody neutralization (Liu et al., 2021b; Chen
, 2021; Wang et al., 2021a; Cui et al., 2022; Khan et al., 2021)
eases hACE2 binding; leads to evasion of antibody neutralization (Cui et al., 2022)
ases hACE2 binding; leads to evasion of antibody neutralization (Cui et al., 2022)
ases hACE2 binding (Barton et al., 2021); leads to evasion of antibody neutralization (Cao
, 2021a; Chakraborty, 2022)
eases hACE2 binding; leads to evasion of antibody neutralization (Chen et al., 2022;
irattisai et al., 2022)
uces a more open conformation of Spike, increases viral transmission and fitness
ovetskiy et al., 2020; Plante et al., 2021; Zhang et al., 2021b)
itates cleavage of the Spike and enhances viral fusogenicity (Du et al., 2022; Saito et al.,
)
tly increases S1/S2 cleavage, which does not significantly impact viral entry or cell-cell
d (Du et al., 2022; Lubinski et al., 2022)
amino acids in RBD-hACE2 binding (Cao et al., 2021a; Cui et al., 2022; Xu et al., 2021;

g et al., 2020c)



Fig. 2. Partial key sites in the Spike of SARS-
CoV-2 and the SARS-CoV-2 Spike trimer (WT)
complexed with hACE2. The key sites with mu-
tation are in red, and the highly conserved key
sites are in black. The interface of the hACE2 and
Spike from indicated variants was at the right
panel of (B). Green, hACE2; blue, RBM; cyans,
magenta, and yellow represent the indicated
monomer of Spike. This figure is based on the
structure data from the Protein Data Bank (acces-
sion code: 7DF4 (Xu et al., 2021), 7W98 (Wang
et al., 2022a), and 7WPA (Yin et al., 2022)) NTD,
N-terminal domain; RBD, receptor-binding
domain; RBM, receptor-binding motif; FP, fusion
peptide; HR, heptad repeat.
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terminal of non-structural protein 14 (nsp14) (Robson et al., 2020;
Denison et al., 2011; Eckerle et al., 2007), and promoted by nsp10, which
also contributes to CoV replication fidelity (Pan et al., 2008; Smith et al.,
2015). Recently, Yan et al. reported the cryo-EM structure of the
SARS-CoV-2 replication-transcription complex (RTC) in a form identified
as Cap(0)-RTC coupled with nsp10/14 demonstrated the backtracking
Fig. 3. An in trans backtracking model

4

mechanism for nsp14 ExoN facilitating the proofreading of the RNA in
concert with polymerase nsp12. In this speculative backtracking model,
the mis-incorporated nucleotides in one Cap(0)-RTC are excised by nsp14
in another Cap(0)-RTC as the catalytic center of nsp14 ExoN is distal from
the polymerase reaction center of nsp12 in one Cap(0)-RTC (Fig. 3) (Yan
et al., 2021b). Since the proofreading of nsp14 occurs along with the RNA
for proofreading (Yan et al., 2021b).
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replication, the rate of ExoN's mismatch excision should be precisely
tuned to “control” the mutation rate for better adaption.

The ExoN activity of the nsp10/14 complex contributes to the control
of the mutation rate and plays a role in the resistance against some types
of antiviral nucleoside analogs. As Remdesivir impairs the elongation of
RNA products, it was initially expected to be a highly competent drug
candidate against SARS-CoV-2 (Yin et al., 2020; Peng et al., 2021; Gor-
don et al., 2020). Studies in mouse hepatitis virus (MHV) also supported
that the GS-5734 can be a potential effective pan-CoV antiviral, and an
MHV mutant lacking ExoN proofreading was even more sensitive to
remdesivir (GS-5734) (Smith et al., 2015; Agostini et al., 2018). How-
ever, the clinical improvement rate for patients receiving remdesivir
within 7 days was only 3% against SARS-CoV-2, while ~66% of subjects
developed adverse effects (Beigel et al., 2020; Wang et al., 2020b).
Meanwhile, favipiravir, another nucleoside analog that can mimic both A
and G nucleotides during RNA synthesis, also showed limited effect
against SARS-CoV-2 in clinical trials (Peng et al., 2021; Udwadia et al.,
2021; Cai et al., 2020; Doi et al., 2020; Solaymani-Dodaran et al., 2021).
The detailed mechanism of SARS-CoV-2's resistance to these nucleoside
analogs and the role of the nsp10/14 complex in mismatch excision re-
mains unclear.

Furthermore, the passage of WT MHV in the presence of GS-441524
(remdesivir parent nucleoside) leads to the two mutations in the nsp12
(F476L and V553L in RdRp) at residues conserved across all CoVs,
conferring up to 5.6-fold resistance to Remdesivir (Agostini et al., 2018).
These acquired resistance mutations remind us that drug resistance
should be taken into serious consideration in antiviral drug development.

4. What's next?

The emergence of new SARS-CoV-2 variants is probably inevitable
based on the following facts: 1). There is a large number of SARS-CoV-2
infected populations; 2). The mutation rate of SARS-CoV-2 is relatively
high; 3). SARS-CoV-2 has jumped to wild animals that can serve as a
reservoir for virus evolution. Therefore, this COVID-19 pandemic will
most likely not end with Omicron. SARS-CoV-2 may finally coexist with
humans as other seasonal human coronaviruses (such as 229E, OC43,
NL63, and HKU1, which cause common cold-like respiratory symptoms).
However, this coexistence should bemaintained based on full completion
of massive highly-effective vaccinations and convenient access to anti-
CoV drugs rather than out of control.

Generally speaking, the continuous viral transmission in humans may
lead to higher infectivity and lower severity of the disease, as Omicron
shows (Chen et al., 2022; Abdullah et al., 2022; Meo et al., 2021; Wolter
et al., 2022). However, we should stay alert because the potential
animal-to-human transmission might result in higher virulence, although
only a few animal-to-human transmission cases have been reported so far
(Sawatzki et al., 2021; Oude Munnink et al., 2021). Considering the
frequent spillovers from humans to animals (for example, white-tailed
deer, ferrets, cats, and dogs)(Kuchipudi et al., 2022; Kim et al., 2020;
Gaudreault et al., 2020; Sit et al., 2020), we may find more
animal-to-human transmission cases in the future. Meanwhile, the newly
reported Delta-Omicron variant (also known as “Deltacron” or “Delta-
micron”) indicates the possibility of SARS-CoV-2 recombination in
humans. However, the infectivity and disease severity of this “Deltacron”
remains undetermined (Bolze et al., 2022; Colson et al., 2022). The
recombination of SARS-CoV-2 and other coronaviruses in the wild should
also be monitored, which might give birth to the virus with higher
virulence or transmissibility, leading to a new wave of the coronavirus
outbreak.

5. Perspective

COVID-19 has raged across the world for two more years. The
emergence of the Omicron variant with a striking immune-escape ability
rendered this pandemic long-lasting. Nevertheless, we can see several
5

positive changes in the pandemic over time: 1) the development and
massive vaccination of effective COVID19 vaccines; 2) the dominant
Omicron variant is less pathogenic given lower hospitalization rates and
shorter hospital stays (Danza et al., 2022; Halfmann et al., 2022; Shuai
et al., 2022). Even though the Omicron can still infect the vaccinated and
convalescents, the symptoms are usually mild or asymptomatic; 3) oral
antiviral drugs such as Paxlovid and Molnupiravir, which targets 3C-Like
protease (nsp5) and RdRp (nsp12), respectively, have shown promising
antiviral effects for the treatment of COVID-19 (Mahase, 2021; Jayk
Bernal et al., 2022); 4) there are still some broadly neutralizing anti-
bodies effective in preventing the infection of SARS-CoV-2 variants,
including the Omicron (Cameroni et al., 2021; Wang et al., 2022b; Ju
et al., 2022); 5) the effectiveness of quarantine has been proved in
defeating SARS-CoV-2, even in large cities with more than ten million
populations (Cao et al., 2020).

The effectiveness of Paxlovid andMolnupiravir indicates that the nsps
are ideal targets for developing antiviral drugs, the activity of which are
almost unaffected by spike mutations. Besides, the third dose of vaccines,
based on the original SARS-CoV-2 Spike, can still significantly improve
the immunity against Omicron (Ma et al., 2022; Zhang et al., 2022;
McMenamin et al., 2022). Meanwhile, the spike-sequence-updated vac-
cines and pan-coronavirus vaccines are around the corner (Ying et al.,
2022; Gagne et al., 2022; Liu et al., 2022). Finally, the global vaccinated
populations gradually increased in both developed and undeveloped
countries. Overall, with the constant growing arsenal of antivirals against
COVID-19, the human beings will probably gain the upper hand in the
battle against SARS-CoV-2.
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