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Abstract

Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded
neurons that are studied are often unknown. We explored in detail the firing patterns of eight
previously defined genetically-identified retinal ganglion cell (RGC) types from a single
transgenic mouse line. We first introduce a new technique of deriving receptive field vectors
(RFVs) which utilises a modified form of mutual information (“Quadratic Mutual Informa-
tion”). We analysed the firing patterns of RGCs during presentation of short duration (~10
second) complex visual scenes (natural movies). We probed the high dimensional space
formed by the visual input for a much smaller dimensional subspace of RFVs that give the
most information about the response of each cell. The new technique is very efficient and
fast and the derivation of novel types of RFVs formed by the natural scene visual input was
possible even with limited numbers of spikes per cell. This approach enabled us to estimate
the 'visual memory' of each cell type and the corresponding receptive field area by calculat-
ing Mutual Information as a function of the number of frames and radius. Finally, we made
predictions of biologically relevant functions based on the RFVs of each cell type. RGC
class analysis was complemented with results for the cells’ response to simple visual input
in the form of black and white spot stimulation, and their classification on several key physio-
logical metrics. Thus RFVs lead to predictions of biological roles based on limited data and
facilitate analysis of sensory-evoked spiking data from defined cell types.

Introduction

In the mammalian retina, signals from the photoreceptors are processed by parallel neural cir-
cuits across distinct retinal layers [1, 2]. These circuits have evolved to allow the retina to effec-
tively break down the spatio-temporal features of the visual input into parallel channels that
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capture different representations of the visual scene [3-5]. The exact number of different gan-
glion cell types in the retina is still not known [6]. The term PV retina refers to the retina of the
Parvalbumin®"; Thy**"*** mouse line in which a subpopulation of retinal ganglion cells
(RGCs) express YFP [7, 8]. Using two-photon-targeted loose cell-attached recordings and
whole cell patch clamp to label single cells with the marker neurobiotin, 8 distinct types of
RGCs in the PV retina were identified based on post hoc analysis of dendritic stratification,
dendritic field size, cell shape, and their responses to black/white spot visual stimulation [7].

In order to identify the visual features that the PV RGCs are sensitive to and determine their
functional behaviour, retinas were presented with natural stimuli-sequences of movies
recorded by a camera mounted to a cat's head which was freely moving in a forest [9, 10].
Experiments and qualitative analysis of the visual responses of the 8 PV RGCs to simple flash-
ing spot stimuli, as reported by Farrow et al. 2013, are quantified here to complement our
novel information theoretic analysis of natural stimuli. This complex type of visual input
should be much more efficient in revealing the relevant receptive fields, requiring a relatively
small number of inputs in comparison with white noise analysis [11, 12]. However, with such a
reduced and non-Gaussian input it is not possible to use standard reverse-correlation methods
to quantify the average natural stimulus that invokes a neuronal response [13-16] or its infor-
mation-theoretic generalisation [17].

Two recent studies demonstrated a computational tool for studying population coding by
developing model cells that mimic the responses of real RGCs [18], and showed how to use
these models for retinal prosthetic applications [19]. For receptive field calculations they used a
generalised spike-triggered average-based methodology proposed by Paninski et.al. [20].
Parameters for the model were determined by maximizing the likelihood that the model would
produce the experimentally-observed spike trains elicited by the stimuli and demonstrated on
10x10 pixel input images. Receptive field organisation in primary visual cortex was investigated
using standard reverse correlation method by Smyth et.al. [11], but they only used single static
images of natural scenes, of reduced resolution (50x50 pixels), lacking the time component. A
systematic study of neural coding based on information theory by de Ruyter van Steveninck
and Bialek [21] introduced quantitative measures of the information transferred by sensory
neurons [22]. Brenner et al [23] provided a method for calculating the average information car-
ried by a single spike and compound patterns and compared them to deduce possible synergy
in spike bursts.

Our aim was to probe the high dimensional space formed by the visual input (which is of
the order of ~750,000 dimensions, corresponding to approximately ten frames at the resolution
of 320x240 pixels) for a much lower dimensional subspace of receptive field vectors (RFVs).
The RFVs give the most relevant information about the feature selectivity of neurons, i.e. an
RGC’s local circuit. For example, in the case of a single RFV that separates spiking from non-
spiking inputs, it can be interpreted as a set of illumination patterns which cause the maximum
spiking response. We adopted an approach based on a form of biological “data-mining”, which
depends only on the visual input that is used to stimulate the retina, and so it can be employed
for any type of stimulus without requiring a model of the underlying retinal circuitry. Non-
parametric models are “data dependent” with their complexity scaling to accommodate the
available data, and particularly appealing for us were those based on maximally informative
features [24].

A similar method has previously been developed that searches for these lower dimensional
subspaces by sequentially optimising the mutual information (MI) across different RFVs [25].
While promising, this method was computationally demanding and, in their synthetic exam-
ples, used a large number of spike responses (typically >10,000 spikes) for characterisation of a
visual stimulus with ~10,000 dimensions. For our experimental data, we consider a much
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higher dimensional stimulus space but have only a small number of responses (several hundred
spikes). Hence even the improved information theoretic methods proposed in [26] are not suf-
ficient. This has led us to adopt a related approach based on a modified form of MI known as
“quadratic mutual information” (QMI), first proposed by Torkkola [27] and has been success-
fully implemented for machine learning algorithms [28].

The classical Shannon’s measure for entropy and the corresponding MI measure (Kull-
back-Leibler (KL) distance between two probability distributions, eq (1) [29]) can be substi-
tuted by a number of different measures for entropy and information when the postulate of
additivity is redefined, as described by Renyi [30]. This is particularly useful when the aim is
not to compute an absolute value of the entropy or a divergence measure, but rather to find a
distribution that maximizes or minimizes the entropy or divergence given some constraints
[31]. In our case, by maximising across the space of all possible receptive field projections the
relevant REVs of the cell can be obtained. Although this method has already been used success-
fully [25], it has several drawbacks in our case. Due to the complexity of calculating the MI as
defined by eq (1), optimization is difficult for high dimensional stimuli and must be performed
iteratively for each RFV to ensure they are orthogonal and hence it is computationally
extremely demanding. In our approach we use the QMI as an objective function for optimiza-
tion and selection of the RFVs [27]. QMI is a type of Renyi divergence of order 2 and provides
a lower bound on KL-divergence and Shannon’s MI (based on Pinsker’s inequality) [27, 30,
31]. By using this measure we are able to perform the optimization process in search of the
RFVs much more efficiently. The main advantage of using a quadratic divergence is that all
integrals in eq (2) can be analytically solved if the probability distribution functions are esti-
mated with a Parzen density method using Gaussian kernels (see Methods and ref.[32]). The
process of maximising QMI will give the same RFV's as the optimization process for MI, as
shown by Kapur [31], further proven by Torkkola [27] and elaborated by Principe et.al. [32].

Furthermore, use of Gaussian Parzen-windows to estimate the probability distribution func-
tions allows direct calculation of the natural gradient of QMI as a function of the RFV trans-
form. It has also been demonstrated that QMI gives better stability in the optimization than
using other information based techniques such as MI [32]. Indeed, it was recently shown that
optimization of a Rényi entropy was effective in characterizing neural feature selectivity in a
simple model cell that used natural stimuli [33]. For evaluating statistical properties of the
RFVs we used a jackknife method, similar to the maximally informative dimensions calcula-
tions of Rowekamp and Sharpee [34].

Results
Quantification of neurobiotin-labelled PV cells

Over 600 YFP-expressing ganglion cells in the PV retina were targeted with glass electrodes
and their responses to visual stimulation were recorded (Table 1). 286 recorded cells are ana-
lysed here, and 183 of them were labelled with neurobiotin. 8 ganglion cell types (PVO0 to PV7,
S1(a) Fig) were defined based on the combination of dendritic stratification (S1(b) and S1(c)
Fig, n = 182 cells from ref. [7] that includes 2 PV1 cells and 45 PV5 cells from ref. [8]), den-
dritic field area (S1(a) and S1(c) Fig), and spiking responses induced by different size black and
white spot stimuli (n = 286 recorded cells that includes 83 cells from ref. [7]). The cell types
were not classified solely on “morphological” or “physiological” properties, although now it is
possible to predict the cell type by measuring single parameters, such as the spiking responses
to spot stimuli or the dendritic stratification.

From 52 paraformaldehyde-fixed PV retinas (obtained from single-cell recording experi-
ments) immunolabelled for YFP along with the nuclear marker DAPI, we estimated that 11.8%
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Table 1. Quantification of PV ganglion cell parameters. BS, black spot; WS, white spot; NatS, natural scene/movie. Note, a one degree visual angle cor-
responds to ~31 ym on the mouse retina [48]. Blue rows are OFF layers, rose are ON layers and the green coloured row (PV3) is a border area between ON
and OFF strata in the IPL. PVO are bistratified cells.

Mean depth (sd) Dendritic Field Receptive Field Surround Inhibition  Transient/Sustained Spatial Contrast Sensitivity
mean Area diam diameter [pm]
% [10°mm?] [um] BS WS NatS

PV7 136.3 (10.0) 11 (3) 118 <125 76 Complete Transient Yes
PV6 134.0 (13.8) 42 (16) 232 291 235 200 Weak Sustained Yes
PV5 68.4 (4.0) 58 (11) 271 384 330 220 Moderate Transient No
PV4 68.8 (3.5) 24 (6) 173 178 165 96 Strong Transient No
PV3 43.3 (6.2) 11 (4) 121 <125 NA Complete Sustained Yes
PV2 23.9 (7.2) 25 (6) 180 221 207 106 Strong Transient Weak negative
PV1 -40.8 (9.3) 53 (15) 260 467 360 156 Weak Sustained Yes
PVO 98.5 (1.8) 31 (12) 199 135 176 Complete Transient No

-2.2 (2.3) 28 (18) 189 184 V.Strong Transient No

doi:10.1371/journal.pone.0147738.t001

+5.2% (mean * standard deviation) of all ganglion cells express YFP, assuming 40% of somata
in the ganglion cell layer (GCL) are ganglion cells with a density of 8,000 ganglion cells per
mm? [35]. The proportions of each YFP-labelled ganglion cell type are unknown, as YEP is
unlikely to be expressed in all cells of a given type. Each ganglion cell type is thought to regu-
larly tile the retina with different levels of dendritic overlap [1, 4]. PV5 cells were often electri-
cally coupled to other ganglion cells (S1(a) Fig), most of which were also YFP-expressing PV5
cells (not shown). PV7 cells were coupled to small cells within their dendritic fields (S1(a) Fig),
which was also observed for PV5, PV4 and PV2 cells, and are likely to be narrowfield amacrine
cells. Ganglion cells with larger dendritic fields (e.g. PV1, PV5) are thought to occur less fre-
quently than cells with smaller dendritic fields. We observed a range of dendritic field areas per
PV cell type, with larger PV cell types having the greatest range (S1(c) Fig). The smallest PV
cell had a mean dendritic area of 0.006 mm? (84 um diameter) and stratified at 125.5 + 4.9%
depth (a PV7 cell, S1(c) Fig), and the largest PV cell had a mean area of 0.12 mm? (384 um
diameter) and stratified at -45.5 + 8.7% depth (a PV1 cell, not shown). Ganglion cells can be
grouped by the combination of stratification depth and dendritic field area (S1(c) Fig). Neu-
rons with similar stratification likely receive the same glutamatergic input from presynaptic
bipolar cells, suggesting overlapping responses to visual stimulation [36].

Characterisation of receptive field vectors—the QMI method

We used a three-stage approach to characterise the RFVs. In stage 1 we identify the RFVs using
QMI and then to compare different RFVs in the stages 2 and 3 we used the MI, rather than
QML as this provides an absolute measure of the dependence of the distributions. Details
about calculating QMI, MI and the optimization are described in Methods.

1. Number of Classes/Vectors: The number of vectors (K) that the QMI technique can resolve
depends on the number of classes (M) of the outputs: K = M- 1. We can set M arbitrarily,
but a limit is that a vector can be resolved only if there are sufficient inputs (>50) for each
output class. Here we investigate the simplest case of two class labels: spiking and non-spik-
ing, and only one RFV.

2. Receptive Field Radius: To determine the relevant radius of the RFVs the Mutual Informa-
tion (MI) between neuronal response classes and transformed stimulus (projections) was
calculated for an expanding central circular section across the complete frame history. We
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first divide the dataset (input vectors and output average number of spikes) into “training”
and “test” datasets, then calculate the RFV using the training dataset. The MI dependence
on radius is then calculated for the “test” dataset using the previously obtained RFV. The
point when the MI reaches the maximum and starts to decrease, due to overfitting, was then
used to estimate the receptive field radius (Ryqy).

3. Frame History (or Cell Memory): To determine the number of frames relevant for the RFV
the MI was calculated successively for increasing number of frames, as this measure allows
comparisons between different subspaces. The data were again separated into training and
test sets as in 2. As an estimate of the relevant frame history we take the point where the MI
reaches a maximum and starts to decrease. The frame history MI diagrams can be used to
estimate the corresponding memory for each cell type.

In order to test and validate the use of QMI as a cost function and establish that the method
works appropriately we have first demonstrated the technique using model cells with prede-
fined spatio-temporal filters. For the input we used natural scene stimuli consisting of 3175
frames at a resolution of 101x101 pixels (S2(a) Fig and Methods). Characteristic spatial and
temporal filters have been chosen for the synthetic cell model to demonstrate the ability of the
QMI to recover different single frame (e.g. Gabor) and multi-frame filters (OFF-filter, direction
selective, etc). The filters were correctly reconstructed (Fig 1(a)-1(i)) even for relatively small
numbers of spikes (typically several hundred). As a measure of the accuracy of the recovered
filter we used the projection (Q) of the recovered filter (normalised value w) on the original fil-

ter (é) : Q = e - w. The QMI technique was robust Fig 1(j), yielding an accurate filter recov-
ery for a relatively short stimuli sequence (3175 frames) and an average number of spikes per
frame above 0.01. One limitation on the maximal value that can be achieved for Q (= 0.83 in
the case shown in Fig 1(j)) is the quality of the stimulation images/movies, i.e. its ability to pro-
vide sufficient relevant variability needed to detect the filter. Once this stimuli data reach suffi-
cient quality, a relatively small number of spikes (a few hundred) are sufficient for a good
quality filter recovery using the QMI technique.

QMI in combination with MI can be used to correctly estimate the Receptive Field Radius
and Cell Memory (Fig 2) To further test the QMI technique we used uncorrelated inputs in
space and time, specifically white noise with uniform and Gaussian distributions (Fig 3(c) and
3(d)), demonstrating that the technique is equally able to use uncorrelated inputs (white noise)
as well as highly correlated inputs (natural stimuli). Finally, comparisons were made with con-
ventional methods of characterising neural feature selectivity, namely Spike Triggered Average
(STA) and Spike Triggered Covariance (STC) techniques (Fig 3). QMI is very robust for
reduced stimulus length and significantly outperforms STA (Fig 3(e)) as well as the STC (not
shown).

PV cells’ visual responses to natural scenes

The natural scene stimuli consisted of sequences of frames projected onto the wholemount ret-
ina typically at 25 frames per second (S2(a) Fig and Methods). Raster plots of the PV retina
responses to natural scene movies revealed cell-type-specific spiking activity (Fig 4, S3 and S4
Figs), with cell types occupying the same stratum (e.g. PV4 and PV5) discharging at the same
time during a subset of similar events in the natural scene. Visual stimuli were always aligned
to the centre of the recorded cell’s receptive field, so that the spiking responses to natural scene
movies could be compared for each cell type. In our framework, the RGC neural circuit behav-
iour is captured in the RFVs: a single, or set, of spatio-temporal vectors embedded in the stimu-
lus space. The RFVs calculated here represent the particular visual stimulus input that
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peak separation 45um, (spikes) = 427, Q = 0.78). C, horizontal edge (T =1, (spikes) = 733, Q = 0.77). D, arbitrary angle (6 = 30°, T = 1, (spikes) = 635,

Q =0.81). E, Filter created by subtraction of two time-varying 2D Gaussians functions (o, = 0, = 60 ym, separation 37.5 um, T = 3, (spikes) = 644). F, Center-
OFF filter (150pm diameter, T = 6, (spikes) = 304). G, Average number of spikes vs. projection of input vectors onto RFV, case (f). H, “Aperture cell” filter,
detecting a moving edge (6 = 30°, T = 3, (spikes) = 209). |, Moving bar filter (T = 2, length 100um, (spikes) = 372)-we added one more frame in the recovered
filter to show that the QMI correctly returns an “empty” frame. J, Projection (Q) of the recovered filter vector on the original filter (Gabor filter case (a)) vs.
average number of spikes per frame. Plotted are the average values for Q and error bars (n = 7 repeats). The same natural scene stimulus of 3175 frames
used in each case. Insets show typical recovered filters for a selection of points (the average total number of spikes is: 2, 10, 75, 468 and 6496).

doi:10.1371/journal.pone.0147738.9g001
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each individual cell being recorded from, i.e. every single recorded cell had approximately identical input. Additional raster plots are shown in S4 and S5 Figs.

doi:10.1371/journal.pone.0147738.9g004

maximally separate different neural circuit responses [37]. The stimulus space is formed by the
light intensity of the individual pixels that make up the frames of the movie presented. Detailed
exploration of such a large space is experimentally unfeasible, but identifying the REVs is vital
in identifying the functional behaviour of the RGC. The optimization was run for ten sequen-
tial frames history and full spatial size (320x240 pixels).

The single RFVs for all PV-cell types (except PV3, whose firing patterns were too sparse for
RFV calculations) are shown in Fig 5(a) (PV0 and PV1), Fig 6(a) (PV2, PV4), Fig 7(a) (PV5,
PV6) and Fig 8(a) (PV7). 3D plots of the corresponding RFV are shown in panels (b), together
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the entire RFV. The decrease in the Ml indicates overfitting (see text for explanation). The vertical red line represents the identified radius before the onset of
the overfitting artifacts (Ry). d) MI vs. number of frames that the RFV contains. The relevant receptive field history (or the Cell Memory) was estimated as in

¢) and marked with a red arrow.

doi:10.1371/journal.pone.0147738.g005

with the estimated standard errors (see Methods for a detailed explanation). The estimated
Receptive Field Radius and Frame History are shown in the same figures in panels (c) and (d)
respectively.

The spatio-temporal structures of the RFVs reveal characteristic patterns for each cell type.
PV0 appears to be selective to a white bar on a dark background (Fig 5A(a)). This sensitivity to
the motion of a bright bar over a gray background is much clearer from S5(a) Fig. The RFV of
PV1 cells appears to have a very simple structure: it begins with weak and diffuse signals then
increases to a strong bright signal in a pseudo-circular region at the centre of the receptive field
in frames -1 and 0 (~0-80ms). Lack of the negative phase during frames -5 to -2 could be
because the cell is an ON-sustained type. PV2 cells are sensitive to brightening of the central
part showing a typical dampened sine wave intensity shape with maximum intensity at frame
-1 (40-80ms) and minimum at frame -4 (120-160ms). PV4 and PV5 show similar patterns
(typical for transient cells): first brightening in the centre, followed by a rapid darkening. This
darkening decreases in the last frame for PV4, but for PV5 the last frame has the widest and
darkest middle spot. This corresponds to the previously determined function of the PV5 cell as
being approach-sensitive and hence strongly responding to an enlarging black disk [8]. The
PV6 cells when operating as switch have very short memory (one or two frames) and respond
to a darkening area within the centre of its receptive field. This central region is surrounded by
diffuse areas that are weakly sensitive to bright signals in the visual stimuli (standard “centre-
surround” response). PV7 cells show sensitivity when an edge of a dark object moves on a
bright background. The last frame of the PV7 RFV Fig 8(a) shows a very similar two-dimen-
sional spatial profile to the result in Fig 2(e) in ref. [38], which was obtained by using randomly
flickering bars. The structure of the receptive field consists of a dark circle in the middle sur-
rounded by a neutral ring and then a light area. There is a gap for the preferred (incoming)
direction for dark spots, indicated by an arrow.

In addition to single cell examples (Figs 5-8), we have investigated the RFV similarities and
variability across the population to present variability between multiple cells of the same type,
such as the RFVs for seven PV5 cells (S6 Fig). Details about the number of recordings, number
of frames with zero and non-zero spikes and total number of spikes are included in the table
shown in S6 Fig. The RFVs for all cells are similar, and show a characteristic OFF stimulus pat-
tern, where the frame zero has the strongest light-OFF central pattern. Cells 2-7 have approxi-
mately the same cell memory (7-8 frames), because they correspond to movies presented at 25
frames per second, whereas the cell 1 had 11 frames per second and consequently a cell mem-
ory of ~4 frames.

The plots on the right-hand side of the panel (a) in Figs 5-8 demonstrate how the input sti-
muli are well separated into non-spiking and spiking in respect to projections of the input vec-
tors on the RFV and the corresponding average number of spikes generated. However, by
using only one RFV it is possible to separate only two classes of outputs (which we have
selected to be non-spiking and spiking). This is forcing all spiking inputs into one (spiking)
class and hence a large range of spike counts correspond to only a small range of projected val-
ues. Hence we extended the methodology of optimising QMI to an arbitrary number of classes
M, and consequently M-1 mutually orthogonal vectors W = [w;, w,,. . .,wk]. Use of a larger rel-
evant subspace spanned by several vectors achieves better separation of the input vectors on
the basis of their projections on W and each cell’s response. For example S5(b)-S5(d) Fig
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shows two vectors (w; and w,) for a PV5 cell, and three classes of outputs. The values of the
projections are important when comparing different clusters. A projected value of 0 means that
the cluster is not affected by the specific vector w;, whereas opposite signs means that clusters
have inverse dependencies on w;, and different values of the same sign mean clusters are
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affected by differing amounts by the w;. For example in S5(d) Fig the cluster C2 (representing
more than one spike on average per frame time) is positively correlated with w,. This tells us
that w, represents an excitatory feature that the cell is most strongly tuned to and that its
inverse is probably inhibitory as it has a strong negative correlation with class CO (zero spikes).

Additional quantification of PV cell responses to simple visual input

Some results for the spot stimulus have been already presented in ref. [7]. We have conducted a
detailed analysis of the experimental recordings and a summary of those results are reported
here as additional information which helps in identifying the biological role of the RGC types.
Our quantitative approach was based on strict biophysical parameters, including the receptive
field size, surround inhibition ratio, transient/sustained firing (also dependent on the light inten-
sity), bimodal sensitivity to static spatial contrast, and response latency (Table 1 and S1 Table).

The spot stimulus consists of sets of black spots (BS) and white spots (WS), of different
diameters, on a gray background (see Methods, also see Fig 2 in ref. [7]). Light-evoked spiking
activity was measured from 286 PV cells, and each cell was classified as one of the 8 PV cell
types based on either the post hoc analysis of the dendritic tree (for n = 182 cells; S1(a) Fig,
Table 1) or directly from ex vivo two-photon z-stacks of the targeted cell (n = 104 cells). The
general behaviour of the PV RGC types corresponds to their dendritic terminal stratification in
the IPL where they receive the glutamatergic inputs from ON-BCs or OFF-BCs. Inhibition to
the ganglion cell excitatory circuit, via amacrine cells, is dependent on the glutamatergic input
to those amacrine cells, which can arise from many different bipolar cell types. Precise timing
of these excitatory and inhibitory inputs, as revealed by whole-cell voltage clamp recordings, is
critical for the functioning of these retinal circuits and will be explored elsewhere.

PV cells are ON/OFF transient cells (respond to both ON and OFF signals). They are bis-
tratified and highly direction selective compared to all other PV cells (explained below). They
have strong surround inhibition and small spatial contrast sensitivity [39], S1 Table. PV0 com-
prises one or several of the direction selective ON-OFF cell types (as opposed to ON-type direc-
tion selective [40] and OFF-type direction selective [38]), previously identified in mouse and
rabbit retina [41, 42] and its circuitry well-characterised [43, 44].

PV1 are ON sustained cells. These cells have a large dendritic tree and they resemble the pre-
viously described mammalian ON-alpha ganglion cell type [45-47]. They show sensitivity to
spatial contrast (the sustained component intensity depends on the spatial contrast), and have
weak to moderate Surround-Inhibition-Ratio (SIR), S1 Table. The SIR for PV1 cells depends on
the absolute level of illumination for the transition between scotopic and photopic illumination,
due to activation of a switch-like component in the neural circuit of the PV1 cells [7].

PV2 are ON transient cells. This cell type exhibits a moderate transient light-ON response
with strong but not complete surround inhibition. PV2 cells have a medium size dendritic
field. PV2 cells have a pure ON motif, i.e. no response occurs at light OFF.

PV3 cells show sustained responses, and their dendrites are located approximately at the
middle ‘logical part of the IPL (~44%, sd 6.2%) where they can receive both OFF and ON path-
way inputs. PV-3 cells have complete surround inhibition. They have the longest latency time
of all PV cells (S1 Table), which could be due to fast transient inhibition at the onset of light
ON and OFF which blocks spiking in the first ~200-300ms, e.g. rabbit local edge detector [4].
Therefore, temporal contrast information may not be relevant for their biological function, but
how about spatial contrast? Their dendritic tree field is small (D = 121 um, n = 10) and since 1°
of visual angle corresponds to 31 pm on the retina [48] that means that PV3 responds opti-
mally to only ~4°. This suggests that they could be sensitive to high spatial frequencies and
help in detection of small objects. Sensitivity to spatial contrast is significant (SCI mean = 0.37,
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sd = 0.5). This cell type is similar to ‘local edge detectors’ in rabbits [4, 49]. An RGC cell type
with very similar morphological properties, but with transient response, were described as a
selective feature detector in mouse retina [50], which is able to detect small moving objects of
the size of the receptive field size of bipolar cells, but only if the background is featureless or
stationary.

PV4 and PV5 are OFF transient cell types. They are in the same OFF stratum in IPL around
the middle of the OFF regions (~69%, Table 1), but PV4 dendritic field area is much smaller.
PVS5 is the fastest cell of all PV-retina ganglion cells (peak response latency: mean = 57 ms,
sd = 19 ms, n = 12), with the highest firing rate peak (median 500 Hz, S1 Table). PV4 shows
nearly half of the PV5’s spiking rate and about 25% less total number of spikes. The two cell
types also differ in surround inhibition, which is moderate for PV5, but strong for PV4. An
equivalent cell type to PV4 might be OFF ‘parasol’ cell types in rabbit retina [51] and possibly
those described in primates [52]. PV5 cells have been investigated in detail in [8].

PV6 are OFF-sustained spiking cells. PV6 cells have a large dendritic field (mean diameter
232 um) as well as the estimated receptive field, only slightly smaller than PV5 or PV1, S1
Table. The surround inhibition is similar to PV5, relatively small (SIR mean ~0.3), indicating
that the inclusion of the surround does not create a significant inhibitory effect. PV6 and PV1

are somewhat mirrors of the OFF and ON pathways. They both produce sustained response
and although purely responsive to OFF (ON) stimulus, they are both sensitive to the comple-
mentary input, i.e. ON (OFF), in the sense that if they are already spiking this input will pro-
duce inhibitory current to silence them, e.g. see [8] for current plots. PV6 cells show strong
sensitivity to spatial contrast. Similar cell types have been previously described as OFF-delta in
cat [45], OFF-alpha in mouse [47] and OFF-delta in rabbit retina [4].

PV7 are OFF-transient cells. Their dendritic trees stratify high in the OFF region of the IPL.
They have a small dendritic field (118 um mean diameter, sd = 18 pm, n = 20) and an asym-
metric dendritic tree with respect to the soma (S1(a) Fig). All PV7 cells in each PV retina were
found to point in the same direction, hence they are expected to convey some ‘directional’
information. PV7 cells have a rapid and complete surround inhibition. PV7 can be sensitive to
spatial contrast, although a transient-response type (see Discussion). A similar cell type has
been described that responds to upward motion and were named J-RGCs because the cells
express the JAM-B gene [38]. ]-RGCs and PV7 are both OFF direction selective cells and have
very similar dendritic trees, with the additional observation that the neurobiotin labelling of
PV7 cells reveals electrically coupled cells within the dendritic field (S1(a) Fig).

Discussion

We have demonstrated that from a subpopulation of genetically-identified mouse retinal gan-
glion cells [7, 8] their responses to simple visual stimulation can be quantified to enable com-
parison of different physiological metrics between distinct cell types. It is fortunate that the
kinds of cells genetically-labelled in the PV retina consist of diverse types of ganglion cells, with
their dendrites stratifying at different levels spanning the entire IPL. The broad range of cell
types may have facilitated their quantification, in contrast to largely unbiased surveys that inev-
itably sample some cell types that are similar to each other [46, 53-57]. Targeting neurons
immunoreactive to calcium-binding proteins also reveals subpopulations of ganglion cells [58,
59] but lacks information on their visual responses. Transgenic mouse lines that express fluo-
rescent reporters in one or two ganglion cell types are useful for characterising visual responses
and their projections (e.g. [38, 50, 60]) yet directly comparing them to other types requires sep-
arate mouse lines and/or viral labelling strategies [61]. The PV retina is thus advantageous in
being able to target up to 8 different cell types in the same experiment. We can assume that
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each of the 8 PV cell types independently tile the retina, since 7 of these YFP-expressing gan-
glion cells (with the exception of PV2) match previously defined ganglion cell types with
known tiling properties. This implies that each PV cell type acts as a parallel visual channel in
the retina, encoding different aspects of the visual scene [1, 4, 62].

During natural scenes, individually recorded PV cells showed a wide variety of response
strengths to the same visual input (total of 502 frames and 502 input vectors), yet the RFVs
within a given cell type were remarkably similar, e.g. see S6 Fig. In some cases the spatial struc-
ture of some RFV frames may reflect the underlying synaptic strength in the IPL [63], meaning
that the RFVs may capture fine scale heterogeneities in spatial sampling of ganglion cells. How-
ever, we note here that lack of smoothness in the obtained RFVs is mostly due to limited data,
as demonstrated for the synthetic cells in Figs 1 and 3.

Of the three PV cell types with the largest somata and dendritic fields (PV1, PV5, and PV6
"alpha-like" ganglion cells), PV1 cells have the largest receptive fields, integrating a wider visual
angle than other types, which may suggest that this type of RGC is not used for some small
local changes, but rather more large-scale features in the scene. However, these cells usually
take input from a few hundred bipolar cells (e.g. 200-300 for PV5, each bipolar cell has a recep-
tive field of approximately 30pm diameter and the RGCs receptive filed is 200-300 pm) and
this small scale subunit structures of bipolar and amacrine cells can interact locally within the
receptive filed of the large alpha cell. So in some cases small local changes matter, for example
creating frequency doubling response for an input consisting of grating of particular spatial
scale [63] or a change in spatial encoding depending on the light intensity [64]. However a
question remains how relevant these features are for the biological role of the cells. PV1 cells
can be fast in responding, but they show sensitivity to static spatial contrast and produce a sus-
tained response. It is thus possible that they are optimised for detecting fast movement of light
objects on dark backgrounds, so if a white object is fast moving the inhibition is too slow to
block excitation. Furthermore, PV1 could serve the purpose of detecting a bright region in the
visual field and specifically identifying the point of maximum brightness (when scanning the
horizon the persistent component will gradually increase as it becomes brighter and then there
is a transient spike when the light source is centred in the visual field). This feature could help
finding holes leading out from dark environment (a so-called “hole-in-the-wall” detector).
Similarly, this cell type could be necessary to protect the eye from sudden increases in bright-
ness that would register as sharp transient peaks and may affect the regulation of pupil dilation
[65, 66]. It is known that rodless/coneless mice still retain pupillary light reflex, and that comes
from intrinsically photosensitive retinal ganglion cells [67]. This property is mediated by the
photopigment melanopsin [68], which is expressed in some retinal ganglion cells including
"ON alpha" cells which may be PV1 cells.

From the transient/sustained nature of the response of PV6 cells, it would appear that both
the two-frame and six frame RFVs capture some aspects of the cell's behaviour. Using just two
frames leads to a continuous sustained response to BS stimulus (Fig 7, Table 1 and S1 Table).
Using the six-frame vector captures the transient part of the PV6 cell behaviour. This behav-
iour is also consistent with our hypothesis that PV6 acts as a switch: for light OFF it is
"switched on" and continuously fires until there is a light ON input which will silence it.

PV5 cells show strong transient excitation but no active inhibition triggered by the light
OFF signal and conversely there is a very strong inhibition for an ON event, but no excitation
at all. This leads to the conclusion that if two areas of a similar size within the receptive field of
a PV5 cell are simultaneously experiencing OFF and ON inputs they will create opposite syn-
aptic inputs to the PV5 RGC and hence it will not spike. This is a typical situation after a dark
object enters the receptive field and moves sideways. However, if the OFF signal is larger, then
the cell will spike and this will intensify if the OFF area is increasing. This will happen if a dark
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object (on bright background) is approaching the animal. This cell type was first identified and
the retinal circuitry explained by ref [8] and named “approach sensitive” RGCs. The MI and
RFV results corroborate this conclusion, showing the correct duration of the cell's memory
(~280ms) and the average receptive field size (~220um), as in ref. [8]. The RFV starts with an
expanding white spot, which then shrinks to zero and then appears an expanding black spot
which darkens in intensity and ends with the maximum diameter for the last frame.

The PV4 cell REV (Fig 6B) indicates that this cell is sensitive to a bright spot that switches
into a dark spot before remaining constant. This behaviour can also be observed from the sim-
ple spot stimulation. The cells respond only to small, centred, OFF spots, but if they become
larger than 250pm in diameter there is no response from the cell whatsoever. So the cell will
not respond if the whole scene darkens (i.e. will not act as a 'dimming detector’). In some
respects (e.g. REVs) PV4 cells are similar to PV5 (the approach sensitive cell) but they have a
smaller receptive field and they are much slower in response to the BS onset. They may also
receive the same type of OFF bipolar cell input as they costratify (cyan and magenta clusters in
S1(c) Fig, respectively) and have overlapping responses to some features of the natural scene
stimuli (Fig 1).

PV2 cells show sparse spiking both for the spot and natural scene stimuli, indicating that it
is highly selective. Firing patterns for natural scene stimuli with a lower frame rate (11fps,
~90ms frame time) are similar to 25fps (not shown). This could mean that PV2 is mostly sensi-
tive to some contrast change and the speed of change is less important. The RFVs all show sim-
ilar elongated patterns of excitation: an initial dark stripe that becomes brighter. This may be
important for locating the horizon during head motion.

The temporal contrast change due to BS and WS stimuli does not provide relevant informa-
tion for the biological function of PV3 cells, but this cell type is sensitive to small spatial con-
trast changes. The small receptive field of diameter D~120um corresponds to a small visual
angle of a~4°. While a mouse has no fovea, the PV3 cells seem to be associated with resolving
small details in the visual field. Since inhibition is extremely fast it will suppress all fast chang-
ing inputs so it is largely ignoring temporal information about the visual scene. Any input
which is shorter than 200-250ms will be suppressed allowing the cell to function as a low-pass
filter in time but high-pass in space (due to its small receptive field).

PV7 could have a function in the domain of direction selectivity, due to its asymmetric den-
dritic tree and transient response. Our analysis here and results shown in Fig 8 for the RFV
support this assumption that indeed this cell is direction selective in respect of dark object
moving on a bright background (Fig 8a). The receptive field of this cell is small (Dygg ~ 75um
from Fig 8c) which corresponds to ~2° of visual angle. So it could detect motion of small edges.
Perhaps the function is to detect motion of small objects (e.g. bugs or similar moving food).
PV3 cells also have small receptive field but much slower response so their role is probably
more related with the slowly changing or static spatial contrast.

The bistratified PVO0 cells receive two independent inputs: one from the ON pathway and
one from the OFF pathway. Hence the inputs cannot interact on the dendritic tree, but only in
the soma. This is in contrast with PV3 cells which also receive input from both ON and OFF
pathways, but on the same strata hence they can directly interact. PVO cells are highly direction
selective cells what is expected from a bistratified cell. PV0 has a very prominent spatio-tempo-
ral structure in its RFV, shown in S5(a) Fig: a bright bar moving across the middle of the recep-
tive field. It is interesting that the maximum response of this cell is when the bar first moves in
the opposite to preferred direction (non-spiking or “null-direction”), stops and then moves in
the preferred direction. Analysis of the inhibition and excitation interaction during the presen-
tation of a 200pm diameter white spot moving at the speed of 900um/s (results not shown)
shows that the excitation changes faster than inhibition for the preferred direction. However,
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for the null-direction inhibition is faster and blocks the onset of excitatory input. So the role of
inhibition is to block the cell’s response to irrelevant direction.

The RFVs calculated in this study show significant deviation from smooth, Gaussian pro-
files, what is in agreement with the previous measurements of ganglion cell receptive fields
[69]. Finally, an important assumption here is that correlated firing between neighbouring gan-
glion cells in response to natural scenes does not carry visual information [70]. Hence the firing
of each ganglion cell can be evaluated independently of their neighbouring ganglion cells
despite overlapping in the receptive field and if they show correlated activity, but almost all of
them do not [69]. This is not surprising since the ganglion cells on the distance up to 100pum
are usually ganglion cells of different type, in the part of the retinal mosaic that we investigated.

The information theoretic approach used here proved efficient in dealing with natural
scene, i.e. non-Gaussian stimuli, and relatively small number of spikes. The optimization pro-
cess that maximises the mutual information between the neural responses and projections of
the stimulus onto low-dimensional subspace yields the receptive field vectors which define that
subspace. The optimization is non-parametric, except for the Parzen-window width (o) of the
spherical d-dimensional Gaussian kernel functions, used to estimate the probability densities.
For QM]I, o is equivalent to an interaction length that determines the effect between pairs of
values in the projected space. The optimisation was initialised by using a randomly generated
set of receptive field vectors. The value for o was set to half the maximum distance between the
points in the projected space S to ensure interaction between all points. Then o was increased
during the first stage of optimisation until the maximum distance between the points had stabi-
lised. By initially expanding o we ensure that all values affect each other. A second stage was
then performed using iterative reductions of o in order for local interactions to become stron-
ger and so find any fine detail in the point distributions.

Regarding the value of K, in this paper we limited the investigation of this parameter to ini-
tially set it to a fixed value. The algorithm works by balancing three separate "forces", see Meth-
ods eq (8):

1. attraction within a class (Vi)
2. attraction between all points (Vay1)
3. repulsion between classes (Vpw)

These act over a range (distance between pairs of data points) that is controlled by o (the
expansion/contraction that occurs, explained above). The value of K actually determines the
maximum number of clusters that can be separated (K+1). However the actual number of sepa-
rated classes can be less than K+1 due to the small class size. Our empirical conclusion is that
the minimum cluster size is approximately 15-20 points. When o is large during the initial sep-
aration, the repulsion between the classes dominates, pushing all the classes apart. During the
second step in which o is reduced, the separate classes cannot "see" each other (as they are out-
side of the "forces" range) so the repulsion lessens. At this point the attraction within the classes
and points starts to be more dominant and this process is driven by the larger clusters as they
have more points. This means that it may be favourable to group together smaller clusters if
this also groups together the larger ones.

The calculation of MI and QMI based on a limited number of observations is biased (e.g.
[71]) and we have estimated that effect. The QMI optimisation process is not affected with bias
because the objective is to find the transformation W such that the transformed variable Y
maximises the function QMI(C, Y), see eqs (2) and (3), not the actual value for the QML
Hence a systematic error in QMI has no effect. However, in the case of calculating the MI as a
function of frame size, MI, = MI(r), or number of frames MI, = MI(frames), bias does affect the
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results. For example, in the case of MI, the bias decreases as r increases and hence the maxi-
mum MI will shift to lower values for r if o is constant, see Methods for explanation. This hap-
pens because o was optimised for large r. Therefore we correct for bias by scaling up the values
for the o in proportion to the span of the values for S for each r. This approach will not neces-
sarily completely eliminate the bias, but will even it out and hence the bias will not affect the
position of maximum for MI.

It is well known that natural scene stimulus entails considerable spatial and temporal corre-
lations [72]. We assessed correlations within frames and between frames for our natural scene
movies by using the standard autocorrelation function: (a) C(Ax, Ay), which gives the correla-
tion (average of the product) of the intensity at two locations as a function of relative distance
of these locations—see S2(b) Fig, and (b) C(At) correlation of intensities of the same pixel but at
two different frames-52(c) Fig. A frequent presence of a certain shape (e.g. moving bars) might
affect some RFVs. However, apart from PV0 we have not identified sensitivity to that pattern
in any other cell class. In general, this is not affecting the proposed technique, and any artefacts
disappear with increasing number of input frames, e.g. see Fig 3.

The dimension of the stimulus space used for the optimization process is 768,000, which is
320x240x10: number of pixels in the projected images times the number of frames assumed to
be relevant. By using QMI instead of conventional MI, the optimization process becomes prac-
tically feasible for such a high-dimensional stimulus space. Since the approach allows us to
optimise the RFVs far more efficiently, we can search the complete stimulus space for multiple
vectors simultaneously. Another crucial advantage is that this approach works very well with a
small number of recorded responses, as optimising the quadratic mutual information is equiva-
lent to optimising the lower bound of the full mutual information, preventing over-fitting of
the very small sample size [32].

Methods
Experimental

Animals and data. All primary data (responses to spot stimuli and labeled ganglion cells)
used in this study were obtained from Pvalb“"*;Thy>*"*'** mice. The sample of retinal ganglion
cells from these mice have been described previously [7]. We restate here from [7] that: “All
animal procedures were performed in accordance with standard ethical guidelines (European
Communities Guidelines on the Care and Use of Laboratory Animals, 86/609/EEC). The study
was approved by the Veterinary Department of the Canton of Basel-Stadt (Kantonales Veteri-
naramt, Postfach 264, 4025 Basel, Switzerland, document no. 2105)”.

Retina preparation. Retina isolation was done under normal light levels in warm Ringer’s
medium. Next the retina was transferred to a recording chamber (Open Diamond Bath,
Warner Instruments) and mounted with the ganglion cell layer facing up on nitrocellulose fil-
ter paper (MF-membrane, Millipore, USA), by stretching the tissue off-centre over a hole in
the filter paper that was ~2/3 the diameter of the retina. The retinas were superfused with Ring-
er’s medium at 34.5-36°C.

Imaging and electrophysiology. To visualize and target fluorescently-labeled neurons in
the live wholemount retina without causing significant bleaching of the photoreceptors, we
used a custom two-photon microscope using a modified Nikon Eclipse E6G00FN microscope
and a Spectra-Physics Mai Tai Ti:sapphire laser (930nm) as in ref [8]. Energy output at the ret-
ina level was 5-20 mW. The fluorescence emission was detected (~500-600 nm) by a photo-
multiplier tube (Hamamatsu model R3896). The retina was illuminated using a Digital Light
Processing projector (V332 PLUS with lens removed, 75 Hz refresh rate) with an infrared filter
before the condenser lens, and detected by a EM-CCD camera (Hamamatsu model C9100).
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During two-photon excitation, the fluorescence signal detected by the PMT was digitally super-
imposed onto the infrared image detected by the CCD camera in real time using custom Lab-
VIEW software [8]. The spiking responses of PV cells were recorded in loose cell-attached
mode (10kHz sampling rate). All visual stimuli were aligned to the centre of the ganglion cell’s
receptive field by initially presenting small flashing squares in a 9 by 9 grid, then moving the
centre of the stimulus to the square that induced the strongest response. Note that the centre of
the receptive field is not necessarily the soma, as many dendritic trees are asymmetric, even for
large neurons (S1(a) Fig). Recorded cells were subsequently labelled with neurobiotin during
whole-cell patch clamp recordings (not shown). Multiple single cells were often recorded in
each retina. Representative two-photon images acquired during experiments were used for
identifying the correct cell/area in the paraformaldehyde-fixed tissue post hoc.

Anatomical analysis and identification of spikes. We used Mathematica (Wolfram
Research) to initially sort and classify data into PV cell types and for all the clustering. The
method to calculate the mean stratification of dendrites is published in [8]. To identify the
spikes we used a modified form of the Wave_clus Matlab application for unsupervised spike
detection and sorting developed in [73]. This initially filters the data and uses an optimal
amplitude threshold to identify the position of spikes. Feature extraction is then performed on
the detected spikes and a super-paramagnetic clustering algorithm applied to group these fea-
tures into like spikes. For our purposes, the code was modified so that the data was first over-
sampled using a cubic spline interpolation to better identify the position of the spikes. This
data was then passed through an elliptic filter with a frequency range of (300Hz, 3kHz). It was
found that the recorded spikes had a biphasic form and that using a negative threshold gave
the best results for correctly identifying spikes and avoid artefacts. Feature extraction was per-
formed using the first three principal components of the spike form and the clustering set to
create as few groups as possible since we are only measuring spikes from a single source.

Visual Stimulus. The natural scene movies were recorded from a camera strapped to a
cat’s head as it freely explored a woodland, see S2(a) Fig [9, 10]. Three separate sequences were
used "catmovl, "catmov2", and "catmov3" consisting of 141, 188, and 173 frames respectively.
The projected video had a 320x240 pixel resolution and covered an area of 1200 x 900pm
(width x height) on the retina and, normally, each frame was displayed for 40ms corresponding
to a frame rate of 25fps, but other frame rates were used occasionally.

Statistical Analysis. All measures of statistical difference were performed using ANOVA.
All data points represent mean + SEM. The “n” in the figures refers to the number of different
cells included for retinal recordings.

Information Theory Concepts

Input. Let us assume that the each visual spatio-temporal stimulus x is represented by a vector
in a D—dimensional space R” and that an RGC is characterised by a set of K vectors W = [w,
Wy,. . .wk]. Now for each stimulus vector x;, a real valued signal can be produced by projecting
the stimulus onto this subspace, using the inner product: y; = {x; - wy, x; - w,,. . .,x; - wi}. Hence
we define a transform g(x, W) of the natural stimuli (x) with respect to W as g(x,W): {x - w, x -
Wy,.. X - wi} = Y, and use as a measure of the input signal. An example of x given in S8(d) Fig.

Response classes. The detected RGC spikes were initially binned according to the frame
rates of the presented natural stimuli (for N input vectors there are N bins). The average spik-
ing response during stimuli presentation is a (N-dimensional) vector s. Now we note that the
average number of spikes per bin is in the range between 0 (no spikes) and more than 10. Since
the number of spikes after each input characterise the strength of the cell’s circuit response to
that input, the cell’s response can be separated into a set of discrete classes (C) defined
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accordingly by the number of spikes. The simplest division would be to have two classes: non-
spiking and spiking.

Mutual Information. MI(C, Y) between the class labels (C) and the transformed data (Y), is
defined as:

wien =y | p(c,ynog%dy W)

where P(c)is the probability of occurrence of a discrete class ¢, p(y) is the probability density of
arandom variable y which represents transformed input vector x and p(c, y) is the joint proba-
bility density for a (¢, y) pair. MI accounts for higher-order statistics, not just for second order
and it can also be used as the basis for non-linear transforms.

Quadratic Mutual Information (QMI). QMI as an alternative approach to MI was proposed
by Torkkola [27] because it provides an equally rigorous cost function for optimization as MI
but is far more computationally viable. Defined as:

r

(p(c,y) — P(c)p(y))dy

(2)

P(C7y)2 dy + Z JP(C)ZP(J’)2 dy —2 Z JP(c,y)P(c)p(y) dy = Ve + Vi + Verw

Y y ¥y

The last three terms in Eq (2) were named ‘information potentials’ [27].
Optimization. To perform the optimization we then need to solve:

W = argmax,, [QMI(C,Y)], y, = W'x, (3)
Hence the objective is to find the transformation W such that the transformed variable Y
maximises the mutual information between transformed inputs and class labels, for example

the natural video input and cell spiking. If QMI is estimated in a differentiable form then QMI
can be maximised using gradient ascent of the QMI in the input space, iteratively:

N N
oQMI OQMI 0y, O0QMI
Wos = Wt = Wb )y S won ) SO0 @)
i=1 i

ow "L oy, oW .
Where 1 is the learning rate. While the natural gradient of the QMI can be calculated directly,
to ensure orthogonality of the receptive field vectors during the optimization a Cayley trans-
form was used in combination with a Sherman-Morrison-Woodbury inversion to allow a sim-
ple gradient descent optimization to be performed, details of this technique can be found in
(74, 75].

To construct the subspace we used an orthonormal two-dimensional weight matrix W
(WTW =1) of size [K x (76800 x H)], where 76800 (= 320 x 240 pixels) is the dimension of a
single frame, and H is the number of frames used to represent the cells temporal response
(frame history). The projection of these vectors was then calculated by convolving the weight
vector with the stimuli frames (input vector x example shown in S8(d) Fig) to give Y with
dimensions [K x N]. The quadratic mutual information can then be calculated using eq (2).

Parzen density estimator [76]. If y;, = 1,.. ., N is a set of values for the random variable y
then the probability density is estimated as sum of spherical d-dimensional Gaussians each
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centred at a sample y;
1 N
p0) =5 Gl =y, ), )
i—1

where G is the Gaussian multivariate kernel function and o the Parzen-window width

1 1
G(,Z)=—————exp| —=p'="
%) (QE)d/Zml/zeXP( 57 y>,

with the key property:

JG(.V - Vi Gll)G(y 7ij621) = G(.Vi —Yp (61 + 62)1)' (6)

y

Probability distributions. Assuming that there are J. samples of class ¢, then the class prior
probabilities are (c) = J/N, with 3= | . = N. For the probability densities p(y) and p(c, y)
we use Parzen estimates, eq (5), with symmetric kernel of width o (assuming the same value for

both distributions):

N Je
1 o 1 o
P = DGl pley _N,Z Gy~ v o) @

where variables y x(k =1, ..., J.) all correspond to the same class c.
‘Information potentials’. Substituting Eq (7) in eq (2), all integrals transform into sums and
can be defined as “information potentials” as in [32]:

M Je Je

1
Vine = N2 § § E Gy, — Yejs 20°I)
c=1 j=1

i=1

1 M N N
V= N E J E E Gy, — 20°1)
=1 =1 j=1

i=1

) M N Je
Virw = N° § J. § E Gy, — Yo 20'21) (8)
=1 1

=1 j=

Mutual Information Bias. Bias can be estimated on the basis of an approximate formula

given in Panzeri et al. [71] eq 4:

s

BIASIMI(C, S)] ~ (UM{Z(& --R- 1)} ©)

where R, denotes the number of relevant responses for the stimulus conditional response prob-
ability distribution p(C|S) and R denotes the number of relevant responses for p(C), i.e. the
number of different responses C with nonzero probability of being observed across all stimuli.
S is one-dimensional stimulus projection (considered here for simplicity). Now R does not
depend on the frame size r, but R, does because the conditional probability distribution p(C|S)
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can change with r. To explain this let us use a very simple case of two input vectors, one that
produces a spike (C = 1) and one that causes no spikes (C = 0). Let us assume that for a small »
the projection values are S(spike) = 1 and S(nospike) = —1, and for large r: S(spike) = 10 and S
(nospike) = —10. The conditional probability distributions (which have Gaussian shape and let
assume o = 2) will be p(C=1|S=-10) = 0 and p(C = 0|S = —10) = 0, but will have non-negligi-
ble values for p(C = 1|S = —1) and p(C = 0|S = —1). Therefore R, will be bigger for smaller r and
hence the bias, as per eq (9), if ¢ is constant.

Receptive Field Vectors and error estimation. A standard jackknife technique was used [77,
78]: We first split the dataset into Nj,q datasets and use Nj,q-1 to calculate the RFVs, by omit-
ting one dataset at a time. This resulted in Nj, estimates of the vectors and the final result was
the average across these estimates. They were also used to find the standard error. In calculat-
ing the error we used the jackknife estimate of the standard error from ref.[78] eq (10.34). The
estimation is due to the work of John Tuckey in the late 1950's and it has a factor (n-1)/n in the
square root instead of the usual 1/[n(n-1)] for the standard deviation. More details about the
implementation of the method can be found in [34].

Predictive power of the model. Using the RFVs it is possible to predict responses of
RGCs to a variety of inputs using a common model such as the Linear-Nonlinear-Poisson cas-
cade model [12, 16, 17]. Results for the predictive power of the reduced stimulus space and an
analysis of the effects of nonlinearity [2, 12, 63, 79] that can be captured by this approach will
be published soon.

Spot Stimulus-Analysis of Physiological Data. The Spot stimulus consisted of two types
of stimulus protocols (presented at 3.75 um/pixel via the projector):

1. Expanding Black Spot (BS): frames alternating between uniform gray and gray with a black
spot of diameters 125, 250, 375, 500, 625 and 1250 pum. Every gray frame is presented for 3
seconds (the initial one for 2 seconds) and then a frame with a black spot is presented for 2
seconds, ref. [7] Fig 2.

2. Expanding White Spot (WS): exactly the same protocol as with the BS but with a white spot,

The light intensity contrast was K = 1.86 (black to gray) and 1.88 (gray to white), i.e. the ratio
of intensities was approximately B:G:W = 1:2:4. The gray background was in photopic region.

« Firing Rate (F): peri-stimulus time histogram (time bin size 10ms) or Parzen window density
estimation, we use Gaussian kernel of the width ¢ [76].

o Total number of spikes (N): the number of spikes during a 2 second cycle for the spot
stimulation.

o Cell Response (N,,,,,): the total number of spikes in the cycle at which this is at maximum.

« Transient/Sustained firing measures: assuming an exponential decrease of the firing rate
after the peak, the relative firing rate (f = F/F,,,,) can be approximated with: f= f; + (1 — f)-
exp(—t/T), where T is the time constant of the firing rate drop, and f; is the “steady state” rela-
tive firing rate which corresponds to the sustained firing rate towards the end of the stimulus
(2 seconds).

« Surround-Inhibition-Ratio: SIR = 1 = N(D,,,4x)/ N ax, where N(D,,,0.)/N,,ax is the ratio of the
total number of spikes for the maximum spot diameter (D,y,,, = 1250pum) and cell’s maxi-
mum response (N,,.)-

o (Static) Spatial Contrast index: SCI = 1 — N,,,,,(spatial contrast ON)/N,,..(spatial contrast
OFF), compares the cell’s spiking Response for the same temporal contrast but with and
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without spatial contras, e.g. response to BS-ON vs. WS-OFF (nominally the same temporal
contrast, but the first creates the static spatial contrast, the second removes it).

« Latency time: the time interval between the onset of a stimulus and the peak of the firing rate.
The firing rate distribution function was constructed using the Gaussian Parzen-windows, =
8ms.

o Receptive Field of optimal response for the Spot Stimulus: The positions of the maximum on

the cubic spline interpolation diagram N vs D and FR vs D are taken as indicators for the size
of the stimulus spot that has the strongest effect on the cell’s response.

Supporting Information

S1 Fig. Morphological quantification of PV RGCs into eight groups. (a) Maximum intensity
confocal microscopic projections of representative neurobiotin-labeled PV cells PV0-PV7.
Note electrical coupling of PV5 (5 ganglion cell somata) and PV7 (4 small somata within den-
dritic field) via diffusion of neurobiotin through gap junctions. Scale bars, 50 pm. (b) Vertical
section of the retina immunoreacted for calretinin (magenta) and ChAT (cyan) revealing inner
plexiform layer (IPL) strata. DAPI (gray) labels cell nuclei. ONL, outer nuclear layer; OPL,
outer plexiform layer; INL, inner nuclear layer. (b) Percent dendritic depth of 182 PV cells
(black bars; mean + SEM) relative to the ChAT bands (gray boxes: -15 to 15% for ON ChAT
band, 85 to 115% for OFF ChAT band; middle box is the middle calretinin band, 30 to 60%).
Bistratified cells are shown on the right (two bars per cell). (c-top) Two-dimensional cluster of
PV cells (n = 182) for k = 8 clusters. Each cluster corresponds to a different cell type (see
Results): PV7 —dark blue, PV6 -yellow, PV5 -magenta, PV4 —cyan, PV3 -red, PV2 —green,
PV1 —teal. Bistratified cells are black (PVO0); each point is from a pair. Y-axis, the depth range is
plotted between the mean GCL (-136%) and INL (202%) borders.; x-axis, dendritic field area.
(c-bottom) Mean (black points) and standard deviation (dark gray boxes) of each cluster from
(c-top), including both strata from bistratifed cells at 0% and 100% depth. Marker bands are
light-gray. Modified from [7] with permission.

(PDF)

S2 Fig. Visual stimuli. (a) Natural scene, frames 320x240 pixels usually displayed for 40ms (25
fps). For details of light stimulation parameters and contrast see ref. [8]. (b) Average spatial
correlation within frames, (c) Average temporal correlation from frame to frame (502 frames
in total).

(PDF)

S3 Fig. Visual response for PV1 cells to the natural stimulus sequence. The movies are
labelled catMov1, catMov2 and cat Mov3 —described above in S2 Fig. The onset of movies is at
0, and the movies last for 142 (catMovl), 189 (catMov2) and 174 (catMov1) frames. Before
and after the movies the retina is exposed to the uniform gray light. Different cells are shown in
alternating red and blue colours. Within each colour group each row is an individual recording.
Recordings for 11 cells, for each cell trials repeated 4-18 times.

(PDF)

S4 Fig. Raster plots for PV5 cells response to natural scene movies. Recordings for 7 cells are
shown, for each cell trials are repeated 4-10 times.
(PDF)

S5 Fig. (a) A single RFV for a PVO cell, but with the response (weights) taken to be propor-
tional to the product of the number of spikes in two successive bins instead of just the number
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of spikes. In this way bursts of spikes are better represented. Although this approach has some
similarities to the method which identifies the relevant variables as quadratic forms (“stimulus
energies”) as in [79], it is more related to event spike triggered analysis described by de Ruyter
van Steveninck and Bialek [21] and analysis about the information carried by compound
events in spike trains (such as spike bursts) by Brenner et al [23]. (b) The two vectors for a PV5
cell when the outputs were separated into three classes. The classes are, CO: no spikes (nS =0,
blue), C1: average number of spikes between 0 and 1 (0<nS<1, green), and C2: more than 2
spikes (nS>2, red). (c) One-dimensional and (d) two-dimensional plots of the separation of
the input stimuli on the basis of their projections onto w; (Projection 1) and w, (Projection 2)
and the number of spikes in the projection. With reference to w;: Class CO0 is negatively corre-
lated, C1 is positively correlated and C2 is not dependent (projection values are near zero).
With reference to w,: C2 is positively correlated, so will occur when RFV?2 is seen by the cell,
C2 is negatively correlated, so they occur when the inverse of REV1 is seen, and C1 moderately
negatively correlated.

(PDF)

S6 Fig. RFVs for multiple cells of the same class. (top) Table shows a summary of the record-
ings for seven different cells from the PV5 class. Columns are: cell number, cell name, number
of frames per second for the natural scene movies, time period for each frame, number of
recordings for each movie (catMovl has 141 frames, catMov2 has 188 frames and catMov3 has
173 frames), number of frame periods with zero spikes, number of frame periods with spikes—
the mean number of spikes per period is: less than 0.5, between 0.5 and 2, and more than 2,
and total, and finaly the total number of spikes for the complete natural scene stimulus consist-
ing of 502 frames. (bottom) RFVs for each cell. Note that the cell 1 has slower changing stimu-
lus (11 frames per second) and correspondingly the RFV is only 4 frames long (corresponds to
4x92ms ~ 370ms).

(PDF)

S1 Table. Physiological Properties of the PV RGCs. BS-Black Spot, WS-White Spot, NatS-
Natural Stimulus, Nc-number of cells (3-9 recordings per cell per stimulus).
(PDF)
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