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Abstract
Background  Alcohol is classified as a Group 1 carcinogen 
by the International Agency for Research on Cancer 
because it induces hepatocellular carcinoma (among other 
cancers) in humans. An excessive alcohol intake may 
result in fatty liver, acute/chronic hepatitis, and cirrhosis 
and eventually lead to hepatocellular carcinoma. It has 
been reported that alcohol abuse increases the relative 
risk of hepatocellular carcinoma by 3- to 10-fold.
Aim and Methods  To clarify the known mechanisms of 
alcohol-related carcinogenesis, we searched Pubmed 
using the terms alcohol and immune mechanism, alcohol 
and cancer, and immune mechanism and cancer and 
summarized the articles as a qualitative review.
Results  From a clinical perspective, it is well known that 
alcohol interacts with other factors, such as smoking, 
viral hepatitis, and diabetes, leading to an increased 
risk of hepatocellular carcinoma. There are several 
possible mechanisms through which alcohol may induce 
liver carcinogenicity, including the mutagenic effects 
of acetaldehyde and the production of ROS due to the 
excessive hepatic deposition of iron. Furthermore, it 
has been reported that alcohol accelerates hepatitis 
C virus-induced liver tumorigenesis through TLR4 
signaling. Despite intense investigations to elucidate the 
mechanisms, they remain poorly understood.
Conclusion  This review summarizes the recent findings 
of clinical and pathological studies that have investigated 
the carcinogenic effects of alcohol in the liver.

Introduction
Worldwide, liver cancer is the second highest 
cause of cancer-related death in men and the 
sixth highest cause of cancer-related death 
in women. Liver cancer is more common in 
low-income and middle-income countries 
than in developed countries.1 According to 
the National Cancer Institute, approximately 
40 700 cases of liver cancer are expected to be 
newly diagnosed, and approximately 29 000 
patients will die from liver cancer in the USA 
in 2017. Besides, the incidence of liver cancer 
is increasing by approximately 3%–4% per 
year.2 This means that liver cancer is a major 
public health problem.

Hepatocellular carcinoma (HCC), which 
accounts for around 70%–90% of cases, 
is the most common type of primary liver 
cancer. Alcohol consumption, the level of 
which is higher in developed countries, 

especially in the USA and Europe,3 is one 
of the frequent causes of HCC in developed 
countries.4 Conversely, chronic hepatitis B 
virus (HBV) infection is the major risk factor 
in low-income and middle-income countries. 
The ratio of alcohol abuse to all aetiologies 
of HCC varies according to the country 
and area; alcohol abuse is reported to be 
responsible for approximately 15%–30% of 
HCC.4 5 However, the appropriate methods 
for surveilling patients with alcohol use 
disorder (AUD) to facilitate the early-stage 
diagnosis of HCC remain to be determined, 
and mechanisms through which alcohol 
consumption is involved in the initiation of 
HCC remain unclear.

Understanding the clinical features and the 
mechanisms of alcohol-based HCC is critically 
important to the prevention and detection of 
early-stage HCC and for the development of 
treatments for HCC. This review summarises 
the recent clinical and pathological studies 
investigating the carcinogenic effects of 
alcohol in the liver.

The risks of liver cirrhosis and HCC
According to a WHO report, approximately 
280 million individuals, or 4.1% of the popu-
lation aged >15 years, meet the definition of 
AUD (alcohol dependence and the harmful 
use of alcohol). The prevalence is almost the 
same as the prevalence of hepatitis B, and 
is four times higher than the prevalence of 
hepatitis C.3 6 Because of the large popu-
lation—HCC screening (eg, ultrasonog-
raphy or the measurement of serum tumour 
marker levels) for all of such patients would 
lead to huge medical costs—it is necessary 
to select individuals with a high risk of HCC. 
In this respect, the American Association 
for the Study of Liver Diseases (AASLD) 
recommends that patients with Child’s clas-
sification A/B cirrhosis undergo surveil-
lance for HCC using ultrasonography with 
or without alpha-fetoprotein measurement, 
every 6 months, and does not recommend 
the modification of the surveillance strategy 
based on the ‘etiology of liver disease’, the 
strategy of which is almost the same as that 
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recommended by the European Association for the Study 
of the Liver.7 8 Incidentally, the previous AASLD guide-
lines for the management of HCC suggested that HCC 
surveillance is cost-effective if the annual incidence of 
HCC is ≥1.5% in patients with cirrhosis. Similar to hepa-
titis C and hepatitis B, the presence of alcoholic liver 
cirrhosis is considered to be an important risk factor 
for the development of HCC. It has been reported that 
approximately 10%–20% of heavy drinkers develop 
cirrhosis.9 Furthermore, several previous studies that 
have assessed the annual incidence of HCC in patients 
with alcohol-induced liver cirrhosis have revealed the 
rate to be 1.9%–2.6%.10 11 Thus, it might be appropriate 
to perform HCC surveillance for patients with alcoholic 
liver cirrhosis. However, even when guideline-based 
surveillance was performed, almost 20%–30% of HCC 
in patients with cirrhosis were diagnosed at a non-early 
stage.12 It is therefore necessary to determine the traits of 
patients with alcoholic liver cirrhosis that increase their 
risk of HCC and the traits of patients with AUD who show 
the highest risk of HCC.

The amount of ethanol as a risk factor
An excessive alcohol intake has been shown to be a risk 
factor for liver cirrhosis and HCC. It is considered that 
there is a linear dose–response relationship between 
alcohol consumption and the risk of cirrhosis and HCC.13 
An alcohol intake of 30–50 g/day increases the OR for 
liver cirrhosis,14–16 while an alcohol intake of >60–100 
g/day increases the OR for HCC.17–20 In terms of the 
total amount of alcohol intake during a patient’s life-
time, an alcohol consumption of >600 000 mL signifi-
cantly increased the risk of HCC development (OR=4.52, 
95% CI 2.39 to 8.55).21 22 Thus, the amount of ethanol 
consumption might provide an indication of the risk of 
liver cirrhosis and HCC.

Gender differences as a risk factor
There might be a gender difference in the volume of 
alcohol intake that increases the risk of alcohol-induced 
liver damage and the development of HCC. It has been 
reported that the risk of developing cirrhosis becomes 
substantial with the consumption of 60–80 g/day of 
alcohol for 10 years in men and 20 g/day for 10 years 
in women.14 23 In addition, women showed a more rapid 
progression (20 years) to cirrhosis than men (35 years).24 
Among individuals who consume more than 80 g/day of 
alcohol, the risk of HCC development in women has been 
shown to be almost fivefold higher than that in men.18 
However, the overall prevalence of HCC in women is 
small compared with that in men.

Various mechanisms have been suggested to underlie 
the higher sensitivity of women to alcohol.25 After the 
oral administration of alcohol, women show less first-pass 
metabolism of alcohol, which is defined as the difference 
in the amount of orally administered ethanol and the 
quantities in the systemic blood, due to their lower gastric 
alcohol dehydrogenase (ADH) activity, which results in 

a higher serum concentration of alcohol.26 Thus, even 
when the same amount of ethanol is consumed, the 
female liver may be exposed to more ethanol. Further-
more, oestrogen (a female sex hormone) may play an 
important role in alcohol-induced liver injury. It has been 
shown that oestrogen increases the sensitivity of Kupffer 
cells to lipopolysaccharide (LPS), which results in more 
severe liver injury.27 28 In fact, many previous studies have 
reported that more severe inflammatory responses in 
the liver and fat tissue, which were associated with toll-
like receptor (TLR4) signalling, were seen in female 
patients.29–35

Conversely, several lines of evidence indicate that 
oestrogen and its downstream signalling protect against 
HCC development.36–38 In N-nitrosodiethylamine 
(DEN)-induced HCC mouse model, it has been shown 
that ablation of interleukin-6 (IL-6) abolished the gender 
differences in HCC development, and oestrogen attenu-
ates serum IL-6 levels and IL-6 mRNA levels of Kupffer 
cell. These results suggest that oestrogen reduces the risk 
of HCC by the inhibition of IL-6 production from Kupffer 
cells.39 Taken together, the gender disparity in sensitivity 
to alcohol and HCC development cannot be sufficiently 
explained by simple mechanism. Although the preva-
lence of alcoholic liver disease (ALD) in female patients 
is low,3 they may require more intense surveillance.

Given that the importance of LPS–Kupffer cell interac-
tion has also been reported in a non-alcoholic steatohep-
atitis (NASH) model,40 41 young females could be severely 
affected with NASH via oestrogen-related LPS–Kupffer 
cell interaction worsening. However, several studies have 
demonstrated that oestrogen protects against liver inflam-
mation and fibrosis in a NASH model, and oestrogen 
deficiency has been reported to worsen steatohepatitis 
and liver fibrosis in human.42 43 As oestrogen has multiple 
functions and the expression profile of the mechanisms 
might differ in patients’ status, it is difficult to explain the 
effect simply.

The coexistence of hepatitis virus as a risk factor
In patients with ALD, the coexistence of hepatitis virus 
has been shown to accelerate the disease course.44 It 
has been reported that the prevalence of hepatitis C 
virus (HCV) infection in alcoholic patients is 16.32%,45 
which is much higher than that in the general population 
(1.5%–2.0%).46 47 In patients with a high alcohol intake 
(>60 g/day to 125 g/day), the coexistence of HCV has 
been shown to increase the risk of alcohol-associated liver 
cirrhosis.17 18 24 48–50 Furthermore, heavy alcohol consump-
tion has also been shown to increase the risk of devel-
oping HCC.18 44 Patients with coexisting HBV (defined by 
(hepatitis B s antigen) HBsAg-positivity) are at increased 
risk of developing fibrosis48 and HCC.51 52 In addition, 
self-resolved HBV infection (defined as HBsAg-negative, 
HCVAb-negative and HBcAb-positive) can be a risk factor 
for developing HCC in patients with alcoholic cirrhosis.53 
Although the mechanisms by which the synergistic effect 
between alcohol and hepatitis virus increases the risk of 
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liver fibrosis and HCC have been the subject of extensive 
research, they have not been completely elucidated.54–59 
Collectively, it might be better to perform surveillance of 
patients with ALD who show coexisting HBV or HCV.

Diabetes and obesity as risk factors
It has been well recognised that diabetes is a risk factor 
for HCC. Several meta-analyses have shown that diabetes 
is significantly associated with HCC (relative risk: 1.87–
2.32).60–64 As for the association between obesity and HCC, 
Larsson and Wolk61 reported that the relative risk of liver 
cancer among obese (defined as a body mass index of 
>30) individuals was 1.89 (95% CI 1.51 to 2.36).61 Case–
control studies have reported a synergistic interaction 
between heavy alcohol consumption and diabetes that 
affects the risk of HCC (OR: 4.2–9.9).44 65 Correspond-
ingly, alcohol use and obesity showed a synergistic inter-
action with the risk of developing HCC (HR: 3.82, 95% 
CI 1.94 to 7.52).66 Although the mechanisms of the syner-
gistic effect between ALD and diabetes are unknown, 
several mechanisms have been suggested to underlie the 
development of diabetes and/or obesity-induced HCC in 
patients with non-alcoholic steatohepatitis.67 In terms of 
cost-effective surveillance, a recent cohort study investi-
gated the potential predictors of HCC in 3544 patients 
with diabetes without viral hepatitis and suggested that 
a DM-HCC risk score included age >65 years, low triglyc-
eride levels and high gamma-glutamyl transferase levels.68 
In this study, although heavy drinking was found to be a 
significant predictor in a univariate analysis, it did not 
remain significant in a multivariate analysis.

In addition to the above-mentioned risk factors, others 
have been suggested, including genetic polymorphisms,69 
race and ethnicity.70 Thus far, unfortunately, there are no 
definitive hallmarks to narrow down the target patients. 
Further studies are required to establish clinically benefi-
cial prediction models.

Potential mechanisms of alcohol-induced HCC
The mechanisms underlying the induction of carcinogen-
esis by alcohol have not been fully elucidated. Because 
there are no animal models of alcohol-induced HCC 
alone, a chemical-induced (DEN) HCC model is mainly 
used to study the effects of alcohol intake on hepatocar-
cinogenesis.32 71 72 However, the priming effect of hepato-
carcinogenesis and the progressive effects have been well 
investigated.

Alcohol absorption and metabolism
Once ethanol is consumed, almost all of it is absorbed by 
the small intestine and metabolised by the liver.73 Ethanol 
is metabolised to acetaldehyde by ADH in the cytoplasm 
of hepatocytes, acetaldehyde subsequently enters the 
mitochondria, and is then oxidised to acetate by mito-
chondrial aldehyde dehydrogenase (ALDH). When a 
large amount of ethanol is consumed, cytochrome P450 
2E1 (CYP2E1), which mainly exists in the endoplasmic 
reticulum, and catalase of peroxisomes also contribute 

to the metabolism of ethanol. The CYP2E1-dependent 
pathway can catalyse ethanol into acetaldehyde while 
producing reactive oxygen species (ROS), such as 
hydroxyethyl, superoxide anion and hydroxyl radicals74 
(figure 1). In humans, there are at least seven different 
isozymes of ADH and four isozymes of ALDH. Several 
previous studies showed ALDH2 polymorphisms to be 
significantly associated with the development of HCC75; 
thus, it is possible that the metabolism of alcohol is 
involved in the mechanisms of HCC development.

The carcinogenic properties of acetaldehyde, an alcohol 
metabolite
Acetaldehyde has been shown to be a carcinogen in 
animal studies. With regard to direct DNA mutagenic 
mechanisms, it has been reported that acetaldehyde 
increases the point mutation frequency in the hypoxan-
thine phosphoribosyltransferase (HPRT) gene in lympho-
cytes,76 and induces sister chromatid exchanges.77 Mean-
while the formation of adducts with DNA, for example, 
N2-ethyl-deoxyguanosine (N2-Et-dG),78 has been found 
in patients with ALD. Another DNA adduct, N2-propa-
no-2’-deoxyguanosine (N2-Et-dGTP), has been reported 
to cause the alternation of DNA integrity.79 Furthermore, 
the formation of protein adducts plays an important role 
in carcinogenesis. Acetaldehyde interacts with certain 
amino acids in proteins, for example, the formation of 
adducts with O6-methylguanine methyltransferase causes 
DNA repair system dysfunction.80 With regard to liver 
fibrosis, acetaldehyde produced in the hepatocytes can 
enter the hepatic stellate cell (HSC) and induces the 
expression of type I collagen genes in vitro.81 Acetalde-
hyde adducts with protein have been shown in HSC.82 
Taken together, the direct DNA mutagenic effect of acet-
aldehyde and the indirect carcinogenic effect through 
the formation of adducts may modulate hepatocarcino-
genesis and liver fibrosis.

Alcohol and oxidative stress
As described above, the metabolism of ethanol through 
the CYP2E1-dependent pathway produces ROS. Subse-
quently, the increase of ROS results in the generation of 
lipid peroxidation products, such as malondialdehyde 
(MDA) and 4-hydroxy-2-nonenal (4HNE).83 A significant 
increase in CYP2E1 could be induced for 1 week in patients 
who consumed more than 40 g of ethanol per day and 
was further elevated after 4 weeks.84 In an animal model, 
the induction of CYP2E1 by ethanol causes the produc-
tion of hydroxyethyl radicals and lipid peroxidation.85 
Furthermore, in humans, it has been shown that etha-
nol-mediated CYP2E1 induction leads to the increased 
levels of ROS, lipid peroxidation, MDA and 4HNE.86 
4HNE, one of the lipid peroxidation products, can cause 
a mutation at codon 249 of the p53 gene87; this mutation 
is commonly found in HCC (20%–30%). In addition to 
the mutagenic effects on DNA, ROS play an important 
role as mediators of tumour angiogenesis and metastasis. 
It has been shown that alcohol-induced ROS production 
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Figure 1  Scheme of the immune system in HCC surveillance and the metabolic effects of alcohol exposure on hepatocyte. 
The metabolism of ethanol through the CYP2E1-dependent pathway produces acetaldehyde, radicals and lipid peroxidation 
products, such as MDA and 4HNE. Alcohol consumption reduces the number of CD8+ T cells and NK cells, and reduces the 
NKG2D expression on NK cells. 4HNE, 4-hydroxy-2-nonenal; ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; 
CYP2E1, cytochrome P450 2E1; ER, endoplasmic reticulum; HCC, hepatocellular carcinoma; MDA, malondialdehyde; NK, 
natural killer; NKG2D, NK group 2D.

results in the activation of NF-kB signalling; conversely 
the expression levels of VEGF and MCP-1, the tumour 
growth, angiogenesis and metastasis were suppressed by 
the inhibition of alcohol-mediated ROS production and 
NF-kB signalling.88 Apart from above-mentioned mech-
anisms of CYP2E1-mediated ROS generation, iron over-
load and tumour necrosis factor-alpha from inflammatory 
cells also influence ROS production. Chronic ethanol 
consumption increases intestinal iron absorption and 
hepatic iron storage. Iron overload has been shown to 
cause DNA strand breaks and p53 mutation, which could 
cause hepatocarcinogenesis.89 90

Alcohol and the methylation of DNA and protein
Aberrant DNA methylation and protein methylation 
may play important roles in the development of various 
cancers, including HCC. In most cases, DNA methylation 
is associated with a decreased gene expression because of 
interference with the interaction of transcription factor 
and CpG islands of promoter lesions (usually unmeth-
ylated).91 It has been shown that alcohol inhibits the 
synthesis of S-adenosyl-L-methionine (SAMe), which is a 
universal methyl group donor. The generation of SAMe is 
induced by the enzyme methionine adenosyltransferase 

(MAT). MAT is encoded by two different genes: MAT1A 
and MAT2A. It has been shown that MAT1A knockout 
mice develop SAMe deficiency, fatty liver and HCC.92 
Furthermore, in patients with AUD, the hepatic MAT 
activity and the expression of the MAT1A gene are 
reported to be decreased.93 SAMe also works as a methyl 
group donor for protein methylation. A recent study by 
Jie Zhao et al94 reported that the activity of PRMT1 in 
the mouse liver, which is a protein arginine methyltrans-
ferase, was inhibited by ethanol feeding. They revealed 
that the Hnf4α-dependent hepatocyte proliferation was 
regulated by the balance of methylation and demethyla-
tion of Hnf4α promoter, which depends on PRMT1 and 
JMJD6, respectively.94

Taken together, elucidating the mechanisms of the 
aberrant DNA and protein methylation in HCC may lead 
to the discovery of novel therapeutic targets, and SAMe 
might be a potential candidate for preventive medicine 
targeting HCC.

The tumour microenvironment
Recent studies have highlighted the cross-talk between 
tumour cells and the surrounding microenvironment; 
in the liver, this mainly consists of immune cells, HSC, 
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fibroblasts and sinusoidal endothelial cells. Although 
there is increasing evidence to show that the tumour 
microenvironment influences the development of 
HCC,95 the mechanisms by which alcohol consumption 
contributes to the progression of HCC remain unclear. 
In this respect, recent studies have reported that ethanol 
feeding promoted DEN-induced tumourigenesis in the 
liver, and reduced the number of antitumour CD8+ 
T cells and increased the number of tumour-associ-
ated macrophages and/or M2 macrophages in mouse 
models.96 97 These studies strongly indicate that the 
immune systems of alcohol-induced HCC may also be a 
potential therapeutic target.

The role of the immune system in tumour surveillance
Natural killer (NK) cells, which are characterised by 
CD56+ and CD3− lymphocytes in humans, seem to play a 
role in tumour surveillance. NK cells are abundant in the 
liver, where they can constitute up to 30% of the intra-
hepatic lymphocyte population.98 The release of gran-
ules (ie, perforin and granzymes) and the secretion of 
cytokines (ie, Fas and TRAIL) by NK cells have a rapid 
cytotoxic effect. NK cells express several activating recep-
tors, such as the NK group 2D (NKG2D), natural cyto-
toxicity receptors, CD226 (DNAX accessory molecule-1) 
and CD16 (Fcγ receptor III), to recognise ligands. There 
is increasing evidence to suggest that NK cells contribute 
to the pathogenesis of HCC.99 In clinical studies, patients 
with HCC with low levels of tumour-infiltrating lympho-
cytes showed poor prognosis.100 101 Furthermore, the 
antitumour ability of NK cells has been shown to be 
reduced in patients with HCC.102 103 A study using an 
animal model demonstrated that the depletion of NK 
cells resulted in a decrease in the antitumour activity of 
IL-18/IL-12 therapy.104 With regard to the relationship 
between NK cells and alcohol use, many studies have 
reported an association between alcohol consumption 
and NK cell dysfunction. The NK cells in the peripheral 
blood of patients with alcoholic liver cirrhosis showed 
reduced cytotoxic activity against cancer cells.105 In an 
animal model, alcohol ingestion reduced the cytotox-
icity of NK cells, which resulted from the reduction of 
NKG2D.9898 Furthermore, a recent study showed that 
alcohol consumption reduced the number of cytotoxic 
NK cells defined as Eomes+CD3−NK1.1+ in the liver.106 
However, further studies are needed as it is difficult to 
completely clarify the association between NK cells and 
alcohol-induced HCC.

TLR4 and hepatocarcinogenesis in alcohol users
TLR4 recognises the lipid A motif of LPS, which is a 
component of Gram-negative bacteria. The plasma 
LPS levels were elevated in ethanol-fed animals and the 
plasma endotoxin levels were found to be elevated in 
patients with ALD.107 108 Machida et al109 reported that an 
HCV-derived protein, NS5A, induced the expression of 
the TLR4 gene in hepatocytes and B cells.109 They also 
showed that alcohol induced the progression of HCC 

through LPS-TLR4signaling activation. The LPS-TLR4 
pathway was regulated by the Nanog-mediatedmodu-
lation of the mitochondrial metabolism in NS5A Tg 
mice.110 These studies suggest the crucial involvement of 
TLR4 and NANOG in the induction of HCC that is medi-
ated by alcohol and HCV infection.

Gene polymorphisms and HCC development in ALD
Several studies have demonstrated that genetic suscepti-
bility is associated with the alcohol-induced cancer risk. 
There are several genetic polymorphisms that affect 
the clinical course of ALD as they can induce psycho-
logical behavioural changes, alcohol metabolism, lipid 
metabolism, oxidative stress-related pathway activation 
and inflammatory responses.69 As described above in 
the Alcohol absorption and metabolism section, the 
gene polymorphisms of ADH2 and ALDH2 have been 
reported to correlate with HCC development in a Japa-
nese cohort study,21 111 but several studies conversely 
found no association with HCC69; thus, further validation 
is needed. Concerning alcohol-induced HCC develop-
ment, the gene polymorphism of patatin-like phospholi-
pase 3 domain containing 3 (PNPLA3) was found to be 
an important risk factor. Several cohort studies revealed 
the risk of PNPLA3 (rs738409) on alcohol-induced HCC 
in patients with ALD.112–114 A recent genome-wide asso-
ciation study in Europe revealed that the gene polymor-
phisms of TM6SF2 and PNPLA3 could be regarded as 
potential genetic risk factors for the development of alco-
hol-related HCC.115

Conclusion
Several clinical factors increase the risk of alcohol-in-
duced HCC. A large alcohol intake, coexistence of 
diabetes and hepatitis virus infection, and female gender 
are established factors. The precise mechanisms of hepa-
tocarcinogenesis are not clearly understood; however, 
there is increasing evidence to suggest that many factors 
are involved. Alcohol metabolites and adducts have been 
shown to induce oxidative stress, direct mutagenesis, and 
the aberrant methylation of DNA or protein on hepato-
cytes. Furthermore, the immune system is also implicated 
in the development and progression of HCC. Obviously, 
the best approach for resolving this complex pathogen-
esis is the cessation of alcohol consumption. However, 
as this is often difficult, further studies are needed to 
reduce the risk of HCC.
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