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Genome  cyclization  through  conserved  RNA  sequences  located  in  the 5′ and  3′ terminal  regions  of  fla-
vivirus  genomic  RNA  is  essential  for virus  replication.  Although  the  role  of various  cis-acting  RNA  elements
in panhandle  formation  is  well  characterized,  almost  nothing  is  known  about  the  potential  contribution  of
protein  cofactors  to viral  RNA  cyclization.  Proteins  with  nucleic  acid  chaperone  activities  are  encoded  by
many  viruses  (e.g.,  retroviruses,  coronaviruses)  to  facilitate  RNA  structural  rearrangements  and  RNA–RNA
interactions  during  the viral  replicative  cycle.  Since  the  core  protein  of  flaviviruses  is  also  endowed  with
potent RNA  chaperone  activities,  we  decided  to  examine  the  effect  of  West  Nile  virus  (WNV)  core  on  5′–3′

genomic  RNA  annealing  in  vitro.  Core  protein  binding  resulted  in  a dramatic,  dose-dependent  increase  in
′ ′
laviviruses
iral replication
enome cyclization
NA chaperoning

5 –3 complex  formation.  Mutations  introduced  in  either  the  UAR  (upstream  AUG  region)  or  CS (conserved
sequence)  elements  of  the  viral  RNA  diminished  core  protein-dependent  annealing,  while  compensatory
mutations  restored  the  5′–3′ RNA  interaction.  The  activity  responsible  for  stimulating  RNA annealing
was  mapped  to the C-terminal  RNA-binding  region  of  WNV  core  protein.  These  results  indicate  that  core
protein – besides  its function  in viral  particle  formation  – might  be involved  in  the  regulation  of  flavivirus

,  and  
genomic  RNA  cyclization

. Introduction

Flaviviruses constitute a large and diverse group within the
laviviridae family of positive-strand enveloped RNA viruses
Lindenbach et al., 2007). Medically important flaviviruses include
he mosquito-borne West Nile virus (WNV), yellow fever virus
YFV), Japanese encephalitis virus (JEV), and dengue virus (DENV
erotypes 1–4), as well as tick-borne encephalitis viruses (TBEV).
nfection by arthropod-borne flaviviruses is associated with sig-
ificant morbidity and mortality worldwide (Gould and Solomon,
008; Griffin, 2011; Guzman et al., 2010). Increased urbaniza-

ion, intercontinental travel, failure of vector mosquito control and
ncreasing global temperatures have collectively resulted in the
ecent emergence or re-emergence of mosquito-borne flaviviruses

Abbreviations: CS, conserved sequence; DAR, downstream AUG region; DB,
umbbell-like structure; DENV, dengue virus; JEV, Japanese encephalitis virus; ORF,
pen reading frame; RdRp, RNA-dependent RNA polymerase; sfRNA, subgenomic
avivirus RNA; TBEV, tick-borne encephalitis virus; UAR, upstream AUG region;
TR, untranslated region; WNV, West Nile virus; YFV, yellow fever virus.
∗ Corresponding author. Current address: UMR  7213 CNRS, Laboratoire de Bio-
hotonique et Pharmacologie, Faculté de Pharmacie, 74 route du Rhin, 67401

llkirch, France.
E-mail address: jldarlix@ens-lyon.fr (J.-L. Darlix).

1 Current address: Molecular Parasitology Group, The Weatherall Institute of
olecular Medicine, University of Oxford, Oxford OX3 9DS, UK.

168-1702/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.virusres.2012.05.003
thus  virus  replication.
© 2012 Elsevier B.V. All rights reserved.

in previously disease-free areas (Gould and Higgs, 2009; Kilpatrick,
2011). West Nile virus first appeared in the New World in 1999,
causing a viral encephalitis outbreak in New York City (Petersen,
2009). Since then, the virus has rapidly spread throughout the US,
Central and South America, reaching Argentine by 2006 (Petersen,
2009). Due to the increased geographic dispersal of the Asian
tiger mosquito Aëdes albopictus,  dengue virus is currently re-
emerging in Southern Europe (Gjenero-Margan et al., 2010; La
Ruche et al., 2010), after almost a hundred-year hiatus (Rosen,
1986).

Flaviviruses are small, enveloped viruses with a single-stranded,
positive sense RNA genome of ∼11 kb. A single open reading frame
(ORF) encodes a large polyprotein precursor which is co- and
post-translationally processed to yield the viral structural proteins
(C-prM-E), and the non-structural proteins (NS1-NS2A-NS2B-NS3-
NS4A-NS4B-NS5) directing genome replication (Lindenbach et al.,
2007). The ORF is flanked by a short (∼100 nt) 5′ untranslated region
(UTR) and a longer (∼400–800 nt) 3′ UTR, both of which contain
highly conserved RNA secondary structures and RNA sequences
involved in the regulation of viral translation and RNA replica-
tion [reviewed in (Brinton, 2002; Markoff, 2003); see Fig. 1]. The 5′

UTR begins with a Y-shaped stem-loop (SLA) (Brinton and Dispoto,

1988) necessary for viral replication (Filomatori et al., 2006). The
initiator AUG codon for polyprotein synthesis is situated in a second
stem-loop structure (SLB), which is followed by the capsid-coding
region hairpin (cHP) regulating start codon selection (Clyde et al.,

dx.doi.org/10.1016/j.virusres.2012.05.003
http://www.sciencedirect.com/science/journal/01681702
http://www.elsevier.com/locate/virusres
mailto:jldarlix@ens-lyon.fr
dx.doi.org/10.1016/j.virusres.2012.05.003


R. Ivanyi-Nagy, J.-L. Darlix / Virus Research 167 (2012) 226– 235 227

Fig. 1. Schematic representation of the linear and circular forms of WNV  genomic RNA. Flavivirus infected cells accumulate two major RNA species, the viral genomic RNA
and  the small sfRNA (subgenomic flavivirus RNA). RNA secondary structures were predicted by Mfold (Zuker, 2003), using constraints on experimentally characterized RNA
structures (see references in text). The conserved RNA structures and sequences include: SLA—stem-loop A; UAR—upstream AUG region; DAR—downstream AUG region;
CS—conserved sequence; cHP—capsid region hairpin; sHP—small hairpin; DB1 and DB2—dumbbell structures; 3′ SL—3′ stem-loop. 5′ and 3′ UAR sequences are highlighted
in  dark red and magenta, respectively. 5′ and 3′ CS elements are highlighted in dark and light blue. Conserved pseudoknot structures are illustrated in green. The core
protein-coding sequence partly overlaps with RNA secondary structures in the 5′ region of the genome. Note that the lower stem of 3′ SL is opened in the circular RNA
form,  facilitating binding of the viral replication complex. Cyclization sequences of representative mosquito-borne flaviviruses are shown below the circular RNA structure
(GenBank accession for West Nile virus—AF260968; Japanese encephalitis virus—NC 001437.1; yellow fever virus—NC 002031.1; dengue virus type 1—NC 001477). (For
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008; Clyde and Harris, 2006). The 3′ UTR consists of a variable
egion, followed by tandem dumbbell-like structures (DB1 and
B2), and a highly stable and conserved terminal stem-loop (3′ SL)

Brinton et al., 1986). In addition, a complex network of pseudo-
not interactions is thought to influence the topology and function
f the 3′ UTR (Funk et al., 2010; Olsthoorn and Bol, 2001; Pijlman
t al., 2008; Shi et al., 1996; Silva et al., 2010).
The positive-sense genomic RNA of flaviviruses is first copied
y the viral RNA-dependent RNA polymerase (RdRp) to gener-
te a complementary minus-strand RNA that, in turn, serves as

 template for the amplification of plus-strand viral genomes.
e web  version of the article.)

Interestingly, in vitro polymerase assays demonstrated that minus-
strand RNA synthesis requires the presence of both the 5′ and 3′

UTRs (You et al., 2001; You and Padmanabhan, 1999). The pro-
moter element for minus-strand RNA synthesis was later identified
as stem-loop A (SLA, Fig. 1) in the 5′ UTR, which binds the viral RdRp
with high affinity (Filomatori et al., 2011, 2006; Lodeiro et al., 2009).
According to current models, based mostly on work in dengue

viruses, panhandle formation through complementary sequences
in the 5′-core and 3′ UTR regions would reposition the 3′ end of
the genome in the vicinity of the promoter–RdRp complex, cou-
pling transcription initiation to genome cyclization (reviewed in
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ebhard et al., 2011). At the same time, the long-distance RNA
nteraction is believed to be accompanied by structural rearrange-

ents in the highly conserved 3′ stem-loop (3′ SL, Fig. 1) (Dong
t al., 2008), allowing RdRp binding to the terminal nucleotides
f the genome (Gebhard et al., 2011). Genomic RNA cyclization in
osquito-borne flaviviruses is mediated by three pairs of long dis-

ance RNA interactions: 5′–3′ UAR (upstream AUG region) (Alvarez
t al., 2005b),  5′–3′ DAR (downstream AUG region) (Dong et al.,
008; Friebe and Harris, 2010), and 5′–3′ CS (conserved sequence)
Hahn et al., 1987) (Fig. 1). Mutations disrupting complementarity
n any of these elements abrogate viral replication in subgenomic
eplicon model systems (Alvarez et al., 2008, 2005b; Bredenbeek
t al., 2003; Corver et al., 2003; Friebe and Harris, 2010; Friebe
t al., 2011; Khromykh et al., 2001; Lo et al., 2003; Men  et al., 1996;
illordo et al., 2010; Zhang et al., 2008), while compensatory muta-

ions rescue viability (Alvarez et al., 2008, 2005b; Friebe and Harris,
010; Friebe et al., 2011; Khromykh et al., 2001; Lo et al., 2003;
hang et al., 2008).

Flavivirus genomic RNA is encapsidated by the small, highly
asic core protein. Core corresponds to the N-terminus of the
olyprotein, from where it is released in its mature form by the
ction of the NS2B-NS3 serine protease complex (Amberg et al.,
994; Lobigs, 1993; Yamshchikov and Compans, 1994). Despite
elatively little sequence conservation, all flavivirus core proteins
hare a common functional and structural domain organization.
he N- and C-terminal extremities contain a high concentra-
ion of basic amino acids, and bind to the viral genomic RNA
ndependently (Khromykh and Westaway, 1996). Flanked by the
NA-binding regions, an internal hydrophobic domain is respon-
ible for the dimerization/oligomerization (Bhuvanakantham and
g, 2005; Wang et al., 2004), as well as for the membrane/lipid
ssociation of core protein (Markoff et al., 1997; Samsa et al., 2009).
tructural studies by circular dichroism, X-ray crystallography and
uclear magnetic resonance (NMR) on DENV, WNV, and YFV core
roteins (Dokland et al., 2004; Ivanyi-Nagy et al., 2008; Jones et al.,
003; Ma  et al., 2004) also support a conserved structure, with a
ighly flexible N-terminal RNA-binding region followed by three or

our alpha-helices. Interestingly, deletion analyses demonstrated a
emarkable functional flexibility of core protein, suggesting that
recisely folded three-dimensional structures are not required
or RNA binding and membrane association, and these functions
re rather determined by the overall physico-chemical nature of
he domains. Large deletions are well tolerated in the internal
ydrophobic region of both mosquito-borne and tick-borne fla-
iviruses (Kofler et al., 2002, 2003; Schlick et al., 2009; Zhu et al.,
007). Similarly, the N- and C-terminal extremities can function (at

east partly) redundantly in RNA packaging (Patkar et al., 2007).
Core proteins of WNV  (Ivanyi-Nagy et al., 2008), dengue virus

Pong et al., 2011), as well as cores in the related hepaciviruses
Cristofari et al., 2004; Ivanyi-Nagy et al., 2006) and pestiviruses
Ivanyi-Nagy et al., 2008), were shown to facilitate nucleic acid
earrangements without ATP consumption, acting as efficient RNA
haperones in vitro. The RNA chaperone activity of WNV  core
as mapped to the C-terminal RNA-binding region of the protein

Ivanyi-Nagy et al., 2008). In this study, we examined the effect
f WNV  core protein chaperoning on viral 5′–3′ UTR annealing,
sing an in vitro model system with separate 5′ and 3′ RNAs. We
ound that core protein binding greatly increases the rate of 5′–3′

omplex formation, and is required for the interaction when full-
ength 3′ UTR RNAs are used (Fig. 2). Mutations abolishing either the
AR or CS interaction diminished, but did not completely abrogate
ore-protein induced annealing, while compensatory mutations

estored the interaction (Fig. 3). In agreement with the results of
n vitro chaperone assays (Ivanyi-Nagy et al., 2008), stimulation of
NA annealing was mapped to the C-terminal RNA-binding region
f core protein (Fig. 4).
esearch 167 (2012) 226– 235

2. Materials and methods

2.1. Plasmid construction

For cloning the 3′ UTR of West Nile virus (Eg101 strain, GenBank
accession AF260968), total RNA was extracted from virus infected
Vero cells and reverse transcribed using the ThermoScript RT-PCR
system (Invitrogen). Reverse transcription was  carried out at 60 ◦C,
using ODN Eg101-3′UTR-ss as a primer (Table 1). cDNA was  ampli-
fied by Eg101-3′UTR-ss and Eg101-3′UTR-as and cloned between
the SalI and HindIII sites of pSP64 (Promega), resulting in pSP64-
3′UTR vector. Deletions in the 3′ UTR were introduced by amplifying
the desired regions in pSP64-3′UTR by PCR, and re-cloning the frag-
ments between the SalI and HindIII sites of pSP64.

The 5′ UTR-core region (nt 1–164 of the viral genome) was
cloned by annealing of overlapping ODNs (Eg101-5′UTR-01 to -05),
followed by ligation between the XmaI and EcoRI sites of pSP64
vector (Promega).

Mutations were introduced in the UAR or CS region of pSP64-
3′UTR or pSP64-5′UTR-core by using a PCR-based mutagenesis
protocol (Mikaelian and Sergeant, 1992), with three common ODNs
(pSP64, pSP64-T7, and SP6) and one mutation-specific ODN (mut-
UAR or mut-CS) for each mutant.

All plasmid constructs were verified by sequencing.

2.2. Proteins and peptides

Full length WNV  core protein (amino acids 2–105; GenBank
accession number AF481864) was expressed in Escherichia coli and
purified as previously described (Ivanyi-Nagy et al., 2008). Core
peptides WNV  C(1–24) and WNV  C(80–105), corresponding to the
N- and C-terminal RNA-binding regions of the core protein, were
synthesized by Fmoc-OH/DCC/Hobt chemistry and purified as pre-
viously described (Ivanyi-Nagy et al., 2008).

2.3. In vitro RNA synthesis

Plasmids containing the 5′ UTR-core region or fragments of the 3′

untranslated region of WNV  strain Eg101 were linearized by diges-
tion with XmaI or HindIII restriction enzymes, respectively. In vitro
transcription was  carried out using T7 RNA polymerase, according
to the manufacturer’s instructions (Promega). 5′ UTR-core RNAs
were labelled by incorporation of �32-P UMP  during in vitro tran-
scription. RNAs were purified on 6% denaturing polyacrylamide
gels containing 7 M urea in 50 mM Tris-borate (pH 8.3)–1 mM EDTA
(0.5× TBE), and recovered by elution in 0.3 M sodium acetate–0.1%
SDS overnight at 37 ◦C, followed by ethanol precipitation.

2.4. RNA annealing assays

In vitro synthesized RNAs were heat denatured for 2 min  at
95 ◦C and chilled on ice. 0.1 pmol of each 5′ UTR-core and 3′ UTR
RNA were mixed with annealing buffer to a final concentration of
20 mM Tris–Cl, pH 7.0, 30 mM NaCl, 0.1 mM MgCl2, 10 �M ZnCl2,
10 U RNasin and 5 mM DTT in 10 �l final volume. WNV  core pro-
tein or core peptides were added to final protein to RNA nucleotide
molar ratios as indicated in the figure legends (typically between
1/40 and 1/5 protein/nucleotide ratios). Reactions were incubated
at 37 ◦C for 10–15 min  and quenched by adding stop solution (0.5%
SDS–25 mM EDTA). Proteins were removed by proteinase K diges-

tion and phenol–chloroform extraction. The purified RNA samples
were resolved by 8% native polyacrylamide gel electrophoresis in
0.5× TBE and analysed by autoradiography and Phosphorimager
quantification.
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Fig. 2. Core protein facilitates the annealing of WNV  5′ UTR-core and 3′ UTR RNAs. (A) Position and secondary structure of RNA molecules used in this study. (B) Core protein
enhances 5′–3′ WNV  RNA interactions. Radioactively labelled RNA 1–164 was incubated with the full-length 3′FL-UTR RNA (lanes 1–5), 3′�VR RNA (lanes 6–10), or 3′CYC
RNA  (lanes 11–15) in the presence of increasing concentrations of full-length WNV  core protein, as described in Section 2. Protein-to-nucleotide molar ratios were 1/40
(lanes  2, 7, 12), 1/20 (lanes 3, 8, 13), 1/10 (lanes 4, 9, 14), or 1/5 (lanes 5, 10, 15). Lanes 1, 6, and 11 show RNA annealing in the absence of core protein. (C) Kinetics of 5′–3′

RNA annealing without core protein. Radioactively labelled RNA 1–164 was  incubated with 3′FL-UTR RNA, 3′�VR RNA, or 3′CYC RNA at 37 ◦C for different length of time,
as  indicated below the lanes. (D) Kinetics of 5′–3′ RNA annealing in the presence of core protein. The experiment was carried out the same way as in (C), but a constant 1
p molec
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rotein/5 nucleotide molar ratio of full-length core protein was  added to the RNA 

urves  were fitted using Graphpad Prism©, as described in Doetsch et al. (2011).

. Results

.1. Chaperoning 5′–3′ RNA interactions by the core protein

Cyclization of the genomic RNA is essential for viral replica-

ion in all mosquito-borne flaviviruses (Alvarez et al., 2008, 2005b;
orver et al., 2003; Khromykh et al., 2001; Lo et al., 2003; Zhang
t al., 2008), but the determinants and regulation of panhandle for-
ation are still poorly understood. Although complex formation
ules. (E) Quantification of the annealing reactions shown in (C) and (D). Annealing

between 5′ and 3′ UTR RNAs can be readily detected in vitro in the
absence of protein cofactors (Alvarez et al., 2008, 2005b; Villordo
et al., 2010; Zhang et al., 2008, 2010), these interactions usually
require high magnesium and RNA concentrations and involve short
RNA molecules, thus minimizing the possibility for the RNA to

become kinetically trapped in non-functional conformation(s). But
in the cellular milieu,  RNA folding and RNA–RNA interactions are
perhaps universally facilitated by RNA chaperones and/or specific
RNA-binding proteins (Cristofari and Darlix, 2002), either encoded
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Fig. 3. Core protein-induced annealing is mediated by the UAR and CS elements. (A) Mutations introduced in the UAR and CS elements of WNV. The initiator AUG  is indicated
in  red. (B) Wild-type (wt) or mutant radioactively labelled RNA 1–164 was incubated with wild-type 3′FL-UTR RNA or with 3′ UTR RNAs containing mutations restoring the
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′–3′ UAR or 5′–3′ CS interactions. Protein-to-nucleotide molar ratios were 1/40 (lan
,  10, 15, 20, 25). Lanes 1, 6, 11, 16, and 21 show RNA annealing in the absence of co

nterpretation of the references to colour in this figure legend, the reader is referred

y viruses or hijacked from the host for chaperoning viral transla-
ion, replication, and packaging.

We  have previously shown that the core protein of WNV
ossesses potent RNA chaperone activities in vitro (Ivanyi-Nagy
t al., 2008), facilitating nucleic acid annealing and RNA struc-
ural rearrangements. In order to analyse the possible effect of
ore protein on panhandle formation in the WNV  genome, RNA
olecules corresponding to nucleotides 1–164 of the genomic

NA (RNA 1–164; Fig. 2A) were in vitro synthesized, radioactively
abelled and incubated with equal amounts of non-labelled 3′FL-
TR RNA (Fig. 2A) in the presence of varying amounts of full-length
NV  core protein. Following proteinase K digestion of proteins

nd phenol–chloroform purification of RNAs, 5′–3′ RNA complex
ormation was assessed by electrophoretic mobility shift assays
Fig. 2B, lanes 1–5). WNV  core induced a dose-dependent increase
n RNA–RNA interactions, resulting in almost complete annealing
t 1 protein to 5 nt molar ratio (Fig. 2B, lane 5; compared to lane

 in the absence of core protein). In order to examine the poten-
ial effect of intramolecular interactions on annealing in the 3′ UTR,
′ deleted 3′ UTR RNAs, lacking either the variable region (3′�VR
NA), or most of the UTR except for the cyclization sequences
nd the 3′ stem-loop (3′CYC RNA) were examined (Fig. 2B, lanes

–10 and 11–15, respectively). For all RNA molecules, incubation
ith core protein induced efficient annealing in a dose-dependent
anner (Fig. 2B, lanes 7–10 and 12–15). Interestingly, core protein-

ndependent annealing was more pronounced for the shortest
, 12, 17, 21), 1/20 (lanes 3, 8, 13, 18, 23), 1/10 (lanes 4, 9, 14, 19, 24), and 1/5 (lanes
tein. The percentage of 5′–3′ complex formation is indicated below the lanes. (For

e web  version of the article.)

3′CYC RNA (lane 11 vs lanes 6 and 1), suggesting that RNA sequences
5′ to the cyclization signals might change the topology of the 3′ UTR
and interfere with the annealing reaction. To further characterize
these differences, a time-course analysis of annealing, either with-
out core protein (Fig. 2C), or in the presence of full-length core
(Fig. 2D) was  carried out. Without core protein, annealing for the
3′FL-UTR RNA and 3′�VR RNA was  hardly detectable during the 1 h
incubation period, while for the shortest 3′CYC RNA, around one
third of the molecules formed 5′–3′ RNA interaction (Fig. 2C and
E). In contrast, core protein dramatically increased complex forma-
tion, resulting in high levels of annealing as early as 30 s (Fig. 2D
and E). Indeed, based on second-order kinetics, the initial annealing
rate was estimated to increase by ∼500-fold in the presence of core
(data not shown). Nevertheless, annealing of the longer RNAs was
still significantly delayed compared to 3′CYC RNA, suggesting that
a kinetic barrier must be overcome for the reaction to proceed.

Phylogenetic analyses suggest that the current discontinuous
cyclization sequence of mosquito-borne flaviviruses originated –
possibly by template switching – as a perfectly complementary
continuous region, conserved to this day in the tick-borne mem-
bers of the flavivirus genus (Gritsun and Gould, 2007). Thus, the
UAR-DAR-CS region probably acts as a single regulatory sequence,

where replication is determined by the overall stability of the long
distance interaction between the 5′ and 3′ regions. In support of
this, replication of WNV  with a complete deletion of the 3′ CS
can be rescued by second-site mutations stabilizing the UAR and



R. Ivanyi-Nagy, J.-L. Darlix / Virus Research 167 (2012) 226– 235 231

Fig. 4. The C-terminal RNA-binding region of core directs RNA annealing. (A) Domain organization and structure of WNV  core protein. The position of basic and acidic amino
acids  is illustrated by black and grey notches, respectively, on top of the domain outlines. The sequence of WNV  C(1–24) and WNV  C(80–105) peptides is indicated below the
RNA-binding domains. The 3D structure of the WNV  core dimer, determined by X-ray crystallography, is shown to the right (based on PDB entry 1SFK (Dokland et al., 2004),
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lanes  5, 11, 17), and 1/2.5 (lanes 6, 12, 18). Lanes 1, 7, and 13 show RNA annealing 

AR interactions (Zhang et al., 2010). In order to examine whether
he core protein-dependent annealing of the 5′ and 3′ UTR RNAs
epends on the UAR and/or CS interaction, mutations were intro-
uced separately in these elements of RNA 1–164 (Fig. 3A), and
yclization with wild-type 3′FL-UTR RNA was assessed by elec-
rophoretic mobility shift assays. Mutations in either the 5′ UAR or
′ CS led to a significant decrease in annealing (Fig. 3B, lanes 6–10
nd 11–15), while cyclization was rescued by compensatory muta-
ions introduced in the 3′ UAR or 3′ CS of the 3′FL-UTR RNA (lanes
6–20 and 21–25, respectively). These results suggest that the core
rotein-dependent in vitro annealing recapitulates the features of
he cyclization sequence analysed in subgenomic or genome-length
ellular models. Interestingly in vitro RNA annealing was  readily
etectable even with 5 mutations at high core protein levels, while
ven single point mutations result in a lethal phenotype in subge-
omic replicons. This suggests that chaperoning by core protein
ay  stabilize the weak interaction present in the mutants, thus

artially relaxing the complementarity requirements of the long
istance interaction (Basu and Brinton, 2011; Zhang et al., 2010;
ee Section 4).

.2. The C-terminal domain of WNV  core protein chaperones
′–3′ RNA interactions

Flavivirus core proteins have two independent RNA-binding
egions at the N- and C-terminal extremities of the protein
Khromykh and Westaway, 1996; Fig. 4A). We  have previously
hown that the two RNA-binding domains do not act in syn-
rgy and that only the C-terminal basic region was active in

n vitro nucleic acid chaperone assays (Ivanyi-Nagy et al., 2008).
n order to delineate the requirements of core protein for facilitat-
ng 5′–3′ UTR interaction, synthetic peptides corresponding to the
- and C-terminal RNA-binding regions (WNV C(1–24) and WNV
A in the presence of increasing concentrations of full-length WNV  core (lanes 2–6),
ar ratios were 1/40 (lanes 2, 8, 14), 1/20 (lanes 3, 9, 15), 1/10 (lanes 4, 10, 16), 1/5

 absence of core protein.

C(80–105), respectively; Fig. 4A) were used in the annealing reac-
tions with wild-type RNAs. While WNV  C(1–24) did not influence
5′–3′ annealing (Fig. 4B, lanes 7–12), WNV  C(80–105) induced an
increase in 5′–3′ complex formation (Fig. 4B, lanes 13–18). Nev-
ertheless, at equal molar ratios, incubation with full-length core
protein resulted in higher levels of complex formation than with
WNV  C(80–105), indicating that sequences or structural features
outside the C-terminal region contribute to full chaperoning activ-
ity.

4. Discussion

Complementarity between the genome-terminal cyclization
sequences, presumably resulting in panhandle formation in vivo,
is absolutely required for flavivirus RNA replication (Khromykh
et al., 2001). Although formation of the long-distance interaction
is believed to be thermodynamically favoured, the annealing reac-
tion is prohibitively slow (or may  not even reach completion)
under physiologically relevant conditions (Fig. 2). RNA chaperones
are able to disrupt transient or non-functional RNA interactions,
thereby decreasing the kinetic barrier hindering the formation
of the most stable RNA conformation (reviewed in Cristofari and
Darlix, 2002; Schroeder et al., 2004). Indeed, RNA chaperoning
might increase the speed of intramolecular RNA rearrangements or
intermolecular RNA–RNA interactions several thousand-fold with-
out ATP consumption. We  have previously shown that core proteins
in the Flaviviridae family, including that of WNV, hepatitis C virus
and bovine viral diarrhoea virus, possess potent RNA chaperone
activities (Cristofari et al., 2004; Ivanyi-Nagy et al., 2006, 2008),

facilitating nucleic acid annealing reactions with various DNA and
RNA substrates. The molecular mechanism of chaperone action is
still poorly understood, and it probably involves a combination of
charge neutralization, molecular crowding, and local melting of
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nucleic acid structures by entropy transfer (Tompa and Csermely,
2004). High affinity binding of a protein to the substrate DNA/RNA
is not sufficient, in itself, to trigger the conformational changes
observed upon core protein chaperoning (Cristofari et al., 2004;
Ivanyi-Nagy et al., 2008).

In this study, we  analysed the RNA chaperone activity of WNV
core using its cognate target molecules, corresponding to the highly
structured terminal regions of the viral genomic RNA. WNV  core
protein was  found to induce a dramatic acceleration in the 5′–3′ UTR
annealing reaction (Figs. 2–4),  suggesting a possible link between
genome cyclization, replication, and packaging.

Paradoxically, with the exception of a short N-terminal
sequence which contains the 5′ CS RNA element, the structural
protein-coding region is not essential for WNV  genomic RNA repli-
cation (Khromykh and Westaway, 1997). The discrepancy between
the in vitro activity of core protein and its in vivo dispensability sug-
gests that flaviviruses might hijack cellular RNA-binding proteins
that may  compensate for the loss of core chaperoning. Indeed, an
RNA–protein–RNA co-immunoprecipitation assay identified seven
distinct proteins (with molecular weights of 35, 37, 40, 45, 52, 76,
and 97 kDa) interacting with both the 5′ UTR and 3′ UTR RNAs
of dengue virus (Garcia-Montalvo et al., 2004). Although most of
these cellular proteins remain to be identified and their interaction
with the genomic RNA verified, the 52 kDa band was confirmed
as being La protein, an abundant cellular RNA chaperone (Belisova
et al., 2005; Chakshusmathi et al., 2003). La protein was shown to
interact with the UTRs of dengue virus and Japanese encephalitis
virus (De Nova-Ocampo et al., 2002; Garcia-Montalvo et al., 2004;
Vashist et al., 2009, 2011; Yocupicio-Monroy et al., 2007), and to
bind to the viral replication proteins NS5 and NS3 (Garcia-Montalvo
et al., 2004). At present, the effect of La binding on genomic RNA
circularization is still controversial. Recombinant La protein led
to decreased RNA synthesis in an in vitro viral replicase assay,
leading to the suggestion that its binding inhibited RNA cycliza-
tion (Yocupicio-Monroy et al., 2007). However, co-precipitation of
the 5′ and 3′ genomic RNA regions was stimulated by the pres-
ence of increasing amounts of La protein (Vashist et al., 2011).
A possible explanation for these seemingly contradictory findings
might be provided by the results of Villordo and co-workers, who
have shown that a balance between the linear and circular con-
formations of the genomic RNA, rather than cyclization per se, is
important for efficient viral replication (Villordo et al., 2010). Thus,
overly efficient RNA cyclization, as well as the lack of it, might both
be deleterious for RNA synthesis. Besides La protein, a number of
other cellular RNA chaperones, including heterogeneous nuclear
ribonucleoprotein A1 (hnRNP A1), hnRNP A2, hnRNP Q, Y-box bind-
ing protein (YB-1), and polypyrimidine tract binding protein (PTB),
have been described to interact with flaviviral genomic RNA (Agis-
Juarez et al., 2009; De Nova-Ocampo et al., 2002; Katoh et al., 2011;
Paranjape and Harris, 2007). Although the effect of these chap-
erones on genome cyclization is currently unknown, they might
participate in the regulation of panhandle formation in the absence
of (or in addition to) core protein, thus masking the in vivo effect of
core on genome replication.

Nevertheless, recent mutagenesis studies have provided indi-
rect evidence for the involvement of the core protein region in
genome circularization and RNA replication (Basu and Brinton,
2011; Zhang et al., 2010). Genome-length viral RNAs with multi-
ple adjacent mutations in CS or with a complete deletion of the 3′

CS element were replication competent and generated revertants
or second-site mutations upon passaging, restoring efficient pan-
handle formation (Basu and Brinton, 2011; Zhang et al., 2010). In

contrast, disruption of the 5′–3′ CS interaction invariably resulted
in a lethal phenotype when analysed in subgenomic replicons lack-
ing core protein (Corver et al., 2003; Khromykh et al., 2001; Lo
et al., 2003). Similarly, a deletion in the core coding region of a
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enome-length replicon also precluded the rescue of the CS mutant
Zhang et al., 2010), although it is still debated whether this was due
o the lack of core protein expression or to the absence of RNA sec-
ndary structures in the core-coding region (Friebe et al., 2012).
hese results, together with our findings (Fig. 3B), suggest that
ellular proteins can only partially substitute for core protein chap-
roning in genome cyclization, and the requirements for panhandle
ormation might be more relaxed in the presence of core. This is
specially important since mutations in the cyclization sequences
re considered for the design of live-attenuated flavivirus vaccines,
ith the aim to reduce the risk of recombination with naturally

irculating viruses (Suzuki et al., 2008).
The annealing efficiency of 3′ UTR RNAs was found to be highly

ependent on the length of the RNA used (Fig. 2). While 3′CYC
NA, containing the cyclization sequences and the 3′ SL structure,
ould interact with the 5′ region even in the absence of core pro-
ein, the longer 3′�VR and 3′FL-UTR RNAs required core for 5′–3′

omplex formation, suggesting that the presence of the dumbbell
tructures (DB1 and DB2) might interfere with annealing. Pseudo-
not interactions, conserved in mosquito-borne flaviviruses, have
een suggested to form between the loop of the dumbbells and a
ingle-stranded region, including the CS element, in the linear form
f the viral RNA (Olsthoorn and Bol, 2001; Figs. 1 and 2). Total or
artial deletion of the individual dumbbell structures was  found
o seriously compromise RNA replication (Alvarez et al., 2005a;

anzano et al., 2011; Men  et al., 1996), resulting in attenuated
iruses that are actively pursued as a vaccine candidate for dengue
iruses (Durbin et al., 2001; Troyer et al., 2001; Whitehead et al.,
003). Our results suggest that core protein chaperoning might be
equired to resolve the pseudoknots, yielding an RNA conforma-
ion competent for 5′–3′ annealing. Thus, the pseudoknot structures

ay  constitute an additional layer of regulation in genome cycliza-
ion, contributing to the delicate balance between the linear and
ircular RNA forms.

In addition to the genomic RNA, a small subgenomic RNA
sfRNA), corresponding to the last 300–500 nts of the positive-
trand viral RNA, also accumulates in cells infected by flaviviruses
Lin et al., 2004; Pijlman et al., 2008; Urosevic et al., 1997). sfRNA
s generated by the incomplete degradation of the viral genome by
he host exonuclease XRN1, where the 3′ RNA region is protected
y a conserved pseudoknot structure (Funk et al., 2010; Pijlman
t al., 2008; Silva et al., 2010). Kunjin virus sfRNA was  not required
or viral replication but was found to be essential for cytopathicity
n cell culture and for pathogenicity in infected mice (Pijlman et al.,
008). As sfRNA contains all the RNA elements required for interac-
ion with 5′ cyclization sequences, its accumulation might regulate
−)-strand RNA synthesis by inhibiting panhandle formation or by
equestering host or viral proteins (including core protein) inter-
cting with the 3′ UTR (Fan et al., 2011). The interaction of core
rotein with sfRNA and the possible consequences remain to be
xperimentally verified.
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