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Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric Ser/Thr phosphatase
that regulates many cellular processes. The role of PP2A as a tumor suppressor has been
extensively studied and reviewed. However, emerging evidence suggests PP2A constrains
inflammatory responses and is important in autoimmune and neuroinflammatory diseases.
Here, we reviewed the existing literature on the role of PP2A in T-cell differentiation and
autoimmunity. We have also discussed the modulation of PP2A activity by endogenous
inhibitors and its small-molecule activators as potential therapeutic approaches
against autoimmunity.
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PROTEIN PHOSPHATASE 2A (PP2A)

Protein phosphorylation is a post-translational modification (PTM) and is indispensable in cell
signaling regulation. Mechanistically, by altering the charge on a protein, phosphorylation alters the
conformation, which alters the protein’s subcellular localization, interactions with other proteins,
and functions. Protein phosphorylation is regulated by enzyme kinases and phosphatases, which
catalyze phosphate’s addition or removal, respectively. The altered activity of these enzymes is one
of the major defects in the development of various diseases, such as cancers, neurological and
autoimmune disorders (1–3).

Although kinases and phosphatases regulate protein phosphorylation, the focus has been on
kinases for several reasons: more genes encode kinases, and the consideration that phosphorylation
acts as a response to perturbation while dephosphorylation as mean to restore equilibrium (4).
However, recent studies indicate that phosphatase inhibition is also a common signature in several
human diseases (4). In addition, the phosphatases are inherently more complex due to the
combinatorial diversity of phosphatase regulatory subunits that results in a greater functional
number of phosphatases. Nevertheless, there is a growing realization that phosphatases are equally
important and hold therapeutic potential for disease treatments.

In this review, we will discuss the role of protein phosphatase 2A (PP2A) in T-cell differentiation
and autoimmunity. The tumor-suppressive function of PP2A has been reviewed elsewhere (4–10).
PP2A is a highly conserved serine/threonine heterotrimeric phosphatase with an essential role in
many cellular processes (4). PP2A activity is inhibited in several cancers (8, 9, 11). Multiple
mechanisms have been proposed for the altered PP2A activity in cell transformation in cancer (9,
10, 12). In addition, PP2A is inhibited in neuroinflammatory and neurodegenerative diseases, such
as Alzheimer’s disease and Parkinson’s disease (13–19).
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PP2A contains three subunits. The “A” scaffolding subunit
and “C” catalytic subunit together form a dimer of the core
enzyme. A variable size “B” regulatory subunit binds the AC
dimer. These subunits exist either as AC dimers, ABC trimers
(called holoenzyme), or free inactive catalytic C subunits
stabilized due to interactions with protein PME-1 or a4, also
known as immunoglobulin binding protein 1 (IGBP1) (20–23)
(Figure 1). In humans, the A, B, and C PP2A subunits are located
on different chromosomes, and isoforms of each subunit,
especially B subunits, form the diversity of the PP2A enzymes.

Expression of the A and C subunits is ubiquitous and
promiscuous. Two distinct and non-redundant genes PPP2R1A
and PPP2R1B, encode A subunits, PP2A Aa and PP2A Ab,
respectively. Similarly, PPP2CA and PPP2CB encode catalytic C
subunits, PP2A Ca and PP2A Cb, respectively (Figure 1).
Higher levels of expression of a isoforms than the b isoforms
of A and C subunits in most human tissues is due to a 7–10-fold
stronger promoter of their respective genes (25, 26). The PP2A-A
subunit has the characteristic 15 HEAT (Huntingtin, Elongation
factor, the A subunit of PP2A, and Target of Rapamycin) repeats
of antiparallel alpha-helices (5). These repeats stack to form an
Frontiers in Immunology | www.frontiersin.org 2
extended loop-like structure with a highly flexible hinge region
between helices 12 and 13 that creates groves for the catalytic C
and regulatory B subunit binding (5, 27–29).

The B subunits confer enzyme-substrate specificity, and their
expression and localization vary with the cell type, creating
diversity. PP2A-B subunits are classified into four groups: B
[PPP2R2A, PPP2R2B, PPP2R2C, and PPP2R2D), B′ (PPP2R5A,
PPP2R5B, PPP2R5C, PPP2R5D, and PPP2R5E), B″ (PPP2R3A,
PPP2R3B, and PPP2R3C), and B″′ (STRN, striatin family)]. The
B subunits proteins are structurally different in each group, and
their binding to the PP2A holoenzyme is due to the intrinsic
flexibility of the scaffolding A subunit. Further, the binding of the
B subunit to the dimer ismutually exclusive, i.e., only one B subunit
at a time interacts with the dimer to form a holoenzyme (30).
Figure 1 summarizes the subunits and genes that encode them.
REGULATION OF PP2A ACTIVITY

PP2A activity is regulated at the level of gene expression,
generation of splice variants, and combinatorial diversity due
FIGURE 1 | PP2A subunit composition and regulation of PP2A holoenzyme by post translational modification. Generated based on (4, 7). Figure 1 is modified from
the thesis (24) and prepared using BioRender.com.
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to a large number of regulatory subunits. Notably, the generation
of PP2A active holoenzyme in cells is tightly regulated to avoid
the formation of enzymes with impaired substrate specificity.
Besides these, PP2A activity is also regulated by post-
translational modification (PTM) of different subunits or
interaction with other proteins. The carboxy-terminal of the
PP2A catalytic C subunit is the hotspot for PTM (31).

Methylation on leucine-309 (L309) residue of C subunit is
well known to control PP2A enzymatic activity and composition
(29, 31) (Figure 1). Leucine carboxyl methyl transferase 1
(LCMT1) uses S-adenosylmethionine (SAM) as a substrate to
add methyl group at leucine-309 (L309). On the other hand,
protein methyl-esterase 1 (PME-1) removes the methyl group
from the L309 residue, thereby inhibiting the catalytic activity of
PP2A (31) (Figure 1). Crystal structure studies of the PP2A-
PME complex showed a non-methylated L309 residue at a
negatively charged carboxyl group prevents heterotrimer
formation and thus determined the composition of the PP2A
holoenzyme. Methylation of L309 residue of the catalytic subunit
is essential for PPP2R2A (B55a) binding with PP2A-A-C dimer
to form the holoenzyme. In addition to methylation,
phosphorylation on tyrosine-307 (Y307) and threonine-304
(T304) residues of the C subunit negatively regulate PP2A
enzymat ic act iv i ty . However , ant ibodies detect ing
phosphorylated Y307 are non-specific, and a fuller
understanding will require antibody-independent mass-
spectroscopy-based methods.

PTM of PP2A regulatory B subunits has also been reported.
For instance, phosphorylation of the PPP2R5D subunit by
protein kinase A led to an increase in PP2A activity (4, 32).
Extensive phosphorylation of PPP2R5 and STRN family
members was reported in unbiased proteomics studies (33).
Besides, C terminal lysine residues of both PPP2R2A and
PPP2R2D are also acetylated (4, 34, 35). However, further
studies are required to confirm the role of phosphorylation
and acetylation of regulatory subunits on PP2A activity.

PP2A activity is also regulated by its interactions with other
proteins. PP2A-C is activated by binding of phosphotyrosyl
phosphatase activator (PTPA) (36–38). PTPA releases PP2A-C
from PME-1-mediated inhibition (22). Further, PTPA binding to
the A-C dimer facilitates conformational changes required for
holoenzyme formation (36–38). PME-1-mediated regulation of
PP2A activity has been reviewed elsewhere (31).
PP2A INHIBITORS

PP2A activity is regulated by endogenous inhibitors encoded in
the genome as well as chemical small molecule inhibitors. PP2A
endogenous inhibitors acidic nuclear phosphoprotein 32A
(ANP32A), also known as PP2A inhibitor 1, and SET, also
known as PP2A inhibitor 2 are members of the SET family.
SET directly interacts with PP2A-C to suppress its activity, and
enhanced SET expression is associated with several cancers (39).

Cancerous inhibitor of protein phosphatase 2A (CIP2A;
KIAA1524; p90) is another endogenous inhibitor of PP2A.
Frontiers in Immunology | www.frontiersin.org 3
CIP2A-PP2A interaction prevents c-Myc S62 dephosphorylation
and proteolytic degradation, leading to cell transformation (7, 40).
Structural studies showed CIP2A N terminus interacts with PP2A-
B56 subunits PPP2R5A (B56a) and PPP2R5C (B56g) (41). CIP2A
dimerization contributes to maximal binding to the B56 subunit.
This binding inhibits holoenzyme formation (41). CIP2A also
appears to bind to the A and C subunits (42), whose functions
remain to be studied. PP2A inhibition by CIP2A overexpression
in Alzheimer’s disease (43) leads to the accumulation of
hyperphosphorylated tau protein aggregates and Alzheimer’s
development. Another study identified a non-coding RNA
LINC00665 encoded micro peptide called CIP2A-BP (CIP2A
binding peptide), which interacts with CIP2A N-terminus and
compete for B56g binding site to release PP2A (44).

Proteins PME-1 and a4 are also considered as PP2A
inhibitors by controlling heterotrimeric holoenzyme assembly.
PME-1 overexpression is reported in cancer cells, whereas its
inhibition enhanced PP2A activity (31).

Okadaic acid is a naturally occurring small-molecule inhibitor
of phosphatases, including PP2A. Okadaic acid is isolated from
the marine dinoflagellates and causes shellfish poisoning (45).
Although OA inhibits other serine-threonine phosphatases, its
specificity for PP2A is high at low concentrations (46). LB100 is
another small-molecule inhibitor of PP2A. However its
specificity for PP2A has been questioned (47).
PP2A ACTIVATORS

Researchers have tried various compounds to activate PP2A as
potential cancer treatments. Some activate PP2A indirectly by
inhibiting its inhibitors. For instance, small-molecule PME-1
inhibitors aza-b-lactam (ABL) and sulfonyl acrylonitrile are
associated with PP2A activation (48, 49). Similarly, inhibitors
of CIP2A, such as Celastrol (tryptamine), anti-cancer drug
bortezomib, and dipeptidyl boronic acid induce PP2A activity
towards its targets. Forskolin, carnosic acid, and vitamin E
analogs, such as a-tocopherol succinate, also activate PP2A
through uncharacterized mechanisms (5).

Cell-endogenous lipid metabolite ceramide activates PP2A in
immune and cancer cells. Ceramides de-repress PP2A activity by
direct interaction with PP2A endogenous inhibitor SET (50, 51).
The common immunosuppressive lipid sphingosine analog drug
Fingolimod (2-amino-2-[2-(4-octylphenyl) ethyl] propane-1,3-
diol), also known as FTY720, which is derived from myriocin
(ISP-1), a metabolite of fungus Isaria sinclairii, also activates
PP2A (52–57). In mice, FTY720-mediated activation of PP2A
was identified as a promising strategy in reducing tumor and
cell transformation.

Anti-psychotic phenothiazine drugs, such as chlorpromazine
also activate PP2A. However, their anti-cholinergic effects limit
their use as anti-cancer agents. Further developments in this line
led to identification of small-molecule activators of PP2A
(SMAPs), such as DBK-1154, DT-061, and iHAPs (improved
heterocyclic activators of PP2A). SMAP binding stabilizes and
promotes PP2A heterotrimeric holoenzyme assembly with
January 2022 | Volume 12 | Article 786857
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robust activation (4, 58–60). DT-061 overcomes PP2A
endogenous inhibition in cancer cells by binding to small
pockets and act as a “glue” to keep PP2A subunits together for
heterotrimeric functional PP2A enzyme (61).
PP2A IN CD4+ T-CELL ACTIVATION AND
DIFFERENTIATION

PP2A is required to limit T-cell activation. It limits protein
kinase C (PKC-q) dependent CARMA1 phosphorylation, which
recruits signaling mediators important for T-cell activation
(62). Both in resting and activated T cells, PP2A regulatory
subunit Aa (PPP2R1A) interacts with CARMA1 leading
to dephosphorylation. Consistent with this idea, PP2A
inactivation in Jurkat T cells and murine Th1 cells results in
enhanced Carma1 S645 phosphorylation and NF-kB activation
and IL-2 and IFN-g production. In addition, depletion of
endogenous PP2A inhibitor, CIP2A, led to reduced T-cell
activation (63). NF-kB is a critical transcription factor
regulating the expression of immune response genes, but its
aberrant activity contributes to autoimmunity (64). PP2A
regulatory subunit B56g is strongly upregulated upon T cell
activation and acts as a negative regulator of NF-kB by
dephosphorylating IKK in TCR signaling. B56g silencing in T
cells, increased NF-kB activity and enhanced expression of
inflammatory genes and T cell proliferation (64).

PP2A also contributes to CD4+ T-cell differentiation. Genetic
deletion of a PP2A regulatory subunit PPP2R2A in mice led to
reduction in Th1 differentiation in vitro as measured by IFNg
expression (65). Interestingly, PP2A inhibition by a small
molecule PP2A inhibitor LB100 led to increase in Th1
differentiation in mice (66). The contradictory results obtained
upon genetic deletion of PPP2R2A and competitive PP2A
inhibition by LB100 could possibly be due to lack of specificity
of the compound (47) or due to differential activity of regulatory
subunits. Effect of PP2A on Th2 differentiation has been less
studied, however the treatment with LB100 led to reduction in
IL-4 expression and increase in IFNg by Th2 cells (66). PP2A
inhibition by okadaic acid or LB100 led to reduction in IL-9
production by Th9 cells (67).

Depleting PP2A catalytic subunit a in mice led to a reduction
in Th17 cell differentiation and development of experimental
autoimmune encephalomyelitis (EAE) (68). PPP2A regulates
SMAD2/3 phosphorylation and RORgt binding on IL17A in
Th17 cells. Glomerulonephritis developed in transgenic animals
with PP2A catalytic subunit (PP2Ac) overexpression in an IL-17-
dependent manner (69). Mechanistically, enhanced IL-17 is due
to the PP2Ac-mediated activation of Rho kinase (ROCK), which
phosphorylates transcription factor IRF4 and leads to binding
and recruitment of histone acetyltransferases (HAT) and other
factors at the IL17 locus for enhanced histone 3 acetylation and
increases gene expression (69, 70).

In contrast to mice, silencing the PP2A scaffolding subunit A
in human Th17 cells or inhibiting its activity by okadaic acid
upregulated IL17 expression (71). Additionally, PP2A activation
Frontiers in Immunology | www.frontiersin.org 4
by FTY720 led to a reduction in IL17A expression in human
Th17 cells. Similar effects of FTY720 treatment were seen in sera
from patients with multiple sclerosis (MS) (72). Therefore,
targeting PP2A in mice and human Th17 cells appears to have
the opposite effect on IL17A expression. This difference is
perhaps due to species-specific differences, as has been
reported earlier for chromatin modifier SATB1 (73). Also, a
small overlap in Th17 signature genes between human and
mouse Th17 cells suggests significant differences in the Th17
cell transcriptome of the two species (74). Interestingly, both in
human and mouse Th17 cells, CIP2A negatively regulates IL17A
expression and STAT3 phosphorylation (71). In human Th17
cells, depletion of both PP2A and CIP2A results in enhanced
IL17A expression, suggesting that CIP2A may regulate IL17A
expression in a PP2A independent manner.

PP2A activity is also required for the Treg cell-mediated
suppression of effector T cells responses (75, 76). Treg-specific
deletion of PP2A results in multiorgan autoimmunity in animals
(75). Mechanistically, Foxp3 binds to Sgms1 promoter that encodes
phosphatidylcholine:ceramide choline phosphotransferase 1
(SMS1) and inhibits its expression. Reduced SMS1 expression
leads to the accumulation of ceramide in Treg cells as SMS1
takes choline and ceramide as substrates to make DAG and
sphingomyelin. Ceramide binds to SET and releases PP2A from
SET-mediated inhibition, leading to enhanced PP2A activity in
Treg cells. Enhanced PP2A activity inhibits mTORC1 and
promotes Treg suppression of effector T cells. Enhanced PP2A
activity also inhibits activity of sheddase ADAM10, which cleaves
the IL2 receptor (69, 76). Therefore, higher PP2A activity prevents
IL-2R degradation and promotes STAT5 phosphorylation and
Foxp3 expression in Treg (69). Figure 2 summarizes the ways
through which PP2A activation supports Treg cell function.

PP2A-mediated Treg modulation through Foxo1, another
transcription factor is also fascinating. FOXO1 inhibits
transcriptional activity of RORgt to its target genes, such as Il17a
and Il23r (77) and inhibits EAE development (78). Interestingly,
FOXO1 binds to Foxp3 promoter and its conserved non-coding
sequence 2 element and promotes Foxp3 expression in T cells.
PP2A-mediated Foxo1 dephosphorylation results in translocation
of Foxo1 to the nucleus and transcriptional activation (Figure 2).
PP2A-mediated Foxo1 activation and modulation of Treg-cell
function is an exciting area for further research Interestingly,
Foxo1 is highly expressed in lymphoid cells and controls T-cell
homing to secondary lymphoid organs. Foxo1 deficiency causes
diminished expression of trafficking molecules, including
S1PR1 (79).
PP2A IN AUTOIMMUNITY

PP2A has not been extensively studied in the context of
autoimmunity. However, owing to its important role in T cell
activation and differentiation PP2A may be important for
development of autoimmunity. MS is an autoimmune disease
characterized by immune-mediated destruction of the myelin
sheath of neurons. Myelin-reactive T cells egress from the lymph
January 2022 | Volume 12 | Article 786857

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Khan et al. PP2A in T-Cells and Autoimmunity
node and migrate to central nervous system to Sphingosine-1-
phosphate (S1P) gradient, which is high in body fluids and
tissues, including the central nervous system. Current MS
treatment seeks to minimize lymphocyte egress and migration
across the blood-brain barrier (BBB) to prevent inflammation
and destruction of neurons. FTY720, an analog of S1P, binds to
S1PR on lymphocytes and is a common immunosuppressive
compound that is approved to treat MS. It has been proposed to
act through S1PR internalization and degradation in autoreactive
lymphocytes, rendering the lymphocytes unresponsive to the
S1P gradient.

Besides regulating the egress and migration of autoreactive T cells
to the central nervous system, FTY720 may also limit MS by
activating PP2A in T cells. However, whether PP2A activation and
immunosuppressive function are inter-related remains to be clarified.
Phosphorylated FTY720 is considered immunosuppressive and
different from the non-phosphorylated PP2A activators and
Frontiers in Immunology | www.frontiersin.org 5
antitumor forms (80–82). The hypothesis is mainly based on the
fact that non-phosphorylated FTY720-derivative, 2-amino-4-(4-
heptyloyphenol)-2-methylbutanol [AAL(S)] treatments failed to
reduce EAE disease in animals (83, 84). Further, AALs, MP07-66,
OSU-2S, P053 have limited S1PR binding (81, 85–88). Enrichment of
proinflammatory Th17 cells has been noted in MS lesions, and its
inflammatory cytokine, IL-17, was implicated for MS pathogenesis
(89). Th17 disrupts the BBB and promotes CNS inflammation (90).
Interestingly, FTY720 treatment reduced Th17 levels in peripheral
blood of MS patients (91, 92). In addition, Fingolimod treatment
decreases peripheral blood proinflammatory Th1/17 cytokines levels
in patients with multiple sclerosis, whereas it increased the frequency
of Treg cells (72). Further, in human Th17 cells, we found that PP2A-
A subunit silencing or okadaic acid treatments upregulate IL17
expression, but FTY720 treatments reduce IL-17 levels (71).
Therefore, the possibility of PP2A activation in FTY720-
immunosuppressive functions cannot be ruled out. Also
FIGURE 2 | PP2A activation in Treg cells. Foxp3 direct sgms1 gene promoter binding and inhibits sgms1 expression in Treg. SMS1 (encoded by sgms1) reduction
results in ceramide accumulation. Ceramide accumulates only in Treg cells, and the interaction with TCR-activated PP2A endogenous inhibitor SET activates PP2A.
On the other hand, PP2A activity in Treg cells is important to inhibit mTORC1 and ADAM10 to the IL-2 receptor. Enhanced IL-2 signaling promotes STAT5 and
Foxp3 expression in Treg cells. Lastly, PP2A dephosphorylation activates Foxo1, which positively regulates Treg-cell differentiation but inhibits Th17 cells. Figure 2 is
modified from the thesis (24) and prepared using BioRender.com.
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modification of the original FTY720 compound, such as blocking
phosphorylation site, may completely change the properties of the
compound, and it may not bind to S1PR or treat EAE.

Besides MS, PP2A also has a role in other autoimmune
diseases. Systemic lupus erythematosus (SLE) is an
autoimmune disease characterized by widespread inflammation
due to immune cell activation. Like MS, SLE is also ameliorated
by FTY720 treatment in a mouse model (93). PP2A activator,
AAL, treatment prevents disease in an animal model of
rheumatoid arthritis (94). In line with this, the CIP2A
inhibitor celastrol reduces rheumatoid arthritis in animals and
is anti-inflammatory (95, 96). These findings suggest a potential
for PP2A modulation in treating autoimmune disease. The use of
a recently developed small-molecule activator of PP2A for the
treatment for other autoimmune diseases should be tested.
CONCLUSIONS

PP2A is one of the most abundant proteins in the cell and the most
prominent serine-threonine phosphatase. It controls a range of
cellular processes and is highly conserved from yeast to mammals
and is required for T-cell activation. PP2A has a complex role in
CD4+ T cell differentiation to distinct subsets. However, it clearly
promotes Treg differentiation, suggesting PP2A activation as an
attractive strategy for immunosuppression. The recent
Frontiers in Immunology | www.frontiersin.org 6
development of small-molecule compounds that directly activate
PP2Amight provide means for the development of therapeutics for
immune cell-mediated diseases. However, further work is needed
to study specificity and mode of action of these compounds.
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