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Abstract: The aim of this paper is to propose ecological thermal insulation materials that meet the
goals of sustainability but also fulfill the imposed thermal performance requirements. This paper
studies new composite materials based on sheep wool from the perspective of thermal conductivity.
The composites were prepared using two types of binder: acrylic-polyurethane resin and natural
rubber latex, which were applied to the wool fibres through different methods and percentages.
Based on the obtained results of thermal conductivity, two types of samples were selected for further
analysis, which aimed to determine the microstructure, chemical composition, water absorption,
attack of microorganisms, water vapour permeability, hygrothermal adsorption characteristics and
sound absorption of the samples. In order to analyse the variation of thermal conductivity, the
following parameters were taken into account: thickness, density, type of binder and percentage of
binder. Following the obtained results, it was observed that the value of the thermal conductivity of
the samples varies between 0.0324 and 0.0436 W/mK. It was found that all the samples prepared and
analysed in this study fulfil the national criteria for the thermal performance of thermal insulation
material. After conducting the in-depth analysis of the two selected sample types, it was concluded
that both materials have good sound absorption characteristics over the considered frequency range.
In addition, as it was expected from the natural fibres, the samples had low resistance against the
attack of microorganisms and water-related tests.

Keywords: natural fibre composite; thermal conductivity; latex; resin; building insulation; sustainability

1. Introduction

Climate change and global warming are phenomena that result from the accumulation
of CO2 in the atmosphere, mainly caused by the process of burning fossil fuels. The
concentration of CO2 in the atmosphere is constantly increasing due to the increasing energy
demand [1]. The construction sector is responsible for 36–40% of total energy consumption,
39% of total CO2 emissions, 17–25% of water consumption, 25% of wooden material
consumption and produces waste that is between 45 and 65% of total landfilled waste [2–4].
Thus, it is understandable the need to propose sustainable construction technologies
and materials. These new materials should correspond to the three basic dimensions of
sustainability: ecological, by minimising the impact on the natural environment; economic,
by using materials and processes with low costs; and social, by ensuring human safety,
health and prosperity.
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It can be stated that buildings are a major source of energy consumption. How-
ever, with adequate thermal insulation of a building, a reduction in fuel consumption
of 25–50% [5] and reduction in CO2 emissions and energy requirements for heating and
cooling of the building [6] can be achieved. Thermal conductivity is an important factor
in choosing the type of thermal insulation material, and in the case of these materials,
its value is less than 0.065 W/mK, as indicated by the Romanian Norm C107/2 [7]. In
addition to low thermal conductivity, a thermal insulation material is characterised by
thermal resistance greater than 0.50 m2K/W [7].

For a building’s thermal insulation, researchers have developed a wide variety of
natural solutions, such as reed or straw bale [8], feather [9] and sheep wool [10] based
materials. Sheep wool has good insulating properties due to the micro-cavities formed
between the fibres and the tubular structure of the fibres. During the cold season, it
contributes to increasing indoor temperatures, and during the hot season, it maintains low
temperatures inside the building [11]. Under standard conditions, the thermal conductivity
of sheep wool varies between 0.038 and 0.054 W/mK, but the value of thermal conductivity
increases with increasing moisture content in the mass of the material or by increasing bulk
density [12].

Wool fibres have several unique and interesting properties. Among natural fibres,
wool fibres have a unique property of binding, called felting, which occurs when an external
directional force is applied over the fibres causing them to become tangled [13]. Wool fibres
are hygroscopic, so they absorb moisture from the air. Moisture adsorption by wool fibres
is manifested by hysteresis [14]; that is, by changing the external conditions, the adsorbed
moisture is released by desorption. Among the common pollutants, wool can absorb and
neutralise compounds such as formaldehyde, thus improving indoor air quality [15]. Wool
fibres do not contribute to the spreading of flames [11], mainly due to their high nitrogen
content, high humidity content and high temperature of ignition (560 ◦C).

There are various manufacturing processes through which a thermal insulation ma-
terial from sheep wool can be obtained. The process called wet felting consists of using
moisture and friction to bind the fibres together to obtain a denser material [16]. The
method of needle felting of a mixture of recycled wool fibres and polyester fibres was
described in [17], obtaining a material with low thermal conductivity, between 0.032 and
0.033 W/mK. The product obtained by combining thermal and chemical methods for the
partial degradation of fibres in order to obtain a protein-based adhesive that sticks the
remaining fibres, was presented in [18]. The use of wool textile waste by preparing a
composite thermal insulation material in which the textile fibres are bonded with a chitosan
solution was presented by Rubino et al. [19]. The preparation of wool and polypropylene
fibre composites, by carding the two types of fibres, followed by hot pressing of the mixture,
was presented by Guna et al. [20]. The thermal conductivity of the resulting panels ranged
from 0.058 to 0.083 W/mK. The thermal properties of a composite based on clay and wool
fibres, respectively, and the possibility of using this material in the field of constructions was
studied by [21]. Commercial products usually use a synthetic binder such as polyester [22],
which by heating forms a stable matrix [23], the percentage of synthetic material being
between 5 and 15% [13].

The purpose of this study is to bring this by-product of the agricultural sector into
the field of constructions by creating an insulating material in order to improve the sus-
tainability credentials of buildings. The raw materials used in this study are available
worldwide. The produced samples require low energy consumption and a relatively simple
infrastructure to prepare them, and thus have a low cost of production, but possess good
acoustic and thermal properties.

The unique properties of sheep wool are widely recognised, and several attempts
were made to integrate it into the field of building materials as a stand-alone material,
reinforcement or part of a composite. In spite of the many possibilities of successful sheep
wool utilisation, the preparation methods of wool composites or the used binder types
could be further researched and expanded. This study contributes to overcoming this
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limitation by presenting new preparation methods (spraying and mixing) and binder types
(resin and latex) that can be employed in realising novel wool-based composites. The
originality of the present study can be synthesised as a novel approach to create natural
and ecologically-friendly materials whose properties are assessed in a complex way.

Thus, the aim of this paper is to prepare and analyse composites based on sheep wool
fibres from the main perspective of thermal conductivity, intended for use in the field of
constructions with a thermal insulating role. The composites were prepared using two
types of binder: synthetic (acrylic-polyurethane resin) and natural (natural rubber latex).
Thus, the influence of density, thickness, binder type and binder percentage on the thermal
conductivity and thermal resistance of the prepared samples was analysed. Based on the
values of thermal conductivity and considerations such as visual aspect, ease of fabrication,
density and quantity of binder used, two types of composites were selected for further
analysis. These investigations were based on determining the microscopical and chemical
characteristics, water absorption, attack of microorganisms, water vapour transmission
properties, hygroscopic characteristics and acoustic absorption.

The paper is structured in five parts. Section 1 gives a short introduction and overview
of wool’s properties and wool-based composites. Section 2 presents the materials and
methods used in this study. Section 3 contains all the obtained results of this experiment:
Section 3.1 holds the results of thermal conductivity analysis (i.e., the first stage of this
experimental program) and Sections 3.2–3.8 hold the results of the complementary inves-
tigations (i.e., the second stage of this experimental program). Section 4 contains a short
discussion on the main results in the view of the relevant literature. Section 5 gives the
general conclusions of this study.

2. Materials and Methods of Investigation

The following materials were used in this study: sheep wool, acrylic-polyurethane
resin, and natural rubber latex. Using these materials, composite panels based on sheep
wool and binders were prepared for use with a thermal insulating role in buildings. In this
regard, the experimental program was divided into two stages. In the first stage, for the
made composites (denoted P1–P24), the thermal conductivity coefficient was determined.
Given that the recipes designed were similar, it was decided that in-depth investigations
should be carried out on the most representative recipes. Thus, based on the results of
thermal conductivity and other factors, such as low density, ease of fabrication, or low
binder percentage, recipes P3 and P13 were chosen for further investigations.

2.1. Materials

The commercially available wool (presented in Figure 1) was obtained from the
Romanian sheep breed of “Ţigaie”. During processing, the wool was washed and carded.
In the composition of the wool-based panels, the wool mattresses were cut to the final
size of the samples (i.e., 200 × 200 mm, for the rectangular-shaped samples; 100 mm and
63.5 mm in diameter for the circular samples).
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scale-like cells, can be distinguished, which could contribute to the improvement of ad-
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their use in the experimental program. From the EDX analysis (Figure 2), the fibre com-
ponents can be observed and their distribution in the studied sample. Thus, the elements 
detected are: carbon in 60.6%, oxygen in 27.0%, nitrogen in 10.1%, sulphur in 1.1%, cal-
cium in 0.4%, aluminium in 0.3%, and silicon in 0.2%. In addition to the elements of wool 
identified in the literature (carbon, oxygen, nitrogen and sulphur, which make up to 98.8% 
of the total mass of fibres), other chemical compounds were also identified in small 
amounts (1.2%) in the analysis of the fibres used in this study. 
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The resin used is a one-component solution based on acrylic-polyurethane resin and 
water, commercially available (produced by Köber S.R.L., Săvinești, Romania). According 
to the manufacturer’s data [24], it does not emit toxic or flammable vapours and does not 
contain or release formaldehyde after drying. The resin’s characteristics are presented in 
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From the SEM images (Figure 1b,c) the outer layer of the fibres, which consists of scale-
like cells, can be distinguished, which could contribute to the improvement of adherence
between the fibres and binder. Some impurities can also be identified on the surface of the
fibres due to the fact that they were not treated with any substance prior to their use in
the experimental program. From the EDX analysis (Figure 2), the fibre components can
be observed and their distribution in the studied sample. Thus, the elements detected are:
carbon in 60.6%, oxygen in 27.0%, nitrogen in 10.1%, sulphur in 1.1%, calcium in 0.4%,
aluminium in 0.3%, and silicon in 0.2%. In addition to the elements of wool identified in
the literature (carbon, oxygen, nitrogen and sulphur, which make up to 98.8% of the total
mass of fibres), other chemical compounds were also identified in small amounts (1.2%) in
the analysis of the fibres used in this study.
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Figure 2. Percentage distribution of the component elements of the wool fibres.

The resin used is a one-component solution based on acrylic-polyurethane resin and
water, commercially available (produced by Köber S.R.L., Săvines, ti, Romania). According
to the manufacturer’s data [24], it does not emit toxic or flammable vapours and does not
contain or release formaldehyde after drying. The resin’s characteristics are presented
in Table 1.

Table 1. The characteristics of the resin and latex, according to the manufacturer.

Property Latex Resin

pH 9.8–10.8 7.5–8

Water solubility Yes Yes

Density 0.976 g/cm3 1.035–1.045 g/cm3

Solids content 60.5% -

Ammonia content 0.6% -

Content of non-volatile substances - 30 ± 1%

Content of volatile organic compounds - 70 g/L

Figure 3 shows the EDX analysis of the resin and, respectively, the percentage distribu-
tion of each element in the mass of the analysed sample. The EDX analysis identifies the
components of the polyurethane resin as: oxygen, carbon, and silicon.
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The natural rubber latex used is a one-component, commercially available solution
(produced by Prochima Srl, Colli al Metauro, Italy). According to the manufacturer’s
data [25], it is a prevulcanised product, saturated with ammonia and stabilised with
antioxidants, being a 61% solid solution. The latex characteristics are presented in Table 1.
In order to obtain a suitable workability, the latex was diluted with water in a ratio of
latex:water of 1:2.

Figure 4 shows the EDX analysis of the latex and the distribution of each element in
the sample. The identified components of the latex are as follows: oxygen, carbon, sulphur,
potassium, and sodium.
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2.2. Samples Preparation

In this study, wool fibre-based panels were made with a natural (rubber latex) or
synthetic binder (acrylic-polyurethane resin). In order to carry out the experimental pro-
gram, specimens with the following dimensions were prepared: 200 × 200 mm with a
thickness of 30, 40 and 50 mm for thermal conductivity measurement, Φ63.5 mm with a
thickness of 30, 40 and 50 mm for the acoustic absorption measurement, 100 × 100 mm
with a thickness of 30, 40 and 50 mm for water absorption and hygroscopic properties’
measurement, Φ100 mm with a thickness of 50 mm for the water vapour permeability
measurement, respectively. The samples were designed according to the density of wool
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fibres in the composite material. The procedure for preparing the samples consisted of
the following steps: uniformly distributing the wool mattresses on a flat surface; cutting
mattresses to the default size; mechanically spraying the binder over the fibres, or mixing
the fibres with the binder, depending on the preparation method (described in the following
paragraphs); placing the mattresses with the binder in the mould; pressing the mould with
a glass sheet. The samples were partially unmoulded after 24 h to facilitate the hardening
of the binder, and total unmoulding was performed after 7 days. The recipes for the sample
preparation are presented in Table 2. For each determination, three samples were prepared
and tested for all of the recipes.

Table 2. Recipes of materials for wool-binder samples.

Recipe Preparation
Method

Wool Fibre Density in
the Composite (g/cm3) Binder Type Fibre:Binder

Weight Percentage

P1

Spraying

0.030

Resin
1:2

P2 1:4

P3
Latex

1:2

P4 1:4

P5

0.050

Resin
1:2

P6 1:4

P7
Latex

1:2

P8 1:4

P9

0.070

Resin
1:2

P10 1:4

P11
Latex

1:2

P12 1:4

P13

Mixing

0.078

Resin
1:2

P14 1:4

P15
Latex

1:2

P16 1:4

P17

0.096

Resin
1:2

P18 1:4

P19
Latex

1:2

P20 1:4

P21

0.114

Resin
1:2

P22 1:4

P23
Latex

1:2

P24 1:4

Two general methods of specimen preparation, defined by the binder application
technology over the fibres, were used to obtain the samples, regardless of the nature of the
binder. Thus, in the first method, the binder was applied by spraying over the fibres. An
attempt was made to reduce the thickness of the wool layers in order to achieve a more
uniform distribution of the sprayed binder through the specimen mass. Thus, mats with a
maximum thickness of 1 cm were prepared. The sprayed samples are shown in Figure 5.
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Figure 5. Making the specimens P1–P12 by spraying the binder over the fibres: (a) fibre mats cut to
size; (b) binder sprayed over fibres; (c) mats arranged in formwork; (d) pressed formwork.

In the second method of making the wool-binder samples, the panels were obtained
by mixing the component materials. The preparation of the samples started by distributing
the required amount of wool on a flat surface, after which the mats were cut to the final
panel size. The thickness of the mats at this stage was not relevant because the carded
fibres of the mats were arranged in one direction and the thickness control of the individual
layers was easier after the mixing process. After preparation of the wool mats, they were
transferred one by one to a metal tray where they were sprinkled with a small amount of
binder, the sprinkled mats being arranged one on top of the other. A cylinder was formed
by tightly winding the layers together, starting the process at a random side of the assembly.
The cylinder was then unrolled, and the winding of the layers on the opposite side of
the assembly was repeated. These steps of wrap–unwrap–wrap were carried out for the
2 opposite sides and 2 diagonals until it was found that the dispersion of the binder was
uniform. This obtained assembly was easily unrolled into thin layers, which were arranged
in a formwork. The making of the samples by mixing is shown in Figure 6.
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2.3. Investigation Methods

The determination of thermal conductivity and thermal resistance was carried out
according to EN 12,667 [26], using a Lasercomp FOX 200 heat flow meter (TA Instru-
ments, New Castle, DE, USA). For this determination, specimens with dimensions of
200 × 200 mm and thicknesses of 30, 40, 50 mm were prepared. The specimen was dried in
an oven, drying being considered complete when the difference between two successive
weighings was less than 0.1 g. Thermal properties were evaluated at a temperature dif-
ference of 10 ◦C. The apparatus implicitly determines the following properties: heat flux
density, thermal resistance and thermal conductivity.

The microscopic analysis was performed using a scanning electron microscope (SEM),
type JSM-5600 LV (Jeol, Tokyo, Japan). Microscopic analysis is coupled with chemical
microanalysis, called energy dispersive X-ray spectroscopy (EDX). The determination of
the elemental chemical analysis of the samples was carried out using an SEM equipped
with an EDX spectrometer, type UltimMAX65, the data being processed in Aztec software
(Oxford Instruments, Abingdon, UK). The EDX method, coupled with SEM analysis,
provides information related to the chemical composition of the sample and the distribution
of elements in a given area. The samples used for the determination were taken from
characteristic sections of the specimens, avoiding their outer surfaces and edges. The
samples taken were glued by means of a double adhesive carbon tape on metallic supports.
Due to the fact that wool fibres do not conduct electrical signals and are sensitive to
radiation, it was necessary to metallize the samples. The process consists of depositing a
layer of carbon on the surface of the sample by evaporating a carbon filament using a Desk
V (Denton Vacuum, Moorestown, NJ, USA)-type cathode sputtering apparatus.

The determination of short-term water absorption by partial immersion was carried
out according to EN 12087 [27]. The principle of the method is to determine the mass
growth of specimens partially immersed in water for a specified period of time (24 h).
After determining the initial mass of the specimen, it was placed in the test assembly. The
lower face of the specimens was immersed in water to a depth of 10 mm, the water level
being kept constant during the determination. After 24 h the specimen was removed from
the test assembly, excess water was removed by draining, and finally, the specimen mass
was recorded.

The determination of the action of microorganisms was carried out according to
EN ISO 846 [28]. The principle of the method consists of conditioning the specimens
in an environment favourable to the growth of microorganisms and visually assessing
the intensity of their growth. In this determination, the specimens were maintained in
an environment with a relative humidity of 95%. Visual examination of the samples
was carried out at 4 and 6 weeks after the start of the test using a stereomicroscope. The
following scale from 0 to 5 was used to assess the intensity of growth of the microorganisms:
category 0—no visible growth when assessed with the microscope, category 1—no growth
visible to the naked eye, but growth is visible when assessed with the microscope; category
2—visible growth with the naked eye, covering maximum 25% of the exposed surface;
category 3—visible growth with the naked eye, covering maximum 50% of the exposed
surface; category 4—considerable growth, covering more than 50% of the exposed surface;
category 5—strong growth, covering the whole exposed surface. After assessing the
intensity of growth of microorganisms and placing the material in a category, the results
of the determination can be interpreted as follows: for category 0—the material does not
favour the growth of microorganisms; for category 1—the material contains limited sources
of nutrients for the growth of microorganisms; for categories 2 to 5—the material is not
resistant to attack by microorganisms and contains nutrients for their growth.

The determination of water vapour transmission characteristics was carried out ac-
cording to EN 12,086 [29]. Circular specimens with a diameter of 100 mm and a thickness
of 50 mm were prepared for this test. The specimen is sealed on the open face of the
test vessel, in which a salt solution was previously placed. The prepared assembly is
placed in a room with controllable temperature and relative humidity. The water vapour
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creates a flow through the specimen mass due to the partial pressure difference of the water
vapour between the test assembly and the chamber atmosphere. By successive weighings
of the test assembly, the rate of transmission of the water vapour at the steady-state can
be determined.

The determination of hygroscopic adsorption characteristics was carried out according
to EN ISO 12571 [30]. Both the sorption curve and the desorption curve were recorded in
the determination. Specimens with dimensions of 100 × 100 × 30 mm, 100 × 100 × 40 mm
and 100 × 100 × 50 mm were prepared. To plot the sorption curve, the specimen is dried
until the constant mass is established. The test specimen is successively placed in a series
of test media of constant temperature and increasing relative humidity compared with
the previous medium. The moisture content of the test specimen is determined when the
equilibrium and constant mass have been reached in the medium considered. The same
procedure was followed for all chosen test media. The sorption curve was plotted after
obtaining the moisture content of the specimen for each relative humidity. The test media
had a relative humidity of 30, 50, 80 and 95%, respectively. For the desorption curve, the
first conditioning medium has a relative humidity of 95%, which corresponds to the last
point on the sorption curve. The test specimen is placed successively in a series of test
media of constant temperature and decreasing relative humidity compared to the previous
medium. For all test media chosen, the moisture content of the test specimen is determined
when equilibrium is reached in the medium considered. After the sample conditioning is
complete, the specimen is dried to constant mass. The desorption curve is plotted after
obtaining the moisture content of the specimen for each relative humidity.

The determination of sound absorption was carried out according to EN ISO 10534-2 [31],
using an impedance tube type 4206A (Brüel&Kjær, Nærum, Denmark), over the frequency
range 100–3200 Hz applying the transfer function method. For this determination, spec-
imens of 63.5 mm diameter and 30, 40 and 50 mm thickness were prepared. The sound
source is placed at one end of the tube and the test sample is placed at the other end. Sound
waves generated by the source propagate along the tube, encounter the surface of the
sample and are reflected. The interference field generated is broken down by measuring
the sound pressure at two fixed positions using two microphones mounted on the tube
wall. The complex sound transfer function is calculated using a signal analyser, with which
the sound absorption coefficient at normal incidence can be obtained.

3. Results

This section presents the results of the tests performed. It should be noted that thermal
conductivity determinations were carried out for all samples (P1–P24), while the rest of the
determinations were carried out for samples P3 and P13.

3.1. Thermal Conductivity and Thermal Resistance

In the following sections, the effect of sample thickness and density, binder type and
percentage on the values of thermal conductivity will be presented and discussed.

3.1.1. Effect of Sample Thickness

The increase in thickness does not influence the value of thermal conductivity (Figure 7).
This aspect comes from the definition of conductivity, according to which this parameter
depends on the surface and the temperature gradient perpendicular to the surface. Con-
sidering the three thicknesses of materials, however, it was found that higher values were
obtained for the 5 cm thick samples in most cases. The different values recorded for the
same specimens with different thicknesses can be attributed to the inhomogeneity of the
material. As each test piece was made by hand, there is a possibility that the composition of
the material is not uniform. From Figure 7, it is observed that for the denser samples made
by mixing (P13–P24), the difference in value between thicknesses is more accentuated,
while in the case of less dense samples obtained by spraying (P1–P12), the divergence
between the measured values in the three cases is less pronounced.
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Analysing the case of thermal resistance in Figure 8, a significant influence of the
thickness of the specimen is noticed. As the thermal resistance is directly proportional to
thickness, the maximum values were recorded for the thickest specimens. It was observed
that in the case of specimens with a thickness of 3 cm, the variation of the thermal resistance
value is almost linear for the samples obtained by spraying.
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3.1.2. Effect of Sample Density

In order to evaluate the effect of density (Figure 9) on the thermal conductivity, the
average values for the three thickness categories will be considered. From Figure 10, it
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is observed that for the samples with lower density made by spraying (P1–P12), the
variation between thermal conductivity and density is almost inversely proportional.
Instead, analysing the set of samples made by mixing (P13–P24), a significant difference
can be found between the samples, the variation being of two types: directly and inversely
proportional, depending on the binder used.
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The minimum value of thermal conductivity, of 0.0324 W/mK, was obtained for
sample P19, with a density of 116.27 kg/m3, followed by P23, with 0.0331 W/mK for
138.74 kg/m3.

Regarding thermal resistance (Figure 11), the highest value, 1.171 m2K/W, was mea-
sured for P23, followed by P19, with a value of 1.164 m2K/W.
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3.1.3. Effect of Binder Type

Analysing Figure 10, the significant influence of the binder type on thermal conductiv-
ity is observed. In the case of synthetic resin binder, the variation of thermal conductivity as
a function of density is nonlinear, the variation curve having a minimum point, for samples
P9 and P10 (0.0337 and 0.0349 W/mK). On the other hand, in the case of the natural latex
binder, the nonlinear curve presents two minimum points: for P7 and P8 and P19 and P20,
the latter set having lower values (0.0324 and 0.0339 W/mK).

It is also observed that, considering the same density category, the samples prepared
with a natural binder show a lower thermal conductivity, the difference being much more
pronounced at higher density. The thermal resistance varies in a similar way, and the value
is higher in the case of samples prepared with a natural binder.

3.1.4. Effect of Binder Percentage

Analysing the effect of binder percentage in the composite, it was found that the
higher the percentage of binder, the higher the value of thermal conductivity, regardless
of the type of binder used. It was noticed that by increasing the density, the differences
between the values of thermal conductivity due to the increase in the binder percentage are
more pronounced. Deviations are more significant in the case of samples prepared with
synthetic resin.

3.2. Microscopic Analysis

In Figures 12 and 13, SEM images of samples prepared with latex (P3) and resin (P13)
are shown.
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From the previous figures, the dispersion of the binder over the fibres can be seen,
with possible agglomerations of the binder (case of sample P3). Analysing the samples at
higher magnifications, binder exfoliation from the fibres and fibres partially covered by a
binder can be seen (case of sample P13).

3.3. Chemical Characteristics

In Figure 14, the EDX elemental map distribution image of sample P3 is shown. On
the basis of the results, the following component elements were identified: carbon, oxygen,
sulphur, aluminium, calcium, silicon, and potassium. In Figure 15, EDX results for sample
P13 are shown. For this sample, the elements carbon, oxygen, sulphur, silicon, and calcium
were identified.

The homogeneous dispersion of the binder on the fibres can be seen in the previous
figures. In both cases, the binder components were identified on the surface of the fibres,
which confirms the previous statement. Based on this, the methods of making the samples
(spraying binder over fibres for P3, mixing fibres with a binder for P13) are viable solutions
for processing composites.
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3.4. Water Absorption

In Figure 16, the result of the determination of short-term water absorption by partial
immersion (Wp) for the analysed samples, P3 and P13, is shown. For the sample made with
latex (P3), the value of Wp is much lower than for the sample made with resin (P13). The
influence of thickness on water absorption is more evident in the case of P13: the greater
the thickness of the sample, the higher the water absorption value. For P3, the variation of
water absorption with thickness is nonlinear, and the highest value was obtained for the
minimum thickness.
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3.5. Action of Microorganisms

The results of the determination, i.e., the microscope images, are shown in Figure 17
for samples P3 and P13.

From the images presented, the presence of microorganisms on the samples analysed
can be observed, but their identification is not the objective of this work. Regardless of the
nature of the binder, the two types of wool samples exposed in the test environment show
traces of microorganisms. Their increase is more pronounced as the exposure time increases.

The growth intensity of the microorganisms was assessed according to predetermined
criteria. It was concluded that samples P3 and P13 fall into category 2 of microorganism
growth intensity; therefore, the materials are not resistant to microorganism attack and
contain nutrients for microorganism growth.

3.6. Water Vapour Transmission

In Table 3, the results of the water vapour transmission determination are presented.
With respect to the µ-factor (water vapour diffusion resistance factor), both tested specimens
show low values. Of the two types of specimens, the lowest value was obtained for the one
prepared with latex (P3).

Table 3. Water vapour transmission factors: g—water vapour transmission rate; W—water vapour
permeance; Z—water vapour resistance; δ—water vapour permeability; µ—water vapour diffusion
resistance factor; sd—water vapour diffusion equivalent air layer thickness.

Sample g
(mg/m2·h)

W
(mg/m2·h·Pa)

Z
(m2·h·Pa/mg)

δ

(mg/m·h·Pa) µ
sd

(m)

P3 1.11·104 9.16 0.1092 0.45 1.6 7.75·10−2

P13 6.00·103 4.96 0.2015 0.24 2.9 1.43·10−1
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3.7. Hygroscopic Adsorption Characteristics

In Table 4 and Figure 18, the results of hygroscopic adsorption determination for 3 cm
(P3-3, P13-3), 4 cm (P3-4, P13-4) and 5 cm (P3-5, P13-5) thick samples are shown for the
wool–resin (P13) and wool–latex (P3) composites. It is found that the values obtained
for sample P13 (wool–resin) are defined by a hysteresis variation, while the sorption and
desorption values measured for P3 (wool–latex) are closer, the difference between the two
stages being small. For P3, in general, the sorption value does not exceed the desorption
value, but for P13, sorption is higher than desorption.

Table 4. Moisture content values of samples for relative humidity of 30, 50, 80 and 95%.

Sample

Moisture Content, u (kg/kg)

Sorption Desorption

30% 50% 80% 95% 95% 80% 50% 30%

P3-3 0.0065 0.0380 0.0645 0.0780 0.0780 0.0695 0.0350 0.0160

P3-4 0.0045 0.0345 0.0630 0.0770 0.0770 0.0685 0.0330 0.0140

P3-5 0.0050 0.0350 0.0635 0.0775 0.0775 0.0685 0.0335 0.0145

P13-3 0.0090 0.0335 0.0620 0.0745 0.0745 0.0555 0.0150 0.0070

P13-4 0.0095 0.0330 0.0625 0.0755 0.0755 0.0620 0.0255 0.0105

P13-5 0.0100 0.0335 0.0630 0.0750 0.0750 0.0590 0.0200 0.0090
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The moisture content of sample P3, as a function of relative air humidity, varies
between 0.0045 and 0.078 kg/kg, and for P13 this value is between 0.007 and 0.0755 kg/kg.

3.8. Sound Absorption

In Figure 19 and Table 5, the results of the sound absorption determination are pre-
sented. The test was performed for samples P3 and P13, with thicknesses of 3 cm (P3-3,
P13-3), 4 cm (P3-4, P13-4) and 5 cm (P3-5, P13-5).
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Table 5. Maximum sound absorption coefficient (αmax), frequency corresponding to the maximum
sound absorption, and the noise reduction coefficient (NRC) for the tested samples.

Parameter P3-3 P3-4 P3-5 P13-3 P13-4 P13-5

αmax 0.636 0.762 0.830 0.966 0.988 0.999

Frequency of αmax (Hz) 3200 3200 3200 2364 1864 1436

NRC * 0.234 0.321 0.394 0.437 0.540 0.657
* NRC was calculated according to ASTM Standard C423 [32].

Comparing Figure 19a,b, in terms of sound absorption, it can be seen that P13 (wool–
resin) performs superior to P3 (wool–latex). Higher αmax values were measured for P13 in
each thickness category. In the case of P3, the variation of the sound absorption coefficient
is almost linear up to 2000 Hz, with maximum values being reached at 3200 Hz for the
three specimen thicknesses. The peak sound absorption shifted to lower frequencies with
increasing specimen thickness for both specimen types. Analysing the results of the 5-cm-
thick samples, it can be seen that P13-5 shows high sound absorption over the whole
frequency range analysed. In contrast, the P3-5 sample is more efficient at high frequencies.

4. Discussion
4.1. Thermal Conductivity

In general, high-density values imply high thermal conductivity values. Such re-
sults have been recorded for several natural fibres, such as bamboo [33], rice straw [34],
hemp [35], or jute fibres [36]. However, for some materials, increasing density leads to low
values of thermal conductivity. This phenomenon has been observed for hemp fibres [37],
straw [38], reed [39], sheep wool [40], feathers [41], synthetic polymer fibres [42] and ce-
ramic fibres [43]. This type of correlation between density and thermal conductivity can be
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explained in different ways. According to Pruteanu [38], reducing the volume of air in the
mass of the material has the effect of reducing convective heat transfer, resulting in lower
thermal conductivity values. Similar conclusions were formulated by Asdrubali et al. [39].
According to Ye et al. [40], the material’s structure or the test method could produce this
type of correlation.

In the case of some natural fibre reinforced composites, it has been observed that by
increasing the fibre dosage, the thermal conductivity value initially increases and then starts
to decrease. If the optimum density point is exceeded, the tubular structure of the fibres
becomes more deformed by compacting the composite. Thus, it was found that for flax
fibres, increasing the sample density by using a higher number of fibres in the composite
results in a decrease in thermal conductivity. The contribution of the fibres to the thermal
insulating capacity is not manifested by their tubular structure but by the densification of
the microfibrils that contribute to the thermal energy dissipation [44].

According to the study carried out on jute fibre-reinforced polymer composites, increas-
ing the percentage of fibres in the composite leads to low thermal conductivity. Increasing
the percentage of fibres implicitly increases the density of the composite, resulting in in-
creased contacts between fibres, which explains the low values of thermal conductivity [45].

Kosiński et al. [46] studied the thermal insulation properties of hemp fibres and
observed an inversely proportional variation between thermal conductivity and density.
The authors came to the observation that any material can be characterised by an optimum
density point for which the thermal conductivity is minimum.

The study by Stapulionienė et al. [47] on the influence of manufacturing technology
and density on the thermal conductivity of natural fibres (flax and hemp) shows that the
variation of thermal conductivity is governed by the optimum point of density. Before
reaching the optimum density, the thermal conductivity is inversely proportional to the
density, and after exceeding the optimum point, the variation is proportional or negligible.

Of the components of heat transfer in fibrous materials, radiation has the highest
contribution, followed by conduction through air and conduction through fibres [48]. Conduc-
tion is directly proportional to density due to the high contact between fibres, but radiation
varies inversely proportional to density due to the decrease in air volume in the material [43].
Since the decrease in the radiation component is greater than the increase in the conduction
component, the total conductivity of the material decreases with increasing density [49].

The thermal conductivity values for wool panels obtained in this study range from
0.033 to 0.044 W/mK. Compared to these values, those identified in the literature are gener-
ally higher. Bosia et al. [50] studied a recycled wool-based panel with a thermal conductivity
value of 0.040–0.054 W/mK. Ye et al. [40] obtained thermal conductivity coefficient values of
wool panels of 0.034–0.067 W/mK. Patnaik et al. [17] obtained thermal conductivity values
between 0.032 and 0.033 W/mK wool–polyester composites. Guna et al. [20] studied wool–
polypropylene panels with λ values between 0.058 and 0.083 W/mK. Rubino et al. [19], for
wool–chitosan samples, obtained λ values of 0.049–0.060 W/mK.

In Figure 20, the thermal conductivity results of this study are presented, with reference
to relevant materials found in the literature.
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4.2. Water Vapour Transmission

The water vapour diffusion resistance factor (µ) is a parameter that shows the ability
of a material to resist the transfer of water vapour through its mass. The lower this value is,
the material is more permeable.

The µ-factor of the analysed samples is 1.6 for P3 (made with latex) and 2.9 for P13
(made with resin). These values are comparable or lower than those reported in the
literature. Orlik-Kożdoń and Steidl [51] studied a porous thermal insulation material based
on recycled polystyrene and cement. The studies showed that the water vapour diffusion
resistance factor of the tested material was seven. Collet et al. [52] studied the properties
of hemp-based composites and obtained µ-factor values of 3.6 and 3.7. Hegyi et al. [53]
studied a sheep wool-based thermal insulation material in terms of water vapour behaviour.
The authors recorded µ-factor values between 2.6 and 9.7. Tuzcu [54] measured µ-factor
values between 1.20 and 2.12 for sheep wool. Bosia et al. [50] developed a recycled wool
panel with a µ-factor of 5–6. In Figure 21, the comparative analysis of the µ-factor obtained
in this study and the relevant results from the literature are reported.
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4.3. Hygroscopic Adsorption Characteristics

The hygroscopic adsorption of wool fibres consists of two phenomena: moisture
sorption followed by moisture desorption.

The results obtained in this study are in contradiction with those reported in the
literature, where results were given for wool fibres without a binder. When the desorption
curve is higher than the sorption curve (cases reported in the literature), the amount of
water lost is higher than that adsorbed. When the sorption curve is above the desorption
curve (the case obtained in this study), it indicates that there is an accumulation of moisture
in the mass of the material. The fact that the fibres are coated with binder may influence
the rate and degree of sorption and desorption, which could result in unusual hygroscopic
adsorption characteristics.

Most of the surface of the fibres is covered with binder, so the adsorption phenomenon
of the fibres is slightly hindered. Because of this, the difference between the minimum and
maximum value of the moisture content of the samples is quite small, which can also lead
to this inverse phenomenon of the curves’ variation.

The hygroscopic adsorption of the materials analysed in this study ranges from 0.0045
to 0.078 kg/kg for P3 (made with latex) and 0.007 to 0.0755 kg/kg for P13 (made with resin).
Hegyi et al. [53], in their study on thermo-sensitive synthetic fibre and wool fibre-based
materials, reported values of adsorbed water between 0.01 and 0.33 kg/kg, depending on
relative humidity. In Figure 22, the result obtained in this study in comparison with those
reported by Hegyi et al. [53] is presented.



Polymers 2022, 14, 2109 21 of 25Polymers 2022, 14, 2109 22 of 27 
 

 

 
Figure 22. Moisture content from adsorption of samples (data from Ref. [53]). 

4.4. Sound Absorption 
The sound absorption coefficient values of the panels made in this study, considering 

the maximum thickness of 50 mm of the specimen, are 0.83 for P3 (made with latex) and 
0.99 for P13 (made with resin). Considering the values identified in the literature and the 
values measured in this study, it is observed that the latter ones are higher. Guna et al. 
[20] studied a material based on wool fibres and polypropylene fibres (30 mm thickness) 
with a maximum sound absorption coefficient of 0.86 between 1500 and 2500 Hz. Broda 
and Bączek [55] investigated the properties of wool samples (10.6 mm thickness), meas-
uring a maximum sound absorption value of 0.95 at 3150 Hz. 

With respect to the NRC value and sound absorption coefficients at standardised fre-
quencies, the comparison between the materials studied in this experimental program and 
other fibrous materials is shown in Table 6 and Figure 23. 

Table 6. Sound absorption coefficients as a function of frequency, and NRC values for different 
materials. 

Material 
Thickness  

(mm) 
Frequency (Hz) 

NRC Ref. 
125 250 500 1000 2000 

P3-5 50 0.07 0.12 0.23 0.45 0.78 0.39 

This study 

P13-5 50 0.08 0.23 0.54 0.95 0.91 0.66 
P3-4 40 0.05 0.11 0.19 0.34 0.64 0.32 
P13-4 40 0.04 0.13 0.32 0.73 0.98 0.54 
P3-3 30 0.04 0.08 0.14 0.24 0.47 0.23 
P13-3 30 0.03 0.10 0.21 0.50 0.94 0.44 

Raw wool 50 0.12 0.21 0.38 0.70 0.72 0.50 [56] 
Coconut 

fibre 
40 0.27 0.41 0.69 0.81 0.62 0.63 [57] 

Hemp 30 0.01 0.15 0.25 0.51 0.70 0.40 [58] 

Figure 22. Moisture content from adsorption of samples (data from ref. [53]).

4.4. Sound Absorption

The sound absorption coefficient values of the panels made in this study, considering
the maximum thickness of 50 mm of the specimen, are 0.83 for P3 (made with latex) and
0.99 for P13 (made with resin). Considering the values identified in the literature and the
values measured in this study, it is observed that the latter ones are higher. Guna et al. [20]
studied a material based on wool fibres and polypropylene fibres (30 mm thickness) with
a maximum sound absorption coefficient of 0.86 between 1500 and 2500 Hz. Broda and
Bączek [55] investigated the properties of wool samples (10.6 mm thickness), measuring a
maximum sound absorption value of 0.95 at 3150 Hz.

With respect to the NRC value and sound absorption coefficients at standardised
frequencies, the comparison between the materials studied in this experimental program
and other fibrous materials is shown in Table 6 and Figure 23.

Table 6. Sound absorption coefficients as a function of frequency, and NRC values for different materials.

Material Thickness (mm)
Frequency (Hz)

NRC Ref.
125 250 500 1000 2000

P3-5 50 0.07 0.12 0.23 0.45 0.78 0.39

This study

P13-5 50 0.08 0.23 0.54 0.95 0.91 0.66

P3-4 40 0.05 0.11 0.19 0.34 0.64 0.32

P13-4 40 0.04 0.13 0.32 0.73 0.98 0.54

P3-3 30 0.04 0.08 0.14 0.24 0.47 0.23

P13-3 30 0.03 0.10 0.21 0.50 0.94 0.44

Raw wool 50 0.12 0.21 0.38 0.70 0.72 0.50 [56]

Coconut fibre 40 0.27 0.41 0.69 0.81 0.62 0.63 [57]

Hemp 30 0.01 0.15 0.25 0.51 0.70 0.40 [58]

From the previously presented data, it can be seen that the sound absorption perfor-
mance of the composites presented in this study is variable when it is compared with other
natural fibrous materials. Comparing the samples with raw wool (the samples having
50 mm thickness), it can be observed that for frequencies between 250 and 1000 Hz, sample
P13 has higher sound absorption, while the values of P3 are lower. Taking into considera-
tion the case of coconut fibres (with samples having 40 mm thickness), it can be seen that the
wool–binder composites have lower sound absorption in the range of 125–1000 Hz. Finally,
from the relationship between the wool–binder samples and the hemp fibres (for 30 mm
thick samples), it could be noted that the sound absorption values are similar between the
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frequencies of 12 and 1000 Hz. Overall, it can be noted that sample P13 in all three cases
has higher acoustic absorption than raw wool, coconut fibres, and hemp at 2000 Hz by 19,
36 and 24%, respectively.
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5. Conclusions

In this paper, different characteristics of sheep wool-based composites made with syn-
thetic resin and natural rubber latex, respectively, were presented. In the first stage of the
study, the thermal conductivity coefficient values of the composites were determined. The
influence of some parameters (thickness, density, type of binder, percentage of binder) on
the variation of the value of thermal conductivity and thermal resistance was investigated.
In the second step, choosing two types of composites, the microscopic and chemical proper-
ties, water absorption, action of microorganisms, water vapour transmission, hygroscopic
characteristics and acoustic absorption were determined.

Based on the results presented in this study, the following conclusions can be drawn:

• Increasing density has a different effect on the two types of binder: two minimum
conductivity points were recorded for latex (at densities of 62.03 and 116.27 kg/m3),
while one minimum point was measured for resin (at a density of 98.27 kg/m3);

• In general, resin leads to higher thermal conductivity values compared to latex;
• The increase in thermal conductivity is proportional to the increase in binder percentage;
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• The minimum values of thermal conductivity were measured for the samples prepared
with latex, having high density, with low binder percentage: 0.0324 W/mK (for sample
P19 made by mixing the fibres with latex, in percentage of fibre/binder of 1/2, with
density of 116 kg/m3) and 0.0331 W/mK (for sample P23 made by mixing fibres with
latex, in percentage of fibre/binder of 1/2, with density of 138.74 kg/m3);

• Based on the criteria established in the national normative C107/2-2005 regarding the
necessary values of thermal conductivity and thermal resistance (thermal conductivity
less than 0.065 W/mK and thermal resistance greater than 0.50 m2K/W) [7] of a
thermal insulating material, it is observed that all samples prepared and analysed in
this study meet these criteria;

• Microscopic and chemical analysis confirmed the dispersion of the binder on the fibres;
• Water absorption is higher in the resin sample;
• The materials tested are susceptible to attack by microorganisms;
• The water vapour diffusion resistance factor is higher for the wool–resin sample;
• The wool–resin sample shows high sound absorption over the whole frequency range

analysed, while the wool–latex sample is more efficient at high frequencies.

However, this study has a few limitations, but they will be covered in the next research
program, which will aim at finding solutions to the limitations met at this stage. Firstly,
the investigation methodologies will cover tests of compositional analysis techniques,
such as X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and
thermogravimetric analysis, but it will also focus on determining other physical properties,
such as the sound and impact insulation, fire resistance or in situ hygrothermal monitoring.
Secondly, the question of automating the production process of the samples to reduce
the preparation time will be investigated. In order to propose a viable alternative to the
common insulation materials, this aspect should be covered. Thirdly, the economic aspect
will be taken into consideration, which is decisive when it comes to creating a building
material. Overall, the experimental part will be expanded, but the practical and economic
sides of these materials will be assessed as well.

Since this experimental program is the result of the first stage of researching the
presented composites, the following stages will be centred around developing them in
order to meet the three criteria of sustainability.
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