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Abstract
Deleterious changes in energy metabolism have been linked to aging and disease 
vulnerability,	while	activation	of	mitochondrial	pathways	has	been	linked	to	delayed	
aging by caloric restriction (CR). The basis for these associations is poorly under‐
stood,	and	the	scope	of	impact	of	mitochondrial	activation	on	cellular	function	has	
yet	to	be	defined.	Here,	we	show	that	mitochondrial	regulator	PGC‐1a	is	induced	by	
CR	in	multiple	tissues,	and	at	the	cellular	level,	CR‐like	activation	of	PGC‐1a	impacts	
a network that integrates mitochondrial status with metabolism and growth param‐
eters.	Transcriptional	profiling	reveals	that	diverse	functions,	including	immune	path‐
ways,	growth,	structure,	and	macromolecule	homeostasis,	are	responsive	to	PGC‐1a.	
Mechanistically,	these	changes	in	gene	expression	were	linked	to	chromatin	remod‐
eling	and	RNA	processing.	Metabolic	changes	implicated	in	the	transcriptional	data	
were	confirmed	functionally	 including	shifts	 in	NAD	metabolism,	 lipid	metabolism,	
and	membrane	lipid	composition.	Delayed	cellular	proliferation,	altered	cytoskeleton,	
and attenuated growth signaling through post‐transcriptional and post‐translational 
mechanisms	 were	 also	 identified	 as	 outcomes	 of	 PGC‐1a‐directed	 mitochondrial	
activation.	Furthermore,	in	vivo	in	tissues	from	a	genetically	heterogeneous	mouse	
population,	endogenous	PGC‐1a	expression	was	correlated	with	this	same	metabo‐
lism and growth network. These data show that small changes in metabolism have 
broad	consequences	that	arguably	would	profoundly	alter	cell	function.	We	suggest	
that	this	PGC‐1a	sensitive	network	may	be	the	basis	for	the	association	between	mi‐
tochondrial function and aging where small deficiencies precipitate loss of function 
across a spectrum of cellular activities.
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1  | INTRODUC TION

Mitochondrial dysfunction is a prominent feature of aging at the 
cellular level and includes reduced bioenergetic efficiency and loss 
of integrity of mitochondrial‐dependent processes linked to cell 
fate	(Sun,	Youle,	&	Finkel,	2016).	Numerous	studies	have	reported	
a	decline	in	expression	of	nuclear‐encoded	genes	of	the	electron	

transport	chain	 (ETC)	with	age,	and	 this	 feature	 is	 shared	across	
multiple	organisms	 (McCarroll	et	al.,	2004;	Zahn	et	al.,	2006).	 In	
mammals,	ETC	genes	are	direct	or	 indirect	 targets	of	 the	PGC‐1	
(peroxisome	 proliferator‐activated	 receptor	 gamma‐coactiva‐
tor 1) family of transcription factors. These master regulators of 
mitochondrial	 function	 include	 PGC‐1a	 (gene	 symbol	 Ppargc1a),	
PGC‐1b	 (gene	 symbol	 Ppargc1b),	 and	 PRC	 (PGC‐1‐related	

F I G U R E  1  Moderate,	stable	PGC‐1a	overexpression	is	associated	with	a	large	transcriptional	network.	(a)	Detection	of	PGC‐1a	isoform	
expression	in	tissues	from	12‐month‐old	mice	on	25%	CR	from	2	months	of	age.	(b)	Ranked	fold	change	of	all	detected	genes	between	
control	and	PGC‐OE	cells	and	(c)	fold	change	as	a	function	of	mean	expression	with	differentially	expressed	(DE)	genes	in	red	(p	<	0.01,	
absolute	FC	>	1.2),	n	=	4.	(d)	KEGG	pathway	analysis.	(e)	Proportion	of	genes	with	multiple	annotated	transcript	isoforms.	(f)	Rank	ordered	
KEGG	pathways	by	enrichment	score;	colors	indicate	panel	(c)	categories.	(g)	ENCODE	factors	associated	with	upregulated	(red)	and	
downregulated	(blue)	DE	genes.	(h)	Fold	change	of	histone	H3K27	and	K36	methylation	and	(i)	quantitation	of	histone	acetylation	by	mass	
spectrometry,	n	=	6.	Pan,	pan‐PGC‐1a	isoform	expression;	1a1,	PGC‐1a1	isoform,	etc.	Data	shown	as	means	±	SEM; asterisk (*) indicates 
p	<	0.05	by	two‐tailed	Student's	t test
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coactivator; gene symbol Pprc1)	(Villena,	2015),	although	PGC‐1a	
is	by	far	the	best	characterized	with	expression	ubiquitous	among	
tissues	 (Martinez‐Redondo	 et	 al.,	 2016).	 The	 pace	 of	 aging	 and	
incidence of age‐related disease is offset by the dietary inter‐
vention	 of	 caloric	 restriction	 (CR)	 (Balasubramanian,	 Howell,	 &	
Anderson,	2017).	A	meta‐analysis	study	of	CR‐induced	changes	in	
gene	 expression	 identified	mitochondrial	 pathways	 as	 the	 dom‐
inant feature in a conserved tissue type‐independent transcrip‐
tional	signature	(Barger	et	al.,	2015),	suggesting	that	PGC‐1a	could	
be a potential target for the development of CR mimetics. Much 
of	 the	early	 studies	of	 the	biology	of	PGC‐1a	 involved	 relatively	
high	 levels	 of	 overexpression	 and	 focused	 on	 exercise	 or	 ther‐
mogenesis	 (Scarpulla,	 2011).	 Physiologically,	 CR	 interventions	 in	
mouse and human studies show modest yet consistent increases 
in	PGC‐1a	expression	in	adipose	tissues	and	liver	(Anderson	et	al.,	
2008;	Corton	et	al.,	2004;	Fujii	et	al.,	2017;	Nisoli	et	al.,	2005)	with	
less	consistent	effects	 reported	 in	 skeletal	muscle	 (Gouspillou	&	
Hepple,	 2013).	 Similarly,	 elevated	 PGC‐1a	 expression	 in	 adipose	
and liver in mammalian genetic models of longevity is consistent 
with	 enhanced	 mitochondrial	 function	 and	 efficiency	 (Bartke	 &	
Darcy,	2017).	More	recently,	genetic	studies	suggest	that	the	ac‐
tual	physiological	role	of	PGC‐1a	in	adult	animals	is	in	adaptation	
to changes in energy availability or demand rather than mainte‐
nance	of	basal	energetics	(Villena,	2015).	The	small	but	consistent	
activation of mitochondrial pathways observed with CR is com‐
patible	with	this	newer	view	of	PGC‐1a	function.	Surprisingly,	our	
knowledge	of	 the	function	of	endogenous	PGC‐1a	remains	quite	
limited,	and	the	broader	consequence	of	small	changes	in	PGC‐1a	
status is largely uncharacterized. The goal of this study was to 
fill	in	some	of	these	gaps.	Specifically,	we	sought	to	test	whether	
PGC‐1a	 activation	 might	 be	 sufficient	 to	 mimic	 CR’s	 effects,	 to	
determine the cellular consequence of modest but persistently 
augmented	 PGC‐1a	 levels,	 and	 to	 identify	 connections	 between	
physiological	perturbations	of	PGC‐1a	and	metabolism	and	growth	
pathways linked to longevity and CR.

2  | RESULTS

2.1 | A modest increase in PGC‐1a expression 
induces large‐scale transcriptional changes

Our previous studies identified growth and metabolic pathways 
among	 those	most	 responsive	 to	 caloric	 restriction	 (Rhoads	et	 al.,	
2018;	 Schneider	 et	 al.,	 2017).	 The	 induction	of	mitochondrial	 oxi‐
dative	phosphorylation	and	redox	metabolism	pathways	is	a	shared	
response	to	CR	among	tissues,	suggesting	that	mitochondrial	activa‐
tion	may	be	 at	 the	 core	of	CR’s	mechanisms	 (Barger	 et	 al.,	 2015).	
Consistent	 with	 this,	 a	 significant	 increase	 in	 the	 expression	 of	
PGC‐1a	transcript	was	detected	in	adipose	tissue	and	liver	of	C3B6‐
F1	 hybrid	mice	 subject	 to	 25%	CR,	 and	 although	 not	 significantly	
different	in	skeletal	muscle	and	heart	PGC‐1a	transcript	levels	were	
numerically higher (Figure 1a). To model the CR program in cultured 
cells,	a	stable	3T3‐L1	preadipocyte	cell	line	was	generated	using	viral	

delivery	 of	 PGC‐1a	 cDNA,	 hereafter	 referred	 to	 as	 PGC‐OE	 cells.	
Importantly,	the	~2‐fold	increase	in	PGC‐1a	at	the	protein	level	and	
at	the	mRNA	level	compared	to	control	cells	paralleled	the	level	of	
PGC‐1a	induction	observed	in	CR	tissues	(Figure	S1A,B).

RNAseq	 analysis	 of	 extracts	 from	 PGC‐OE	 cells	 identified	 and	
quantified	transcripts	associated	with	11,291	unique	genes	(Figure	1b).	
Transcripts	associated	with	5,147	unique	genes	were	differentially	ex‐
pressed	in	PGC‐OE	cells	compared	to	controls	(absolute	fold	change	
>1.2,	BH‐adjusted	p	<	0.01)	(Figure	1c;	Table	S1).	PGC‐OE	responsive	
genes represented a range of cellular functions including hormonal 
regulation,	 lipid	synthesis,	 intracellular	and	extracellular	remodeling,	
and	nucleotide	metabolism.	Based	on	gene	ontology	terms,	32%	of	
the	differentially	expressed	genes	encoded	nuclear	factors	and	50%	
encoded	cytoplasmic	factors,	including	46%	of	the	MitoCarta	(Calvo,	
Clauser,	&	Mootha,	2016).	Principal	component	analysis	showed	clear	
separation	of	control	and	PGC‐OE	cells	(Figure	S1C).	At	the	individual	
gene	level,	the	top	upregulated	genes,	included	cytoskeleton	regula‐
tory gene Dock8,	the	tRNA	methyltransferase	Trmt61b,	and	Isl1 that 
binds	the	enhancer	of	the	insulin	gene,	expressed	exclusively	in	PGC‐
OE	 (Figure	S1D),	while	 the	 top	downregulated	genes	 included	Ror2 
a	tyrosine	kinase	receptor	implicated	in	WNT	signaling,	gap	junction	
protein Panx1,	and	Igfbp3	IGF	binding	protein,	expressed	exclusively	
in	control	cells.	Interestingly,	most	of	the	top	responding	genes	have	
not	previously	been	linked	to	PGC‐1a	transcriptional	co‐activation.

To understand the underlying processes that are responsive to the 
modest	 increase	in	PGC‐1a	levels,	the	differentially	expressed	genes	
were categorized by function independent of the directionality of 
change	using	KEGG	(Kyoto	Encyclopedia	of	Genes	and	Genomes)	via	
Webgestalt	(Zhang,	Kirov,	&	Snoddy,	2005).	Pathway	analysis	revealed	
89	pathways	enriched	in	the	PGC‐OE	cells	(BH‐adjusted	p < 0.0001) 
(Figure	1d;	Table	 S2).	Not	 surprisingly,	 PGC‐1a	 responsive	pathways	
represented a range of mitochondrial processes. Genes in fatty acid 
oxidation	 and	 fatty	 acid	 synthesis	 pathways	 were	 differentially	 ex‐
pressed,	including	Cpt1a and Cpt2	in	the	former,	and	Fads1 and Fads2 
and	the	stearoyl	Co‐A	desaturases	Scd1 and Scd2 in the latter (Figure 
S1E;	 Table	 S1).	 Metabolic	 processes	 involving	 extra‐mitochondrial	
steps such as amino acid metabolism and nucleotide metabolism were 
also	 among	 those	 responsive	 to	 PGC‐OE.	 Unexpectedly,	 immune,	
growth,	structural,	and	macromolecule	homeostatic	pathways,	includ‐
ing	 ribosomal	and	protein	processing	pathways,	were	also	 identified	
as	enriched	 in	the	PGC‐OE	compared	to	controls.	These	data	reveal	
large‐scale changes across multiple cellular processes not limited to 
mitochondria and not limited to metabolism.

2.2 | The adaptive response to increased PGC‐1a 
involves RNA processing and chromatin remodeling

PGC‐OE	 also	 impacted	 processing	 at	 the	 RNA	 level.	 More	 than	
one	 annotated	 transcript	 isoform	 was	 identified	 for	 2,558	 genes	
(Figure	1e).	Although	the	identity	of	the	transcripts	for	which	there	
were	multiple	isoforms	was	the	same	in	PGC‐OE	and	control	cells,	
there were differences in abundance of transcript isoforms. In the 
PGC‐OE,	962	of	these	genes	had	at	least	one	isoform	differentially	
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expressed	(p	<	0.01,	absolute	fold	change	>1.2)	(Table	S2).	The	top	
pathways	 enriched	 among	 the	 transcripts	 with	 differential	 exon	
usage	were	growth	and	RNA	processing	(Figure	1f).	These	findings	
are reminiscent of the hepatic response to short‐term CR in rhesus 
monkeys,	 wherein	 changes	 in	 metabolism	 and	 growth	 pathways	
were	 associated	 with	 the	 recruitment	 of	 RNA	 processing	 mecha‐
nisms	(Rhoads	et	al.,	2018).

The	 transcriptional	 response	 to	PGC‐OE	 involved	46%	of	 total	
expressed	genes	identified	by	RNAseq	analysis,	substantially	more	
genes	than	expected.	Possible	explanations	for	the	scale	of	the	tran‐
scriptional response include promiscuous co‐activation of genes 
that	 are	 not	 ordinarily	 regulated	 by	 PGC‐1a,	 or	 alternatively,	 the	
transcriptional profile could reflect an adaptive response to chronic 
PGC‐OE.	 Published	 ChIP‐seq	 experiments	 identified	 1,885	 puta‐
tive	PGC‐1a	gene	targets	in	HepG2	cells	(Charos	et	al.,	2012),	which	
could	 be	 considered	 to	 be	 direct	 targets	 of	 PGC‐1a	 co‐activation.	
Of	those,	738	were	identified	in	this	3T3‐L1	RNAseq	dataset,	with	
334	 of	 those	 differentially	 expressed	 in	 the	 PGC‐OE	 cells,	 repre‐
senting	only	7%	of	expressed	genes	identified.	Notwithstanding	the	
difference	 in	 cell	 types	 between	 the	 two	 studies,	 these	 data	 sug‐
gest	that	the	transcriptional	response	to	PGC‐OE	extended	beyond	
the	known	targets	of	PGC‐1a.	To	interrogate	this	further,	we	tested	
whether	short‐term	increases	in	PGC‐1a	gene	would	recapitulate	the	
transcriptional	response	detected	in	the	PGC‐OE	cells.	Two	models	
for	acute	activation	of	PGC‐1a	were	employed,	 (a)	doxycycline‐in‐
ducible	(DOX)	and	(b)	transient	overexpression	to	increase	levels	of	
PGC‐1a,	matching	the	PGC‐1a	expression	level	of	the	stable	line.	In	
each	case,	 transient	 low	 level	PGC‐1a	 increased	expression	of	 the	
direct target Pdk4	within	24	hr,	but	 failed	to	change	expression	of	
metabolic	genes	activated	in	the	stable	PGC‐OE	cells	and	similarly	
failed	to	suppress	genes	involved	in	growth	that	were	expressed	at	
lower	 levels	 in	 the	PGC‐OE	cells	 (Figure	S1F,G).	 These	data	 argue	
against	promiscuous	activation	of	gene	expression	by	PGC‐1a	in	the	
stable line.

To investigate factors that could be involved in coordinating an 
adaptive	 response	 to	PGC‐OE,	we	queried	 the	ENCODE	database	
using	a	gene	 list	with	a	cutoff	of	absolute	 fold	change	>2	 (BH‐ad‐
justed p < 0.05) as input (www.encod eproj ect.org) and visualized 
using	STRING	with	a	medium	confidence	threshold	for	protein–pro‐
tein	interactions	(Szklarczyk	et	al.,	2015;	Figure	1f;	Table	S3).	Among	
those	 factors	 identified	were	 two	 known	PGC‐1a	 interacting	 pro‐
teins	 ESRRA	 and	 EP300	 (Martinez‐Redondo,	 Pettersson,	 &	 Ruas,	
2015). Others included chromatin binding and remodeling factors 
such	 as	RAD21	and	SMC3	 (Dorsett	&	Merkenschlager,	 2013),	 the	
NAD+	 binding	 transcriptional	 corepressor	 CTBP2	 (Chinnadurai,	
2007),	 repressor	 PRDM1	 (Hohenauer	 &	 Moore,	 2012),	 and	 poly‐
comb	 members	 EZH2	 and	 SUZ12	 (Kashyap	 et	 al.,	 2009).	 Mass	
spectrometric	analysis	of	histone	modifications	 (Su	&	Denu,	2016)	
provided	evidence	for	chromatin	remodeling	(Figure	S1I),	 including	
histone	methylation	(Figure	1h;	Table	S4)	and	acetylation	(Figure	1i)	
that	 were	 increased	 in	 the	 PGC‐OE	 cells.	 Recent	 studies	 suggest	
close links between metabolism and epigenetic mechanisms of gene 
expression	regulation,	in	particular	due	to	the	importance	of	histone	

tail acetylation and methylation in determining chromatin archi‐
tecture	and	thereby	accessibility	 (Li,	Egervari,	Wang,	Berger,	&	Lu,	
2018).	Altogether	these	data	show	a	large	transcriptional	response	
to	PGC‐1a	overexpression	that	appears	to	be	adaptive	rather	than	
directly	modulated	by	PGC‐1a	and	is	associated	with	a	network	of	
chromatin‐modulatory factors.

2.3 | Mitochondrial fuel 
preference and plasticity are altered with modest 
PGC‐1a overexpression

Immunofluorescent detection of the mitochondrial membrane pro‐
tein TOMM20 revealed differences in mitochondrial network ar‐
chitecture that qualitatively appeared to be more interconnected 
in	 PGC‐OE	 cells	 (Figure	 2a).	 Quantification	 of	 mitochondrial	 size	
and circularity indicated that mitochondria were larger and more 
elongated	 (Figure	2b).	Quantification	of	 stain	 intensity	 indicated	a	
modest increase in mitochondrial content (Figure 2b) that was con‐
firmed	by	a	~1.3‐fold	increase	in	citrate	synthase	activity	(Figure	2c).	
Mitochondrial membrane potential (ΔΨm)	and	oxygen	consumption	
were	both	 increased	 in	 the	PGC‐OE	 (Figure	2d,e).	Consistent	with	
this,	significant	increases	were	detected	in	protein	levels	of	known	
targets	 of	 PGC‐1a	 including	 ETC	 components	Mt‐CO1,	 UQCRC2,	
and	NDUFB8	 (Figure	S2A).	 Surprisingly,	 at	 the	 transcript	 level	 ex‐
pression	of	genes	encoding	components	of	the	ETC	was	not	overall	
increased	 in	 the	 PGC‐OE	 cells	 (Figure	 S2B),	 suggesting	 the	 possi‐
bility for differences in transcript recruitment or perhaps post‐tran‐
scriptional mechanisms of mitochondrial adaptation. These data 
suggested	that	the	mitochondria	in	the	PGC‐OE	were	energetically	
different	from	those	in	the	control	cells.	To	test	this,	we	investigated	
fuel preference in both cell types and the ability of mitochondria to 
switch between fuels when one or another fuel source use was in‐
hibited.	 In	 comparison	with	 controls,	 PGC‐OE	 showed	a	 complete	
lack of glutamine dependence and less dependence than controls on 
mitochondrial	 long	chain	 fatty	acid	 (LCFA).	Mitochondrial	capacity	
was	measured	by	limiting	fuel	to	one	source	only.	Capacity	for	LCFA	
fuel	use	was	numerically	higher	in	the	PGC‐OE	cells,	and	capacity	for	
glucose	as	the	sole	fuel	source	was	significantly	higher	in	the	PGC‐
OE	(Figure	2f;	Figure	S2C).	The	lower	dependence	on	any	individual	
fuel source and increased capacity to use different fuel sources sug‐
gests	greater	overall	metabolic	flexibility	in	PGC‐OE	cells.

PGC‐OE	 cells	 had	 an	 increased	basal	 rate	 of	 palmitate	 (C16:0)	
oxidation	 (Figure	 3a),	 consistent	 with	 previous	 studies	 showing	
that	 PGC‐1a	 regulates	 fatty	 acid	 oxidation	 (Tabata	 et	 al.,	 2014).	
Furthermore,	 the	 ratio	 of	 CO2 to palmitate‐derived metabolites 
indicated	that	efficiency	was	enhanced	in	the	PGC‐OE	(Figure	3b).	
Increased fatty acid fuel utilization suggested that there might also 
be	 differences	 in	 cellular	 lipid	 storage	 in	 the	 PGC‐OE	 cells.	 Lipid	
droplets	were	detected	in	fixed	cells	using	a	fluorescent	dye,	digitally	
captured,	and	quantified	(Figure	3c).	The	PGC‐OE	cells	had	smaller,	
more	numerous	lipid	droplets	than	controls	(Figure	3d).	These	data	
match	prior	reports	of	PGC‐1a‐associated	changes	in	lipid	storage	in	
cultured	muscle	cells	(Mormeneo	et	al.,	2012)	and	in	skeletal	muscle	

http://www.encodeproject.org
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following	exercise	(Koves	et	al.,	2013).	Furthermore,	these	data	are	
consistent	with	 the	Seahorse	 fuel	 flexibility	assay	and	the	radiola‐
beled	fatty	acid	oxidation	assay	that	both	point	to	greater	lipid	turn‐
over	 in	 the	PGC‐OE	cells.	To	determine	 the	 impact	of	differences	
in	 lipid	metabolism	on	 lipid	membrane	composition,	total	 lipid	was	
extracted,	 distinct	 lipid	 classes	 including	 phospholipids	 were	 iso‐
lated	by	thin	layer	chromatography,	and	the	fatty	acid	composition	
of phosphatidylcholines and phosphatidylethanolamines was deter‐
mined	by	gas	 chromatography.	PGC‐OE	 induced	 significant	differ‐
ences in phospholipid composition with a marked shift away from 
saturated fatty acids and toward mono‐ and polyunsaturated fatty 
acids	 (Figure	 3e;	 Table	 S5).	 Relative	 levels	 of	 essential	 fatty	 acids	
18:2n‐6	and	18:3n‐3	were	higher	in	phosphatidylcholines	and	phos‐
phatidylethanolamines	 from	 PGC‐OE	 compared	 to	 controls.	 The	
composition changes in cellular phospholipids in response to this 
modest	increase	in	PGC‐1a	are	reminiscent	of	the	changes	in	compo‐
sition	of	circulating	phospholipids	induced	by	CR	(Miller	et	al.,	2017).

2.4 | Cellular redox metabolism is impacted  
by PGC‐OE

Several	of	the	metabolic	processes	identified	above	as	being	linked	
to	PGC‐1a	 activation	 are	dependent	on	 the	 redox	 cofactor	nicoti‐
namide	 adenine	 dinucleotide	 (NAD)	 and	 its	 phosphorylated	 form	
NADP.	Fluorescence	 lifetime	 imaging	microscopy	 (FLIM)	measures	
the	kinetics	of	photon	release	from	endogenous	pools	of	NADH	and	
NADPH,	 informing	 of	 the	 microenvironment	 of	 the	 fluorophores.	
Fluorescence decay kinetics are characterized by a first‐order decay 
curve according to the formula: τm = a1•τ1 + a2•τ2,	where	the	fast	
component (τ1)	corresponds	to	free,	or	unbound	NAD(P)H	and	the	
slow component (τ2)	corresponds	to	protein‐bound	NAD(P)H	(Miller	
et	al.,	2017).	The	relative	contribution	of	τ1 to the decay curve is rep‐
resented by the coefficient a1,	effectively	a	measure	of	the	percent	
of	NAD(P)H	in	the	free	state.	FLIM	data	show	distinct	nuclear	and	
cytosolic cofactor pools with distinct values for τm,	and	the	response	

F I G U R E  2   Mitochondrial activation 
and	altered	lipid	metabolism	in	PGC‐
OE	cells.	(a)	Representative	images	of	
TOMM20 immunofluorescence detection 
(scale bar 10 μm),	(b)	quantitation	of	
TOMM20	staining	by	particle	size,	shape,	
and	integrated	density,	n	=	43	vector	and	
50	PGC‐OE	cells.	(c)	Citrate	synthase	
activity,	n	=	6.	(d)	JC‐1	w590/w530	
measurement of mitochondrial membrane 
potential,	n	=	15.	(e)	Oxygen	consumption,	
n	=	4.	(f)	Seahorse	fuel	flexibility	assay,	
n	=	6.	GLN,	glutamine;	LCFA,	long	chain	
fatty	acid;	GLC,	glucose.	Data	shown	as	
means	±	SD	(b)	or	means	±	SEM; asterisk 
(*) indicates p < 0.05 by two‐tailed 
Student's	t test
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to	PGC‐OE	was	subcellular	compartment	specific	(Figure	4a,b).	PGC‐
OE	was	associated	with	an	increase	in	τm	that	was	explained	mostly	
by a marked decrease in a1,	the	relative	contribution	of	free	NAD(P)
H	(τ1)	that	has	faster	decay	time	than	bound	NAD(P)H	(τ2) (Figure 4c; 

Figure	S3A,B).	Analysis	of	 fluorescence	 intensity	showed	a	signifi‐
cant	 increase	 in	 nuclear	NAD(P)H	 intensity	 (Figure	 4d).	 Increased	
ratio	of	nuclear:cytosolic	NAD(P)H	intensity	and	nuclear:cytosolic	τm 
in	PGC‐OE	cells	confirmed	different	responses	to	increased	PGC‐1a	

F I G U R E  3  Altered	lipid	metabolism	
in	PGC‐OE	cells.	(a)	Palmitate	fatty	acid	
oxidation	radioassay	and	(b)	oxidation	
efficiency,	n = 6 or n	=	3	for	rot	treatment.	
(c)	BODIPY	493/503	neutral	lipid	stain	
representative images (scale bar 10 μm),	
(d) quantitation of lipid droplet number 
and	average	droplet	size,	n = 16 vector 
and	19	PGC‐OE	cells.	(e)	Phospholipid	
percent composition represented 
as the difference between means of 
PGC‐OE	and	vector	cell	lines,	n	=	3.	rot,	
rotenone.	Data	shown	as	means	±	SD 
(d)	or	means	±	SEM; asterisk (*) indicates 
p	<	0.05	by	two‐tailed	Student's	t test
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within	distinct	cellular	pools	(Figure	S3C,D).	Biochemical	assessment	
of	redox	ratios	in	PGC‐OE	whole	cell	extracts	(Figure	4e,f)	revealed	
no	change	in	oxidized	forms	NAD+	and	NADP+	 levels,	but	levels	of	
NADH	and	NADPH	were	decreased,	leading	to	an	increase	in	redox	
ratios in both cases. Because these assays remove protein from cell 
extracts	 before	 analysis,	 they	 represent	 freely	 available	NAD	 and	
NADP.	Therefore,	decreases	in	levels	of	free	NAD(P)H	in	these	bio‐
chemical	assays	match	the	decrease	in	free	NAD(P)H	as	measured	by	
decreased a1	in	the	PGC‐OE.	These	data	suggest	a	change	in	redox	
state	in	PGC‐OE	and	furthermore	point	to	cell	compartment‐specific	
responses	in	NAD(P)H	metabolism.

2.5 | PGC‐OE negatively impacts growth 
through post‐transcriptional and post‐
translational mechanisms

Several	cellular	growth	indices	were	quantified	and	showed	signifi‐
cantly	longer	time	doubling	time,	smaller	cell	size,	and	delay	in	cell	
cycle	in	the	PGC‐OE,	where	a	greater	proportion	of	cells	were	de‐
tected	in	the	G1	phase	(Figure	5a;	Figure	S4A).	The	enrichment	of	
the	spliceosome	and	RNA	transport	pathways	raised	the	possibility	
that	gene	expression	regulation	could	be	exerted	through	changes	in	
exon	usage	independent	of	differences	in	total	abundance.	DEXSeq	
exon	 counting	 analysis	 of	 the	 PGC‐OE	 transcriptome	 revealed	 a	
subset	of	genes	with	significant	differences	in	exon	usage	including	
1,033	differentially	counted	exons	representing	635	genes.	Growth	
and	 structural	 pathways	were	 predominant	 in	 the	KEGG	pathway	
analysis	 (Figure	5b;	Figure	S4B;	Tables	S1	and	S2),	suggesting	that	
growth	 regulation	 in	 particular	 was	 responsive	 to	 PGC‐1a	 status	
through	RNA‐based	mechanisms.	 The	majority	 of	 transcripts	with	
differential	 exon	 usage	 in	 the	 PGC‐OE	 cells	 involved	 differences	
in	 one	 exon	 only;	 however,	 in	 159	 instances	more	 than	 one	 exon	
was	 differentially	 incorporated.	 Examples	 included	 Ppp1r12a,	 a	
myosin phosphatase regulatory subunit involved in cell division and 
migration	 in	multiple	 cell	 types	 (Matsumura	 &	Hartshorne,	 2008;	
Figure 5c) and Mtor,	a	central	regulator	of	growth	signaling	(Kennedy	
&	 Lamming,	 2016;	 Figure	 S4C).	 Consistent	with	 the	 gene	 expres‐
sion	profiling	data,	changes	in	the	cytoskeleton	were	evident.	Overt	
changes in tubulin cytoskeletal morphology were revealed by im‐
munodetection,	 including	prominent	perinuclear	accumulation	and	
reorganization of tubulin networks in cytosolic regions (Figure 5d). 
The structural changes may be linked to differences in mitochon‐
drial	 distribution	 and	 morphology	 described	 earlier.	 In	 contrast,	
no obvious change in actin cytoskeletal morphology was detected 
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F I G U R E  4  Changes	in	NAD	metabolism	associated	with	PGC‐
OE.	(a)	Representative	images	of	NAD(P)H	mean	fluorescence	
lifetime (τm).	Quantitation	of	means	(left)	and	distributions	(right)	
for (b) τm and (c) a1,	the	proportion	of	free	NAD(P)H,	n = 9 vector 
and	10	PGC‐OE	cells.	(d)	Quantitation	of	NAD(P)H	fluorescence	
intensity,	n	=	9	vector	and	11	PGC‐OE	cells.	(e)	NAD	and	(f)	NADP	
biochemical	assays,	n	=	3.	Error	bars	represent	±	SD	or	±	SEM	(e,	f).	
Asterisk	(*)	indicates	p	<	0.05	by	two‐tailed	Student's	t test
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(Figure	S4D).	Growth	signaling	pathways	were	also	downregulated	
in	PGC‐OE.	Abundance	and	modification	status	of	factors	involved	
in	insulin,	mTOR,	and	WNT	signaling	were	significantly	different	in	
the	 PGC‐OE	 (Figure	 5e;	 Figure	 S4E).	 AKT	 and	 GSK‐3β (glycogen 
synthase	 kinase	 3‐beta)	 were	 decreased,	 and	 AMPKα	 (AMP‐acti‐
vated	protein	 kinase	 alpha)	 levels	were	 increased	 in	PGC‐OE	cells	
compared	to	control	cells.	mTOR	complex	1	receives	additional	 in‐
puts	from	insulin	signaling	which	is	partially	mediated	by	IRS1	(Yoon,	
2017).	IRS1	protein	levels	were	substantially	lower	in	PGC‐OE	cells.	
Although	 a	 change	 in	 AKT	 T308	 phosphorylation	 downstream	 of	
IRS1	was	not	detected,	activating	phosphorylation	at	S473	 (mTOR	
complex	2	target)	was	 lower	 in	PGC‐OE	cells	and	phosphorylation	
of	AKT	target	GSK‐3β	at	S9	was	also	lower,	suggesting	a	decrease	in	
AKT	activity.	Levels	of	the	growth‐associated	kinase	ERK	(extracel‐
lular	signal‐regulated	kinase)	were	also	lower	in	PGC‐OE.	Changes	in	
growth regulatory parameters at the protein level were highly coor‐
dinated with changes at the transcript level (Figure 5f). These data 
potentially place growth parameters downstream of the metabolic 
changes	induced	by	a	modest	increase	in	PGC‐1a	levels.

2.6 | PGC‐1a is linked to growth and metabolic 
networks in vivo

Previous	 studies	 have	 largely	 relied	 on	 genetic	 manipulation	 of	
PGC‐1a	 in	 cell	 culture	models	 or	 in	 specific	 tissues;	 however,	 the	
suite	 of	 factors	 responsive	 to	 differences	 in	 endogenous	 PGC‐1a	
in	 vivo	 has	 yet	 to	 be	 defined.	 The	Hybrid	Mouse	Diversity	 Panel	
(HMDP)	 is	a	genetic	 reference	population	composed	of	more	than	
100	 commercially	 available	 mouse	 strains	 with	 gene	 expression	
analysis	 conducted	 for	 several	 tissues	 (Bennett	et	 al.,	2010;	Parks	
et	al.,	2013,	2015).	These	published	data	were	used	to	 investigate	
strain‐dependent	differences	in	expression	of	endogenous	PGC‐1a	
in	 liver,	 epididymal	white	 adipose	 tissue,	 and	 skeletal	muscle.	 The	
range of abundance of Ppagrc1a transcript was remarkably tight 
among	 the	 100	 strains,	 with	 coefficients	 of	 variance	 lower	 than	
25%	 (Figure	 6a).	 To	 investigate	 whether	 there	 were	 patterns	 of	
gene	expression	 that	 tracked	with	 innate	PGC‐1a	 status	based	on	
abundance,	genes	with	transcripts	correlating	with	PGC‐1a	expres‐
sion were identified (biweight mid‐correlation p < 0.05). In addition 
to	tissue‐specific	gene	correlations	(Figure	S5),	a	core	group	of	801	
genes	 significantly	 correlated	 with	 PGC‐1a	 expression	 across	 all	
three	tissues	 (Figure	6b;	Table	S1).	The	directionality	of	the	corre‐
lation	was	not	 equivalent	 among	 tissues	 for	 60%	of	 the	 core	 net‐
work,	but	a	subset	was	consistently	correlated	with	PGC‐1a	across	
tissues.	 Pathway	 analysis	 via	KEGG	of	 the	168	genes	 consistently	
positively	correlated	with	PGC‐1a	expression	 identified	TCA	cycle,	
OXPHOS,	 and	 ubiquitin‐mediated	 proteolysis	 pathways,	while	 the	

155	genes	 consistently	negatively	 correlated	with	PGC‐1a	expres‐
sion	 represented	 immune,	 inflammation,	and	growth	pathways.	To	
understand	the	extent	of	the	PGC‐1a‐linked	network,	the	entire	set	
of core correlated genes were grouped independent of directional‐
ity	and	used	for	pathway	analysis,	the	same	method	that	was	used	
for	the	PGC‐OE	transcriptome	(Figure	1d).	A	suite	of	pathways	was	
revealed	 including	metabolic,	 structural,	growth,	homeostatic,	and	
immune	pathways	(Figure	6c;	Table	S2),	presenting	a	pattern	almost	
identical	to	that	identified	in	the	PGC‐OE	preadipocyte	line.	A	gene	
list	of	the	323	consistently	positively	and	negatively	PGC‐1a	corre‐
lated	genes	was	used	to	query	the	ENCODE	database,	and	a	suite	
of	factors	was	identified	including	PGC‐1a	itself.	Using	STRING	and	
limiting	the	output	to	only	factors	with	high	confidence	interactions,	
a highly interconnected network was identified with 40 factors as‐
sociated	with	positively	correlated	genes,	17	factors	with	negatively	
correlated	genes,	and	12	factors	with	both	(Figure	6d;	Table	S3).	A	
subcluster	 of	 known	 PGC‐1a	 interacting	 transcription	 factors	 in‐
volved	in	mitochondrial	regulation	was	identified	including	ESRRA,	
NRF1,	GABPA,	and	HNF4A.	This	subcluster	was	connected	to	the	
rest	of	the	regulatory	network	via	PGC‐1a	through	YY1	and	EP300,	
general	transcription	regulators	and	established	PGC‐1a‐associated	
factors. Overlap at the level of gene identity between the core net‐
work	of	PGC‐1a‐correlated	genes	and	the	group	of	differentially	ex‐
pressed	genes	 in	the	PGC‐OE	preadipocyte	 line	was	significant	by	
Fisher's	exact	test	(Figure	6e).	These	data	attest	to	the	physiological	
relevance	of	the	findings	of	the	PGC‐OE	experiments	and	indicate	
that the breadth of the network identified in culture cells reflects the 
network	of	genes	linked	to	PGC‐1a	status	in	vivo.

3  | DISCUSSION

Transcriptional analysis and functional cellular assays indicated that 
several distinct mechanisms were engaged in integrating metabolic 
and growth phenotypes. In addition to adaptive regulation at the level 
of	transcript	abundance,	there	was	evidence	of	extensive	chromatin	
remodeling. Global nontargeted analysis revealed significant changes 
in modification of histone tails by acetylation and methylation. These 
changes	are	likely	linked	to	availability	of	metabolites	(Li	et	al.,	2018),	
and it will be of considerable interest to determine the genomic loca‐
tion of histone marks that respond to changes in mitochondrial func‐
tion	 and	 specific	 pathways	 involved.	 RNA‐based	mechanisms	were	
also	evident	in	the	PGC‐OE,	where	changes	in	RNA	processing	were	
identified at the level of transcript isoform abundance in pathways 
of	 growth	 and	 metabolism.	 Independent	 of	 transcript	 abundance,	
changes	 in	 exon	 usage	were	 also	 specifically	 engaged	 for	 genes	 in	
growth‐associated	 pathways.	 Interestingly,	 both	 altered	 isoform	

F I G U R E  5  Growth	and	structural	phenotypes	of	PGC‐OE.	(a)	Doubling	time,	n	=	19,	cell	size,	n	=	3,	and	cell	cycle	phase,	n	=	3.	(b)	KEGG	
pathway	analysis	of	genes	with	≥1	differentially	expressed	exon.	(c)	Exon	expression	of	Ppp1r12a	and	sashimi	plot.	(d)	Representative	images	
of	tubulin	immunofluorescent	detection	and	quantitation	of	tubulin	cytoskeletal	network	branching	points,	n	=	39	vector	and	43	PGC‐OE	
cells.	(e)	Schematic	of	protein	expression	and	phosphorylation	in	PGC‐OE	by	Western	blot,	n	=	3.	(f)	Protein	and	corresponding	RNA	levels	
by	RNAseq	with	the	exception	of	Ppargc1a	expression	by	qRT–PCR	(see	Figure	S1E).	Data	are	shown	as	means	±	SEM.	Asterisk	(*)	indicates	
p	<	0.05	by	two‐tailed	Student's	t	test	or	differential	expression	of	exons	in	(c)	and	transcripts	in	(f)
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abundance	and	differential	exon	usage	in	the	absence	of	changes	in	
overall transcript abundance were recently reported to be engaged in 
the	early	response	to	CR	in	nonhuman	primates	(Rhoads	et	al.,	2018),	
where again the target pathways are metabolism and growth regula‐
tion.	Another	completely	distinct	mechanism	involved	changes	in	cell	
signaling at the protein post‐translational modification level. Growth 
signaling	plays	a	highly	conserved	role	in	longevity	regulation,	and	the	
investigation of both mTOR and insulin/IGF signaling is a very active 
area	of	research	(Kennedy	&	Lamming,	2016;	Manning	&	Toker,	2017;	
Yoon,	2017).	The	PGC‐OE	cells	showed	critical	differences	in	signaling	
through	these	growth	regulatory	nodes.	We	suggest	that	changes	in	
growth signaling may ultimately underlie differences in immune and 
inflammatory	pathways	detected	at	the	transcript	 level;	there	 is	ex‐
tensive cross talk between signaling factors associated with growth 
and those downstream of cytokine and innate immune receptors 
(Osborn	&	Olefsky,	2012).

The	modest	 induction	of	PGC‐1a	 among	 tissues	 from	CR	 fed	
mice	was	not	unexpected.	Recent	studies	of	CR	across	tissues	 in	
mice and other species place mitochondrial pathways at the core 
of a tissue type‐independent CR responsive network (Barger et 

al.,	 2015).	 Further	 evidence	 for	 CR‐induced	mitochondrial	 adap‐
tation comes from independent observations that mice on CR 
preferentially	 use	 lipid	 as	 a	 source	 of	 fuel	 (Bruss,	 Khambatta,	
Ruby,	Aggarwal,	&	Hellerstein,	2010)	and	have	significantly	altered	
lipid	 profiles	 (Miller	 et	 al.,	 2017).	 The	PGC‐1a‐associated	 change	
in cellular lipid metabolism shown here featured differences in 
chain length and degree of saturation of phospholipids. These 
membrane‐resident lipids are likely to impact cellular membrane 
structure and fluidity both within the cell and at the cell surface 
(Harayama	&	Riezman,	2018),	and	their	influence	may	even	extend	
to the function of proteins embedded within cellular lipid layers 
(Vitrac	et	al.,	2016).	The	shift	in	mitochondrial	energy	metabolism	
toward	 increased	 respiration	 and	 enhanced	 metabolic	 flexibility	
was	not	 confined	 to	mitochondrial	 pathways	but	 extended	more	
broadly	 to	 redox	 metabolism	 including	 levels,	 redox	 ratios,	 and	
chemical	 properties	 of	 NAD(P)H.	 The	 detection	 of	 discrete	 nu‐
clear	and	cytosolic	pools	of	NAD(P)H	corroborates	recent	reports	
(Cambronne	et	al.,	2016;	Ryu	et	al.,	2018),	but	the	fact	that	they	
appear	 to	 be	 independently	 responsive	 to	 PGC‐1a	 status	 raises	
new	questions	about	how	these	pools	are	established,	maintained,	

F I G U R E  6  Tissue	type‐independent	PGC‐1a	core	gene	network.	(a)	Range	of	PGC‐1a	transcript	expression	in	a	diverse	panel	of	hybrid	
mouse	lines	relative	to	mean	expression	(boxes	indicate	second	and	third	quartile;	whiskers	indicate	minimum	and	maximum).	(b)	Hierarchical	
clustering	and	cluster‐specific	KEGG	pathways	for	801	genes	correlated	with	PGC‐1a	expression	independent	of	tissue	type	and	(c)	KEGG	
pathways	for	entire	set	of	801	genes.	(d)	ENCODE	analysis	of	factors	associated	with	expression	of	genes	positively	(red)	or	negatively	(blue)	
correlated	with	PGC‐1a	expression	independent	of	tissue	type.	Factors	common	to	Figure	1h	in	thick	outlines.	(e)	Overlap	of	gene	identity	
between	PGC‐1a‐correlated	genes	and	PGC‐OE	differentially	expressed	genes,	p‐value	calculated	by	Fisher's	exact	test.
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and	 independently	 regulated.	 A	major	 prediction	 of	 a	mitochon‐
drial‐centric model of CR mechanisms is that at least some of the 
cellular,	 tissue,	 and	whole‐body	 effects	 of	 CR	 are	 contingent	 on	
metabolic	status,	that	is,	responsive	to	an	imposed	change	in	ener‐
getics.	Consistent	with	this,	cellular	aspects	of	CR	(delayed	growth,	
enhanced	respiration,	preference	for	lipid	fuel	utilization)	are	mir‐
rored in cells with activation of mitochondria via modest increases 
in	PGC‐1a.	These	findings	are	further	corroborated	in	vivo	by	the	
identification of the same pathways as innately sensitive to differ‐
ences	in	PGC‐1a	expression,	a	surrogate	for	mitochondrial	status.

The genetics of human longevity has been an active area of inves‐
tigation,	and	genes	associated	with	longevity	include	ApoE,	FOXO3a,	
and	AdipoQ.	A	recent	meta‐analysis	of	 longevity‐associated	quanti‐
tative	trait	loci	identified	PPARg	as	a	potential	longevity	factor	(Hook	
et	 al.,	 2018).	 The	 close	 relationship	 between	 growth	 inhibition	 and	
activation	of	mitochondrial	oxidative	pathways	could	be	a	more	gen‐
eral	mechanism	for	cellular	homeostasis.	A	switch	toward	respiration	
is predicted to tip the balance away from growth by diminishing the 
availability	of	redox	factors	and	metabolites	required	for	anabolic	and	
anaplerotic pathways. Data from this study prompt a revision of the 
consensus view that mitochondria simply respond; a new perspective 
would need to allow for the inverse paradigm where cellular function 
can	be	dictated	by	mitochondrial	status.	We	propose	that	modest	dif‐
ferences in the status of the mitochondria have far‐reaching conse‐
quences	in	terms	of	cellular	metabolism	and	growth,	and	that	these	
established	longevity	pathways	might	be	harnessed	through	PGC‐1a.

4  | E XPERIMENTAL PROCEDURES

Full	 experimental	 procedures	 are	 included	 in	 the	 Supporting	
Information.

4.1 | Cell culture, qRT–PCR, Western Blot, and 
immunofluorescence

Conducted	using	standard	techniques.	pcDNA3.1‐PGC1a	cDNA	(D.	
Kelly,	WUSTL)	was	subcloned	into	lentiviral	transfer	vector	pWPXL	
(Addgene),	 and	 3T3‐L1	 cells	 stably	 overexpressing	 PGC‐1a	 were	
generated	by	pWPXL‐PGC‐1a	viral	delivery.	Clonal	cell	 lines	were	
isolated	and	assessed	by	PGC‐1a	expression,	and	the	same	vector	
clonal	 line	and	PGC‐OE	clonal	 line	were	used	for	all	experiments.	
Metabolic	phenotypes	of	PGC‐OE	were	validated	in	an	independ‐
ent	fibroblast	cell	line	(Figure	S6).	Cells	used	in	experiments	were	
plated	for	overnight	growth	from	log	phase	growth,	unless	other‐
wise indicated. Immunofluorescence images were analyzed using 
ImageJ	(NIH,	Wayne	Rasband,	http://rsb.info.nih.gov/ij/).

4.2 | Constructs and transient transfection

pTLxG‐PGC1a	 was	 generated	 by	 subcloning	 PGC‐1a	 cDNA	
(Anderson	et	al.,	2008)	into	the	pTLcG	vector	(Ko	et	al.,	2011),	and	
the	interrupting	GFP	cassette	was	removed	by	in	vitro	Cre‐mediated	

recombination.	 pcDNA3.1‐PGC1a	 transfections	 were	 collected	
24	 hr	 after	 transfection.	 pTLxG‐PGC‐1a‐transfected	 cells	 were	
treated	with	doxycycline	(Sigma‐Aldrich,	D9891)	at	0.1	μg/mL	24	hr	
after transfection and collected simultaneously after 6‐ or 24‐hr 
treatment.

4.3 | Transcriptomics

Each	 RNA	 library	 was	 generated	 following	 Illumina	 TruSeq	 RNA	
Sample	 Preparation	 Guide	 and	 the	 Illumina	 TruSeq	 RNA	 Sample	
Preparation,	with	 quality	 and	 quantity	 assessed	 using	 an	Agilent	
DNA1000	series	chip	assay	and	Invitrogen	Qubit	HS	Kit	(Invitrogen),	
respectively.	Sequencing	reads	were	trimmed	to	remove	sequenc‐
ing	adaptors	and	low‐quality	bases	(Jiang,	Lei,	Ding,	&	Zhu,	2014),	
aligned	 to	 mm10	 reference	 genome	 (Ensembl	 release	 85;	 Yates	
et	al.,	2016)	using	the	STAR	aligner	(Dobin	et	al.,	2013)	and	align‐
ments	used	as	input	to	RSEM	for	quantification	(Li	&	Dewey,	2011),	
with	 differential	 gene	 expression	 analysis	 via	 EdgeR	 (Robinson,	
McCarthy,	&	Smyth,	2010)	generalized	linear	model	(GLM)	method.	
Differential	exon	usage	was	detected	via	DEXSeq	(Anders,	Reyes,	&	
Huber,	2012),	filtered	to	only	include	exons	with	at	least	10	counts	
on	average	in	at	least	one	group.	KEGG	pathway	analysis	was	con‐
ducted	via	WebGestalt	 (Wang,	Duncan,	Shi,	&	Zhang,	2013)	with	
significance	 determined	 by	 BH‐adjusted	 p	 <	 0.0001.	 Redundant,	
nested pathways were removed by curation.

4.4 | Bioassays: multiphoton laser 
scanning microscopy

Conducted	as	previously	described	(Pugh	et	al.,	2013).	Lipid extrac‐
tion and gas chromatography: Conducted as previously described 
(Polewski	 et	 al.,	 2015).	Bioassays:	 Fatty	Acid	Oxidation:	 Fatty	 acid	
oxidation	 rates	 were	 measured	 as	 previously	 described	 (Huynh,	
Green,	Koves,	&	Hirschey,	2014).	JC‐1,	NAD	and	NADP,	Seahorse,	
and	 Oxo‐Plates	 Respiration	 assays:	 Conducted	 according	 to	 the	
manufacturer's	instructions.	Oxo‐Plate	assay	was	conducted	in	open	
air;	therefore,	values	approach	an	equilibrium	of	oxygen	saturation.	
G‐Actin/F‐actin assay: Detected using a commercially available kit 
(Cytoskeleton,	 Inc.	#BK037).	Citrate Synthase: Citrate synthase ac‐
tivity was measured using a commercially available colorimetric kit 
(Sigma‐Aldrich,	CS0720).	Flow Cytometry: Conducted using standard 
protocols	 (Darzynkiewicz	 &	 Juan,	 2001).	 Specific	 details	 for	 each	
method	are	described	in	Supporting	Information.

4.5 | HMDP dataset

Genome‐wide	 gene	expression	data	were	obtained	 as	described	
(Bennett	et	al.,	2010;	Parks	et	al.,	2013,	2015).	Gene–gene	correla‐
tions for Ppargc1a were calculated using biweight mid‐correlation 
(Parks	et	al.,	2013),	where	genes	that	correlated	with	p < 0.05 for 
at least one probe were considered significant. Overlap of signifi‐
cantly correlated genes between tissues was determined using R 
statistical software.

http://rsb.info.nih.gov/ij/


12 of 14  |     MILLER Et aL.

4.6 | ENCODE algorithm

The	ENCODE	database	was	 queried	 for	 factors	 predicted	 to	 bind	
PGC‐1	responsive	genes	using	mean	CHIP‐seq	signal	for	each	gene.	
Predictions	were	then	validated	using	a	bootstrapping	algorithm	and	
adjusted	for	multiple	analysis	using	the	Benjamini–Hochberg	correc‐
tion. Factors reaching p	<	0.05	were	considered	significant.	Protein–
protein	 interaction	 between	 factors	 was	 visualized	 using	 STRING	
(Szklarczyk	et	al.,	2015).

4.7 | Statistics

All	 Student's	 t tests were two‐tailed. Outliers were identified by 
Grubb's	 test	 using	 a	 threshold	of	p	 <	0.05.	One‐way	ANOVA	was	
conducted assuming Gaussian distribution and corrected for multi‐
ple	comparisons	using	Tukey's	test.

4.8 | Code availability

All	code	used	is	available	from	the	corresponding	author	upon	rea‐
sonable request.

4.9 | Data accessibility

All	microarray	data	from	this	study	are	deposited	in	the	NCBI	GEO	
database (http://www.ncbi.nlm.nih.gov/geo/) under the accession 
number	 GSE42890,	 GSE16780,	 and	 GSE64908.	 All	 other	 data‐
sets are available from the corresponding author upon reasonable 
request.
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