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Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators of diverse cellular

processes, but their roles in the developing immune system are poorly understood. In this

study, we analysed lncRNA expression during human B-cell development by array-based

expression profiling of eleven distinct flow-sorted B-cell subsets, comprising pre-B1, pre-

B2, immature, naive, memory, and plasma cells from bone marrow biopsies (n = 7), and

naive, centroblast, centrocyte, memory, and plasmablast cells from tonsil tissue samples (n

= 6), respectively. A remapping strategy was used to assign the array probes to 37630

gene-level probe sets, reflecting recent updates in genomic and transcriptomic databases,

which enabled expression profiling of 19579 long noncoding RNAs, comprising 3947 anti-

sense RNAs, 5277 lincRNAs, 7625 pseudogenes, and 2730 additional lncRNAs. As a first

step towards inferring the functions of the identified lncRNAs in developing B-cells, we ana-

lysed their co-expression with well-characterized protein-coding genes, a method known as

“guilt by association”. By using weighted gene co-expression network analysis, we identified

272 lincRNAs, 471 antisense RNAs, 376 pseudogene RNAs, and 64 lncRNAs within seven

sub-networks associated with distinct stages of B-cell development, such as early B-cell

development, B-cell proliferation, affinity maturation of antibody, and terminal differentiation.

These data provide an important resource for future studies on the functions of lncRNAs in

development of the adaptive immune response, and the pathogenesis of B-cell malignan-

cies that originate from distinct B-cell subpopulations.

Introduction
Recent data implies that the mammalian genome is pervasively transcribed and encodes thou-
sands of long noncoding RNAs (lncRNAs) that play distinct and specialized roles in numerous
biological processes [1–6] and many diseases [7–11]. LncRNAs lack a significant open reading
frame and comprise an expanding inventory of noncoding RNAs (ncRNAs) that are longer
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than 200 nucleotides in length, such as long intergenic ncRNAs (lincRNAs), long intronic
ncRNAs, antisense RNAs, pseudogene RNAs, and transcribed ultraconserved regions [12].
Antisense transcripts are encoded on the opposite strand relative to their sense gene and they
constitute a functionally diverse class of molecules that can modulate nearly all stages of gene
expression (reviewed in ref [13]). The type of overlap displayed between the sense and anti-
sense transcript can be used to further divide this sub-class into head-to-head overlapping,
where the 5’ ends of the sense-antisense RNAs overlap, fully-overlapping, where the antisense
transcript is fully embedded in the sense transcript, and tail-to-tail, where the 3’ ends overlap
[14]. LincRNAs do not overlap with other genes and this characteristic has facilitated genetic
loss-of-function studies [1], but apart from this they share many characteristics with other
lncRNA classes that appear as modular scaffolds, combining distinct domains that can interact
with DNA, RNA, or protein [15–17]. Although the genomic organization of antisense RNAs
and lincRNAs might suggest a functional distinction into cis- and trans-acting lncRNAs,
respectively, this is not always true and there are examples of trans-acting antisense RNAs [18]
as well as cis-acting lincRNAs [19]. Pseudogenes constitute a class of genes that are copies of
protein-coding genes, but due to accumulation of disabling mutations, the genes have lost their
protein-coding potential. Thus, pseudogenes can give rise to ncRNA transcripts, whose expres-
sion have been linked to regulation of expression of their protein-coding counterpart [20].

B-cells develop from the common lymphoid progenitor cells in the bone marrow and the
initial antigen-independent phase is characterized by immunoglobulin gene rearrangements
through action of the RAG1 (recombination-activating gene 1)-RAG2 protein complex [21].
Once a functional B-cell receptor has been formed and B-cells have matured, the naive B-cells
acquire the ability to circulate and thereby patrol the secondary lymphoid organs for cognate
antigens. Upon antigen exposure within the germinal center (GC), the activated centrocyte dif-
ferentiates into a rapidly proliferating centroblast that undergoes affinity maturation of the B-
cell receptor (BCR) [22]. Expression of the B-cell lymphoma 6 (BCL6) gene in the centroblasts
enables tolerance of DNA breaks and high proliferation rates that would otherwise induce apo-
ptosis [23]. Further differentiation results in two long-lived B-cell populations: the memory B
cells and antibody-secreting plasma cells.

While the roles of transcription factors and miRNAs in B-cell development have been
extensively studied [24,25], our understanding about the functions of lncRNAs in B-cell lym-
phopoiesis is still limited [26–28]. Here, we describe exon array-based analysis of lncRNA
expression in developing B-cell subsets isolated by flow cytometry-based sorting from human
tonsils and bone marrow, respectively. The array probes were reorganized into gene-specific
probe sets using updated genome information, gene models and annotation [29], and by using
weighted gene co-expression network analysis [30] on the expression profiles, we identified
several lncRNAs embedded in well-defined gene networks involved in specific stages of human
B-cell development.

Materials and Methods

Collection of tonsils and bone marrow biopsies
The study was conducted in accordance with the Declaration of Helsinki, and all normal tissue
samples were collected with written informed consent from each patient, in accordance with
the MSCNET research protocol that was reviewed and approved by the health ethics commit-
tee for the North Denmark Region (Approval N-20080062MCH). Tonsils were collected from
six patients during routine tonsillectomy as previously described [31], and bone marrow tissue
was obtained by physical scraping of the medulla from seven patients undergoing cardiac sur-
gery as described [32].
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Isolation of B-cell subsets from tonsils and bone marrow by flow
cytometry
Mononuclear cells were isolated from tonsils and bone marrow and prepared for multipara-
metric flow cytometry using an optimized and validated protocol as previously described [32].
All cells were stained for CD10, CD20, CD27, CD38, and CD45. In addition, cells from tonsils
were stained for CD3, CD44, and CXCR4, and cells from bone marrow were stained for CD19
and CD34, respectively. This allowed separation of the following distinct B-cell subsets by fluo-
rescence-activated cell sorting (FACS): (i) naive (N(b) and N(t)) and memory (M(b) and M(t))
cells from bone marrow (b) and tonsils (t), respectively; (ii) pre-B1 (B1), pre-B2 (B2), imma-
ture (I), and end-stage antibody-producing plasma cells (PC) from bone marrow, and (iii) cen-
trocytes (CC), centroblasts (CB), and plasmablasts (PB) from tonsils.

Data analysis
The data acquisition and analysis are outlined in Fig 1. Data analyses and visualizations were
done using R [33], BioC [34], WGCNA-package [30] and Cytoscape [35].

Expression profiling of B-cell subsets
Expression profiling of flow-sorted B-cell subsets in human bone marrow and tonsils on Affy-
metrix Human Exon 1.0 ST arrays (Affymetrix, Santa Clara, CA) has been described elsewhere
[32] and data have been made available at NCBI’s Gene Expression Omnibus database under
accession codes GSE68878 and GSE69033. The exon array data were RMA normalized [36]
using R/BioC and a custom Chip Description File (CDF), where probes were remapped into
probe sets corresponding to Ensembl gene IDs (Ensembl release 74) [29,37] (as shown in Fig
1A). Probe sets containing only 3 probes were excluded from analysis.

Assessment of coding potential
We used CPAT [38] version 1.2.1 to estimate the coding potential of transcripts encoded by
genes that were detected by the remapped Affymetrix Exon array. The human prebuilt training
model and hexamer frequency table distributed with the program were used. The transcript
coding probabilities were summarized for each gene to give maximal coding probability, mean
coding probability, and range in coding probability.

Recursive partitioning of FACS data
From the FACS data we identified the surface markers that best separated the B-cell subsets by
constructing branched binary decision trees for bone marrow and tonsil samples, respectively.
In each node of a given tree, the cells were partitioned to one of two possible branches by a sim-
ple binary decision, based on the fluorescence levels of two surface markers. The trees were
restricted to be maximally three nodes deep. At each node, optimal surface marker pairs and
decision rules were identified as those that reduced the Gini impurity the most by an exhaustive
search [39].

Comparison of sample clustering
Hierarchical clustering was done using average linkage with Pearson’s correlation distance
metric. Dendrograms resulting from sample clustering based on different gene biotypes were
compared by calculating Baker's Gamma correlation coefficient as implemented in the dendex-
tend-package [40].
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Characterization of lncRNA co-expression with their neighboring genes
Each of the 37630 genes probed on the microarray was grouped into protein-coding genes
(18523), lincRNAs (5277), antisense RNAs (3947), small non-coding RNAs (1951), other
lncRNAs (482), or pseudogenes (7450), based on gene biotype annotation in Ensembl [37]. For
29428 (76%) of the genes probed on the microarray, one or more neighboring genes within
1kb on the genome could be identified on either strand on the array, hereafter referred to as

Fig 1. Overview of the data analysis pipeline. A) Diagram of B-cell lymphopoiesis depicting the different B-cell subpopulations isolated from bone marrow
and tonsils. B) Flow diagram highlighting the different steps for processing the exon array data. C) Illustration showing the concept of working with updated
annotation and remapped probe sets for gene PI3, ENSG00000124102. Four defined exon probe sets cover the three exons. The most upstream probe set
contains a probe that is not fully contained in the most current gene model of PI3 (highlighted in red). The remapped probe set combines all valid PI3 probes
into a single probe set.

doi:10.1371/journal.pone.0138236.g001
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local pairs. For each neighbor gene pair, the genomic positions, the strand, overlapping exons
or introns, and co-expression similarity were catalogued.

Identification of gene co-expression networks
Prior to network analysis, the data were filtered to remove expression data from genes that
could not be reliably detected above background and exhibited low variation across the sam-
ples. To guide the selection of intensity threshold, background probe sets were constructed that
matched real probe sets in the number of probes and distribution of GC content by repeatedly
sampling from the antigenomic background probes present on the exon array. The intensity
threshold level was set at two standard deviations above the mean intensity of the constructed
background probe sets, and genes were required to exhibit expression above this threshold for
all samples in at least one B-cell subset. Furthermore, the standard deviation of gene expression
across all samples was used to remove genes with low variation (standard deviation< 0.5).
Weighted gene co-expression network analysis (WGCNA) [30] was used to analyze relation-
ships between gene transcripts, essentially as described on the WGCNA website (http://www.
genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/index.
ht).

Results and Discussion

Transcriptional profiling of human B-cell lymphopoiesis
In this study, we isolated eleven different B-cell subsets from human sternal bone marrow and
tonsil biopsies by flow cytometry [31,32], and conducted gene expression profiling using Affy-
metrix Human Exon 1.0 ST arrays (Fig 1A). The data were summarized using updated probe
set definitions to ensure that the probe sets were consistent with recent annotations and gene
models [29] (Fig 1B and 1C). This has previously been shown to improve the accuracy of gene
expression profiling [41]. To validate that the flow-sorted B-cell subsets represent distinct B-
cell populations, we used recursive partitioning on the multiparametric flow cytometry data to
identify surface marker pairs that most effectively discriminate the sorted cell populations. The
overlay of surface marker expression data on the multiparametric flow cytometry data shows
that there is a high degree of concordance between marker gene expression and protein levels,
and that the isolated subpopulations are well separated (Fig 2A and 2B). In addition, we find
that our expression data capture several well-characterized events during B-cell development,
such as expression of RAG1 and -2 along with the surrogate light chain in pre-B1 and -B2 cells
and expression of S1PR1, which is necessary for immature B-cell to transfer from the bone
marrow to the blood and to exit from secondary lymphoid organs [42,43]. Furthermore, we
observe expression of AICDA and BCL6 in the germinal center B-cells, and reciprocal expres-
sion of transcription factor PAX5 and transcriptional repressor PRDM1 [44], as well as expres-
sion of XBP1, a key regulator of immunoglobulin secretion in terminally differentiated B-cells
[45] (Fig 2C). These observations demonstrate that our expression data recapitulate key aspects
of B-cell development, and can thus serve as basis for transcriptional profiling of lncRNAs in
distinct B-cell subsets.

Expression profiling of long noncoding RNAs
Next, we analyzed the intensity-filtered gene expression data with a focus on various classes of
lncRNAs. Intensity filtering reduced the number of analyzed genes to 22768, including 2073
antisense RNAs, 1846 lincRNAs, 3475 pseudogenes, and 266 lncRNAs belonging to various
classes such as 3’ overlapping ncRNAs, sense intronic and sense overlapping (collectively
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Fig 2. Isolation of human B-cell subsets from bonemarrow and tonsils. A) Overlay of flow cytometry and array data on surface markers used for sorting
of the bone marrow B-cell subsets. The contour diagrams show summary of events from the collected B-cell subsets in all samples and dots depict gene
expression values (log2 intensities) in the individual cell samples. B) As in (A), but for tonsillar B-cell subsets and sorting markers. C) Expression profiles of
selected genes, dots correspond to group means.

doi:10.1371/journal.pone.0138236.g002
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referred to as other lncRNAs in this manuscript). We used CPAT [38] to analyze the coding
potential of transcripts derived from genes assayed by the remapped array. Transcript coding
potential was summarized for each gene and used to supplement the gene biotype annotations
from Ensembl. Studies employing both microarray and RNA-seq based expression profiling
have reported that lncRNAs exhibit lower expression levels compared to protein-coding genes
[46,47]. In accordance with these observations, we find that various classes of lncRNAs, such as
lincRNAs and antisense RNAs, are expressed at lower levels compared to protein-coding
mRNAs (Fig 3A). Antisense RNAs were recently shown to be important regulators of their
sense partner (reviewed in ref [13]), and additionally, several lncRNAs, including lincRNAs
have been shown to be involved in cis regulation of nearby genes [46,48,49]. Our data showed a
similar trend during B-cell development (Fig 3B). Specifically, analysis of neighboring genes
within 1kb showed that local antisense transcripts correlate better with corresponding sense
mRNAs than local lincRNA—mRNA pairs or local mRNA—mRNA pairs. Next, we performed
unsupervised hierarchical clustering of the samples based on lncRNA expression and com-
pared to sample clustering obtained by clustering on protein-coding gene expression. We
found highly similar sample grouping into distinct B-cell subsets based on expression from the
two different classes (Baker’s gamma correlation of 0.95, Fig 3C), and even subdividing the
lncRNAs into lincRNAs and antisense RNAs resulted in sample groupings that were very simi-
lar to protein-coding based sample clustering (Baker’s gamma correlation of 0.83 and 0.82,
respectively, S1 Fig).

Long noncoding RNA expression during human B-cell development
The use of RNA-sequencing technologies has led to the identification of tens of thousands of
lncRNAs in metazoans [47,50]. However, only a few lncRNAs have been functionally charac-
terized. One method of predicting functions of lncRNAs from gene expression data is based on
the analysis of co-expression with well-characterized protein-coding genes, a method known as
guilt-by-association [15,51,52]. Co-expression alone is not sufficient to reliably assign func-
tions to lncRNAs, but information on lncRNAs embedded in transcriptional networks associ-
ated with B-cell development provides an important starting point for functional studies. To
put emphasis on genes that might partake in B-cell development, we filtered the expression
data and removed genes that did not vary considerably across all samples (as described in
Materials and Methods). Subsequently, we used WGCNA to describe co-expression relation-
ships between protein-coding genes and lncRNAs and identified seven modules, which were
color-coded for presentation purposes (Fig 4A and S2 Fig). The expression patterns of genes in
the identified co-expression modules are summarized by the corresponding first eigengene
[53] (Fig 4B and S2 Fig). Table 1 summarizes the numbers of genes annotated to different gene
biotypes in each module and S1 Table lists all lncRNAs associated with the identified modules.
Functional characteristics of the identified modules were analyzed by GO overrepresentation
analysis and the most significantly overrepresented GO terms from each of the three ontologies
(i.e. biological process, molecular function, and cellular component) are presented in Table 1.
Since several studies have shown that highly connected genes (hub genes) are essential for a
given gene network, we also identified hub genes in three of the identified modules (Fig 5).
These modules are described in detail below.

Early B-cell development. Genes that are expressed during early B-cell differentiation,
primarily in pre-B1 and pre-B2 cells and absent or expressed at low level during later develop-
ment are shown in the brown module. Since co-expression networks are based on correlation
of gene expression, the reciprocal expression profile, i.e. low or absent expression in early B-
cell differentiation and high levels at later developmental stages, are also observed in the brown
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module (see Fig 4B and heatmaps in S2 Fig). Enrichment analysis of GO terms assigned to
genes in this module show overrepresentation of the terms ‘regulation of immune system pro-
cess’, ‘leukocyte activation’, ‘signal transducer activity’, and ‘nucleic acid binding transcription
factor activity’ (Table 1 and S2 Table). Notably, genes assigned to ‘signal transducer activity’
include FLT3 and IL7R, both of which are growth-factor receptors required for early B-lym-
phopoiesis [54,55], and genes assigned to ‘nucleic acid binding transcription factor activity’
include important factors such as LEF1, MYB, and IKZF3 [56–58].

The hub genes of the brown module are shown in Fig 5A. Consistent with the notion that
highly connected genes are important in networks, we find surrogate light chain (VPREB1),
RAG2, and DNTT, which are important for generating diversity at the junctions of rearranged

Fig 3. Long noncoding RNA expression in human B-cell subpopulations. A) Distribution of array-derived expression levels across all samples are
shown for different gene biotype classes: Antisense, lincRNA, other lncRNA, mRNA, and pseudogene. B) Correlation of expression patterns between gene
pairs located in close proximity on the genome. C) Hierarchical clustering of samples based on expression of protein-coding genes (top dendrogram) and all
lncRNA classes (bottom dendrogram), respectively.

doi:10.1371/journal.pone.0138236.g003
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Ig heavy genes, as well as transcription factors LEF1 and MYB to be hub genes. Interestingly,
we identified several lncRNAs at the center of this module, including antisense transcripts to
transcription factors with well-known roles in early B-cells (MYB—MYB-AS1, SMAD1—
SMAD1-AS1, and LEF1—LEF1-AS1) and a lincRNA called CTC-436K13.6. While MYB-AS1
and SMAD-AS1 are simple transcripts each with two exons, the LEF1-AS1 has multiple exons
and encodes several transcript variants and only one of the isoforms is a true antisense RNA
(Fig 6). Antisense transcripts are an interesting subclass of lncRNAs that can exert regulatory
effects directly on their sense transcript, in cis on neighboring genes, and even in trans on distal
genes, co-transcriptionally or post-transcriptionally (reviewed in ref. [13]). The role of such
antisense transcripts during B-cell development is currently unknown, but their central posi-
tion in the brown module suggests important functions in early B-cell development. In addi-
tion, the central part of the brown module contains a highly connected lincRNA (CTC-
436K13.6), which is located on chromosome 5, between genes CLINT1 and EBF1. Both of
these genes are expressed at various stages of B-cell development, but none of them show an
expression profile similar to CTC-436K13.6. The EBF1 gene encodes the transcription factor
Early B-cell Factor 1, which is essential for establishing a transcription factor network ensuring
B-cell line commitment [59]. Results from the ENCODE project identifies the 5’ end of CTC-
436K13.6 and its upstream region as DNaseI hypersensitive in a variety of cell types, including
CD34+ hematopoietic progenitor cells mobilized from a donor treated with G-CSF, CD20+ B
cells, CD14+ monocytes, and Jurkat cells, but not in common cell lines, such as HepG2, HeLa-

Fig 4. Weighted gene co-expression network analysis of human B-cell subpopulation transcriptomes.
A) Cluster dendrogram showing genes grouped into distinct modules with height on the y-axis corresponding
to co-expression distance between genes. B) Module expression summaries are shown with values of the
components of the module eigengene (y-axis) versus microarray sample (x-axis).

doi:10.1371/journal.pone.0138236.g004
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S3, and Huh7 (Fig 7A). Active regulatory regions and especially promoters tend to be DNaseI-
sensitive, which provides further evidence that the lincRNA is transcribed in cells of hemato-
poietic origin. To examine the sequence conservation of this lincRNA, we used PhastCons
scores calculated from multiple alignment of 100 vertebrate species available through the
UCSC genome browser [60,61] and observed that exon 3 and the surrounding intronic
sequences as well as the promoter region immediately upstream of the lincRNA are all well-
conserved. Furthermore, we observed that the junction between the 2nd intron and 3rd exon is
spanned by a conserved stem-loop structure [62], suggesting that this lincRNA could be subject
to alternative splicing [63]. It has previously been reported that lincRNA homology is often
restricted to short, highly conserved sequences [2] and that lncRNA promoters often show
higher conservation than protein-coding gene promoters [64]. However, despite the fact that
certain elements of this lincRNA overlap with highly conserved genomic regions and the fact
that CTC-436K13.6 falls in a syntenic block, there are currently no reported orthologues.

Apart from the lncRNAs discussed above, we identified several additional lncRNAs that are
part of the brown module (S1 Table). For each lncRNA we report correlation (both Pearson’s
and Spearman’s) to the module eigengene, which can help identify whether the lncRNA has an
expression profile that is similar to the eigengene (i.e. expressed in early B-cell) or whether it is
absent from early B-cells and expressed later during B-cell development.

Proliferative stages of B-cell development. Genes in the turquoise module exhibit highest
expression in pre-B1, pre-B2 cells, as well as centroblasts and to a lesser extent in centrocytes
(Fig 4B), or the opposite expression profile (i.e. down-regulated or absent in pre-B1, pre-B2,
centroblasts, and centrocytes, S2 Fig). The module members show highly significant overrepre-
sentation of genes involved in mitotic cell cycle related processes (Table 1 and S2 Table) consis-
tent with the fact that both pre-B cells and germinal center centroblasts are actively
proliferating cells [65]. The genes at the center of the module (Fig 5B) are all tightly connected,

Table 1. Module characteristics.

Biological Process Molecular Function Cellular Component

Module Antisense LincRNA Other
lncRNA

Protein
coding

Pseudogene GO term P
value

GO term P
value

GO term P value

brown 88 65 10 281 36 regulation of
immune
system
process

2.00E-
05

signal
transducer
activity

5.50E-
05

cytoplasmic
side of
membrane

0.00014

turquoise 87 35 10 672 66 mitotic cell
cycle

< 1e-
30

DNA binding 3.30E-
11

chromosomal
part

< 1e-30

yellow 50 44 6 306 53 cellular
response to
stimulus

0.0011 ubiquitin
protein
ligase
binding

0.021 plasma
membrane
region

0.00055

blue 100 36 13 638 73 ER-nucleus
signaling
pathway

2.70E-
21

aminoacyl-
tRNA ligase
activity

2.50E-
05

endoplasmic
reticulum

7.00E-
30

red 36 30 5 205 29 organic
hydroxy
compound
metabolic
process

1.50E-
05

signal
transducer
activity

0.0016 integral
component of
plasma
membrane

0.0016

green 58 27 8 389 91 immune
response

2.80E-
06

signal
transducer
activity

0.0015 endosome 7.50E-
07

doi:10.1371/journal.pone.0138236.t001
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Fig 5. Connectivity of intramodular hub genes in three selected gene co-expression modules. A)
Highly connected genes in the brownmodule. B) Highly connected genes in the turquoise module. C) Highly
connected genes in the yellow module. The node shapes indicate gene biotype, hexagon = antisense,
octagon = lincRNA, circle = protein-coding, rounded rectangle = pseudogene, and rectangle = sense
overlapping. The connectivity of a gene is encoded in node size with bigger nodes meaning higher
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and many of the hub genes are well-characterized key players in cell cycle processes. Several
lncRNAs show strong and highly significant correlation to the turquoise module eigengene (S1
Table). The lincRNA CRNDE is part of the turquoise module, but since it also exhibits moder-
ate expression in plasmablasts and plasma cells, it is not centrally located in this module. Of
note, CRNDE has been found to be up-regulated in several tumors, particularly neoplasms of
blood and brain [66,67]. In addition, analysis of published array data on differentiating CD4
+ T-cells has indicated that CRNDE expression decreases as cells differentiate from a progeni-
tor stage to naive T-cells, suggesting that CRNDE is generally expressed during lymphocyte
development [67,68]. A study of lincRNAs interacting with chromatin-modifying complexes
showed direct interactions between CRNDE and PRC2 as well as CoREST, and that there is an
overlap in genes affected by siRNA-mediated knockdown of CRNDE and PRC2, implying that
CRNDE is involved in chromatin modification [69]. Interestingly, a recent study has linked
CRNDE to regulation of central metabolism by showing that it promotes metabolic changes
that switch cancer cells to aerobic glycolysis [70]. Many cells use aerobic glycolysis during
rapid proliferation [71] and the expression of CRNDE in primarily pre-B1, -B2, and centro-
blasts is consistent with its newly identified role as a metabolic regulator.

The germinal center. The yellow module consists of genes that are primarily expressed in
centrocytes and centroblasts or are absent or down-regulated in the germinal center (Fig 4B

connectivity. Edge transparency and width encode gene pair adjacencies, with thicker lines and lower
transparency meaning higher similarity.

doi:10.1371/journal.pone.0138236.g005

Fig 6. Antisense RNAs in the brownmodule center. A) Expression profiles and B) genomic organization of highly connected sense-antisense pairs from
the brown module.

doi:10.1371/journal.pone.0138236.g006
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Fig 7. Highly connected lincRNAs in the brown and yellowmodules. A) Genome browser plot for the
highly connected lincRNA CTC-436k13.6 in the brown module. The EvoFold track shows position of a highly
conserved RNA secondary structure that overlaps the exon-intron boundary. PhastCons scores show
conservation calculated from a 100 species genome-wide multiple sequence alignment. DNaseI
hypersensitive region tracks show data from i) CD20+ B-cells, ii) CD14+ monocytes, iii) CD34
+ hematopoietic progenitor cells, and iv) Jurkat cell line. B) Expression profiles of RP11-132N15.3 and the
nearby BCL6 gene. C) Visualization of the genomic region containing RP11-132N15.3 and BCL6.

doi:10.1371/journal.pone.0138236.g007
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and S2 Fig). GO analysis shows overrepresentation of genes assigned to ‘cellular response to
stimulus’, ‘developmental process’, and ‘regulation of G-protein coupled receptor protein sig-
naling pathway‘ (Table 1 and S2 Table). The latter is used to annotate 7 different genes, includ-
ing RGS13, which is important for regulating the responsiveness of B-cells to CXCL12 and -13
in the germinal center [72]. The module hub genes (Fig 5C) include AICDA and SERPINA9,
which have been found to be expressed exclusively in germinal center B-cells and malignant
cells derived from germinal center B-cells [73]. Similar to the brown module, we identified sev-
eral lincRNAs among the hub genes (LINC00487, LINC00877, and RP11-203B7.2) (Fig 5C).
Interestingly, we also found a lincRNA, designated as RP11-132N15.3, outside the immediate
module center, which is predominantly expressed in centroblasts and to some extent in centro-
cytes (Fig 7B). It is encoded on chromosome 3 approximately 240 kilobases upstream of BCL6
(Fig 7C). BCL6 is a master regulator of the germinal center reaction and modulates target
genes in several different signaling pathways. These work together to increase the tolerance for
DNA damage allowing genetic modifications of immunoglobulin genes, impair premature acti-
vation of B cells, and block terminal differentiation of B cells to enable the development of high
affinity antibodies [74]. The genomic region between BCL6 and RP11-132N15.3 contains
another lincRNA, which was not considered in this study due to low expression levels, how-
ever, analysis of the unfiltered data revealed an expression trend similar to RP11-132N15.3
(data not shown). To extend transcription profiling of this lincRNA, we explored phase 1 and
phase 2 CAGE data from the FANTOM5 project and identified expression of RP11-132N15.3
in pools of normal human tonsil, corroborating our findings, and furthermore in the Burkitt's
lymphoma cell lines RAJI and DAUDI, as well as hairy B cell lymphoma cell line MLMA. The
four CAGE libraries showing expression of RP11-132N15.3 corresponded to 0.2% of all librar-
ies analyzed, suggesting that this lincRNA is highly tissue-specific [75–77]. CAGE tags for the
intervening lincRNA could also be identified in the same samples, albeit at lower levels, which
is in agreement with our expression data.

Conclusion
While the intrinsic high levels of genomic instability during stages of B-cell development are
necessary for the development of high affinity B-cells, they also carry an inherent risk of errors
that can drive malignant transformation. Translocation, amplification, deletion, and mutation
events can all lead to aberrant expression of factors that control proliferation, differentiation,
and apoptosis [78]. Indeed, several malignant lymphomas have been found to originate from
distinct stages of normal B-cell development, in particular the germinal center B-cells, and
studies have revealed that events and factors that are of key importance to normal B-cell devel-
opment are also important in lymphomagenesis (reviewed in refs [79–82]). Recent data implies
that lncRNAs are important regulators of highly diverse biological processes and that their dys-
regulation can be linked to the pathogenesis of cancer [83]. Thus, the identification of lncRNAs
associated with distinct stages of B-cell development presented in this work will not only be an
important resource for future work on exploring the molecular mechanisms underlying normal
B-cell lymphopoiesis, but will also provide the basis for understanding the roles of lncRNAs in
the pathogenesis and progression of B-cell malignancies.
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S1 Fig. Comparison of sample clustering based on specific gene biotype subtypes. Sample
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on expression of lincRNAs (A) or antisense RNAs(B).
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S2 Fig. Expression profiles of all identified gene co-expression modules. For each module,
the module eigengene expression profile is shown below a heatmap of all genes in the module.
(PDF)

S1 Table. Long noncoding RNAs associated with the identified gene co-expression mod-
ules. LncRNAs associated with the identified modules are listed along with Ensembl annota-
tions (ID, biotype, and genomic coordinates), summary of coding potential analysis (number
of transcripts: number of transcript variants transcribed from gene; cpat.mean: average coding
probability for all transcripts; cpat.max: coding probability of transcript with highest coding
potential; cpat.range: range in coding probabilities of all transcripts), and correlation of gene
expression to respective module eigengene (spear + p.val_s: Spearman’s correlation and P
value; pear + p.val_p: Pearson’s correlation and P value).
(XLSX)

S2 Table. Overrepresented Gene Ontology terms in the identified gene co-expression mod-
ules. The top 10 overrepresented GO terms (p< 0.01) in each of the identified gene co-expres-
sion module are listed.
(XLSX)
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