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Abstract: The elderly population in South Korea accounted for 15.5% of the total population in 2019.
Thus, it is important to study the various elements governing the process of healthy aging. Therefore,
this study investigated multiple prediction models to determine the health-related quality of life
(HRQoL) in elderly adults based on the demographics, questionnaires, gait ability, and physical
fitness. We performed eight physical fitness tests on 775 participants wearing shoe-type inertial
measurement units and completing walking tasks at slower, preferred, and faster speeds. The
HRQoL for physical and mental components was evaluated using a 36-item, short-form health
survey. The prediction models based on multiple linear regression with feature importance were
analyzed considering the best physical and mental components. We used 11 variables and 5 variables
to form the best subset of features underlying the physical and mental components, respectively. We
laid particular emphasis on evaluating the functional endurance, muscle strength, stress level, and
falling risk. Furthermore, stress, insomnia severity, number of diseases, lower body strength, and
fear of falling were taken into consideration in addition to mental-health-related variables. Thus,
the study findings provide reliable and objective results to improve the understanding of HRQoL in
elderly adults.

Keywords: health-related quality of life; physical and mental components; elderly adults; machine
learning; prediction model

1. Introduction

Improved living conditions and developments in medicine and technology have
increased longevity globally [1]. The proportion of the elderly population in South Korea
has increased substantially, accounting for 15.5% of the total population in 2019 [2]. Over
the past century, the gradual increase in the elderly population worldwide has increased
the interest of researchers in the concept of aging well. According to the World Health
Organization, healthy aging is defined as “the process of developing and maintaining the
functional ability that enables well-being in older age”. This process spans the entire life
course and is considered relevant to every individual, including patients and those free
from diseases [3]. Additionally, the primary concept of aging well involves minimizing the
deterioration of the physical and mental health [4], thus maintaining functional ability and
well-being with aging [3,5].
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Quality of life (QoL) is a multidimensional concept, which can be assessed based on
the physical and mental health, independence, social relationships, beliefs, and relationship
with salient features of the environment [6]. Particularly, independence in daily life and
several diseases are significant factors affecting the QoL in elderly adults [5–8]. The 36-item,
short-form health survey (SF-36) is a commonly used questionnaire with 36 questions
that can evaluate the health-related quality of life (HRQoL) in terms of both physical and
mental components [5,9,10]. Moreover, the decline in the HRQoL in elderly adults may
affect younger populations as a social and economic burden. Therefore, it is necessary to
understand the factors governing HRQoL and strategize the improvement and maintenance
of physical and mental health in elderly adults.

The HRQoL can be aggravated by diseases [6,7], fallings [11–13], physical activity
(PA) levels [14,15], muscle strength [16–18], and gait ability [5] in elderly adults. For
instance, a slower walking speed in elderly adults reflects decreased muscle strength,
which may increase the falling risk [19,20]. Additionally, low handgrip strength reflects
low QoL in elderly adults [16–18]. Therefore, slower walking speed and lower handgrip
affect the risk of mortality in elderly adults [17,21]. To improve the HRQoL in the elderly
population, several researchers recommended enhancing the PA levels and conducting
exercise interventions [22,23].

In summary, existing studies have reported the relationship between the status of
HRQoL and potential factors that influence the QoL in elderly adults. However, most
studies relied on simple variable approaches, such as demographics vs. HRQoL, question-
naire vs. HRQoL, gait ability vs. HRQoL, and physical fitness vs. HRQoL, rather than a
multidisciplinary approach. This limitation induces the need to deduce the potential factors
that are more important or essential variables to evaluate the status of HRQoL in elderly
adults. Machine learning (ML) figures out patterns through data and makes predictions
based on enormous computation, and predictive models based on the ML algorithms
devised by outstanding domain experts and data scientists may discover new meanings
and insights hidden in data [24]. Based on these advantages, several studies recently pre-
dicted HRQoL in patients and the elderly using ML methods to detect influencing factors
for the HRQoL [5,25,26]. However, only one study used a multidisciplinary approach to
predict HRQoL in adults aged over 45 years, reporting that handgrip strength is a powerful
indicator of HRQoL in elderly adults [5]. This study considered multiple variables, such as
demographic, medical, and physical performances, which generated meaningful results
to understand the HRQoL. However, as the range of age in the variance of samples was
composed of middle-aged adults of over 45 years, it was not suitable for prediction models
of HRQoL in elderly adults. Additionally, they did not consider essential tasks to evalu-
ate functional capacities. Another study assessed four physical fitness domains, such as
strength, flexibility, balance, and endurance, to evaluate elderly adults [27]. Furthermore,
gait tasks were conducted considering challenging conditions, such as slower or faster
than self-preferred walking speeds, to provide advanced insight into the understanding
of dynamic stability. Moreover, several studies reported significant results based on indi-
vidual gait tasks under slower or faster walking speed conditions [27–31]. This implies
that prediction models that evaluate HRQoL in elderly adults based on demographic
characteristics, questionnaires, gait ability, and physical fitness can be a potential reference
in clinical environments.

Therefore, we investigated multiple prediction models in this study to identify the
optimal model for determining the HRQoL, including both physical and mental health
components, in elderly adults. We considered the demographic characteristics, question-
naires, gait ability, and physical fitness using the ML approach and determined the factors
that can effectively evaluate the HRQoL in elderly adults.
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2. Materials and Methods
2.1. Study Participants

We recruited 891 elderly adults aged between 65 and 89 years as participants of a
community-wide survey in Busan from February to December 2018. However, 109 partici-
pants were excluded from the study owing to personal reasons (n = 29), non-completion
of the 1-min treadmill walking test at three different speeds (n = 23) and physical fit-
ness tests (n = 33), and withdrawal of informed consents (n = 24). In total, 782 elderly
adults comprising of 252 and 530 men and women, respectively, participated in the study.
However, seven samples were eliminated during the preprocessing stage because of a
missing value in the “single-leg stance” test. Therefore, a total of 775 participants were
considered in the final study (male = 251; female = 524). We ensured that the participants
had no history of musculoskeletal or neurological problems that affected the gait and that
they were capable of walking without any support during the previous six months. The
relevant guidelines and regulations were followed during the execution of all methods,
and all participants signed their informed consents after reading the study details. This
study of Dong-A University was approved by the Institutional Review Board (IRB number:
2–104709–AB–N–01–201808–HR–023–02).

2.2. Instrumentation

Shoe-type inertial measurement unit (IMU) systems (DynaStab™, JEIOS, Busan,
Republic of Korea) with shoe-type data loggers (Smart Balance SB-1®, JEIOS, Busan,
Republic of Korea) and a data-acquisition system were used in this study. The shoe-type
data logger included an IMU sensor (IMU-3000™, InvenSense, San Jose, CA, USA) on the
outsoles of both shoes to measure the triaxial acceleration and angular velocities along the
three orthogonal axes. The data were transmitted wirelessly to a data-acquisition system
via Bluetooth® [32–34]. Additionally, the shoe sizes ranging from 225 to 280 mm were
adapted to fit the study participants.

2.3. Test Procedure

All test procedures, such as the measurement of the demographic characteristics,
questionnaire surveys, SF-36 tests, physical fitness tests, and gait tasks, were completed in
a single day.

2.3.1. Evaluating QoL Using SF-36

SF-36 is commonly used to measure HRQoL in terms of physical and mental health
constructs [9,10]. The SF-36 questions can measure eight subscales:

1. Physical functioning;
2. Role limitations owing to physical health;
3. Role limitations caused by emotional problems;
4. Pain;
5. General health;
6. Vitality;
7. Emotional well-being;
8. Social functioning.

The eight scales aggregated two HRQoL components, namely the physical and mental
health components [9,35], which were scored from 0 to 100 [10]. A high score reflects a
better QoL, whereas a low score reflects a poor or suboptimal QoL [8].

2.3.2. Demographic Characteristics

Demographic characteristics include sex, age, body height, weight, body mass index
(BMI), waist and hip circumstances, waist-to-hip ratio, and physical composition, such
as body fat percentage, muscle and body fat mass (InBody 270, InBody Co. Ltd., Seoul,
Republic of Korea), and blood pressure. Additionally, we considered the participants’
education level, job, residential environment, household members, smoking and drinking
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habits, and social relationships. Furthermore, the total number of diseases and medication
doses were recorded. The diseases included cerebrovascular diseases, hypertension, hy-
perlipidemia, diabetes, gastrointestinal disorder, cardiovascular diseases, liver diseases,
respiratory diseases, glaucoma or cataract, osteoporosis, low back pain, and knee and
hip joints pain; medication doses included sleeping, painkiller, and antipsychotic pills.
Therefore, the total number of diseases and use of medical drugs were considered for the
analysis with yes = 1 and no = 0.

2.3.3. Assessment Using Other Questionnaires

All the participants answered questionnaires to assess their PA levels, insomnia sever-
ity index (ISI), and stress response. The PA level was evaluated using the international
PA questionnaire short form, and the metabolic equivalents (METs/week) were calcu-
lated [36]. The severity of insomnia was evaluated using an ISI questionnaire, comprising
of seven questions assessing the severity of sleep onset, sleep maintenance difficulties, and
satisfaction with the current sleep [37]. The collected answers were added to obtain the
total score, which was used to determine the severity of insomnia [37,38]. Additionally,
a mini-mental state examination questionnaire was used to assess the global cognitive
function [39]. Finally, the stress response was assessed using the modified stress response
inventory (SRI-MF), which involved 22 questions; a higher score of SRI-MF indicates severe
stress levels [40]. Furthermore, all participants answered questions pertaining to fall history,
such as whether they have fallen in the last six months, number of falls, and fear of falling.

2.3.4. Physical Fitness Test

We assessed four domains underlying physical fitness, namely strength (upper/lower
body), flexibility (lower body), balance (static/dynamic), and functional or cardiorespira-
tory endurance. All the participants completed eight physical fitness tests in the following
order (Table S1):

1. Grip strengths of both the hands were measured using an isometric digital handgrip
dynamometer (T.K.K. 5401 Grip-D, Takei Scientific Instruments, Tokyo, Japan) to
assess the upper body strength;

2. Upper body strengths of male and female participants were assessed based on the
bicep curls performed using dumbbells weighing 3 kg and 2 kg, respectively;

3. Lower body strength was assessed considering the performance of five times sit-to-
stand exercises;

4. Standing time (ST) from a long sitting position (LSP) was measured to assess the
lower body strength;

5. Chair sit-and-reach test was conducted to assess the lower body flexibility;
6. Single-leg balance (dominant leg) was conducted to assess the static balance;
7. A 3-m timed-up-and-go test was conducted to assess the dynamic balance;
8. A 6-min walk test (6MWT) was conducted to assess the functional or cardiorespira-

tory endurance.

The mean scores were calculated for two attempts of each physical fitness test, as
depicted in Figure 1 (see Table S3) [27].
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Figure 1. Physical fitness test.

2.3.5. Overground Walking Test at Different Speeds

The overground walking test along a straight 20-m walkway at 80% of preferred
(slower), self-preferred (preferred), and 120% of preferred (faster) walking speeds were
performed three times based on previous studies (see Table S3) [27,28]. The preferred
speed can be defined as the normal walking speed when performing daily activities
without any support during overground walking. The slower and faster walking speeds
were calculated relative to the preferred speed, which was quantified using a metronome
(beats/min) [27,28]. Participants were instructed to perform the overground walking test
at speeds as close as possible to the target walking speeds. Although natural stepping
rhythms and rhythmic metronome beats did not concur perfectly, we attempted to control
the accuracy of each participant’s performance to the highest extent [27]. The participants
practiced all speed conditions before the actual tests by walking once or twice with the
metronome, and the metronome was switched off during the test trials.

2.4. Data Analysis

The overground walking data were filtered using a second-order Butterworth low-
pass filter with a cut-off frequency of 10 Hz [32–34]. A heel strike can be defined as an event
where the linear acceleration on the anteroposterior axis attains its maximum positive
value, whereas a toe-off event occurs when the linear acceleration on the vertical axis
attains its maximum positive value during the gait cycle [33,34].

We calculated the spatiotemporal parameters, such as the walking speed, stride length,
step length, single-support phase, double support phase, stance phase, cadence, stride
time, and step time [41]. Additionally, the values of the percentage coefficient of variance
(CV) ((standard deviation/mean) × 100) were calculated to determine the gait variability
(GV) for all the spatiotemporal parameters.
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2.5. Statistical Analysis

Figure 2 depicts the scheme of this study, comprising three layers of procedures:

1. To identify the dominance of features, we used the feature selection ranking method,
including the p-value (PV) [42] and feature importance (FI) based on the random
forest (RF) method [43];

2. Models are generated using multiple linear regression (LR), RF [44], and support
vector machine (SVM) with a radial basis function kernel [45]. The optimal model
was selected via heuristic learning based on the feature selection ranking methods;

3. Subset selection [46] was achieved using the number of features in the optimal model
to determine the best combination of features that maximizes the performance.
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Root mean square error is one of the criteria used to evaluate supervised learning in
terms of predictions.

To determine the robustness of performance, each model was trained and evaluated
based on 100 resampling procedures, each of which divided the sampled datasets into
training and testing sets of 70% and 30%, respectively. The performance of the model was
evaluated using the average root mean square error (aRMSE), derived from the results of
repeating the procedure 100 times; aRMSE can be calculated as follows:

aRMSEmodel =
1

100 ∑100
j=1

√
1
n ∑n

i=1

{
ytest

i,j − fmodel
(
Xj, Zj

)}2
, (1)

where i denotes the test sample number, j indicates the seed number, and fmodel(X, Z)
represents the estimator of test data X using a model trained by the training dataset Z.

Additionally, to ascertain the characteristics of the features of the best subset, we
analyzed the subsets using a Pearson correlation matrix and network analysis [47].

2.5.1. Data Setup

Raw datasets comprised of 782 participants with 98 variables. As mentioned in
Section 2.1, 7 samples were excluded because of missing values. Furthermore, 2 features
of systolic blood pressure and diastolic blood pressure were excluded. Therefore, the
preprocessed data matrix comprised of 775 samples and 96 features, each of which was
standardized using Gaussian distribution.
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2.5.2. Feature Rank

We used two filtering methods, namely PV and FI, in this study [42,43,48].

1. To rank high-dimensional features, feature-by-feature statistical testing with analysis
of variance and simple LR for categorical and continuous data, respectively, was
performed. The PV-based marginal test, which is a type of filter method, is a pairwise
calculation that focuses on the main effect of the feature on the target individually
and not the joint effect of the features [48]. After calculating the PVs of the features,
we sorted the list in the ascending order (Table S2).

2. The FI in RF, computed based on the Gini importance, was used as another feature
ranking method [43]. It is a representative ensemble-based ML methodology, with
the concept originating from predictive model construction by combining trees [49].
FI considers both the interaction effect among features and the main effect of the
feature on the target individually [49,50]. After clarifying the FI, it was arranged in
the descending order of the FI (Table S2).

2.5.3. Model Generation: Heuristic Approach

We deployed three ML models, namely LR, RF, and SVM. Each model was generated
using the feature ranking methods based on both PV and FI by accumulating the features
individually. After the performance evaluation, we developed the model with a cumulative
number of features (CNoF) minimizing the aRMSE (see File S1).

2.5.4. Subset Selection

To identify the best prediction model, the models were fitted to all possible combi-
nations of the features in the model, minimizing the aRMSE. It can reduce the error of
prediction by sacrificing some features [46]. After reviewing the models, the best prediction
model that clarifies the feature combination minimizing the aRMSE was identified.

3. Results
3.1. Model Comparison

Using the model building method, a total of 2 × 3 × 96 number of models was gen-
erated. Each of aRMSE from the model was calculated using Equation (1). The feature
ranking methods and ML models used in the study can be categorized into the six combi-
nations. Figure 3 illustrates the aRMSE levels according to CNoF with respect to various
models. Although there are some differences in performance depending on the feature
ranking method, an aRMSE change shows a similar pattern based on the ML methods.

As depicted in Figure 3, the aRMSE tends to fluctuate in the case of the LR model,
initially decreasing and then increasing with an increase in the CNoF. Conversely, in
the case of the RF model, the aRMSE begins at a high level and decreases drastically at
approximately 10 CNoF; as the CNoF increases, the aRMSE tends to converge. In the case
of SVM, which exhibits the lowest performance, the aRMSE is minimized under 10 CNoF
and increases steadily as the CNoF increases.

Table 1 summarizes the optimal CNoF level, aRMSE, standard deviations in the RMSE
(std RMSE), and the quartile of RMSE of different models (Table S2). Figure 4 illustrates
the distribution of RMSE with box plots, which comprises of aRMSE under the CNoF
minimizing the aRMSE.
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Table 1. Statistics of the generated models which minimizes the average root mean square error (aRMSE) in both physical
component and mental component.

Component Model CNoF aRMSE Std
RMSE

Min
RMSE

RMSE
25%

RMSE
50%

RMSE
75%

Max
RMSE

Physical

LR_PV 33 13.92776 0.68349 11.96545 13.50805 13.95991 14.44462 15.38411
(a) LR_FI 15 13.76088 0.71617 11.86612 13.29279 13.78654 14.24163 15.43223

RF_PV 31 14.39872 0.73950 12.57450 13.91250 14.33669 14.98490 15.94272
RF_FI 15 14.20864 0.68617 12.62523 13.68770 14.26701 14.74725 15.90077

SVM_PV 8 14.76165 0.81308 12.99783 14.15996 14.79660 15.25064 17.17015
SVM_FI 8 14.39575 0.82367 12.58128 13.84777 14.39586 15.01643 16.60752

Mental

(b) LR_PV 12 11.36805 0.61973 9.53575 10.89313 11.37711 11.78536 12.96427
LR_FI 6 11.37025 0.70205 9.17258 10.86453 11.36144 11.82792 13.24375
RF_PV 18 11.64159 0.59699 10.09463 11.21322 11.66051 12.00546 13.00478
RF_FI 39 11.60706 0.62697 10.11383 11.11899 11.63986 11.98359 13.47048

SVM_PV 4 11.79612 0.76560 10.14775 11.30421 11.70546 12.23328 13.82748
SVM_FI 2 11.68649 0.75505 10.05444 11.15436 11.58823 12.22781 13.59275

In the case of the physical component, model (a) with cumulative number of features (CNoF) of 15 shows the best performance among all
the models that can be generated. In the case of the mental component, model (b) with CNoF of 12 minimizes the aRMSE among all the
models that can be generated.
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Based on these outputs, the best performing model satisfies the minimum aRMSE
value among the different values computed by all the possible models.

1. In the case of the physical component, we concluded that the LR model with the FI
feature rank is the best performing model with a CNoF of 15. Additionally, this model
exhibits dominant statistics, i.e., the aRMSE and median. Conversely, the worst model
among the six models in Table 1 is the SVM with the PV feature rank, wherein the
CNoF is 8.

2. In the case of the mental component, we figured that the LR model with the PV feature
rank is the optimal model with a minimum aRMSE and with a CNoF of 12. However,
the worst model among the six models in Table 1 is the SVM with the PV feature rank
and its CNoF is 4.

3.2. Best Prediction Model

We determined the best performing model and its respective CNoF via model genera-
tion. The total number of subsets of its physical and mental components are 215 − 1 and
212 − 1, respectively. The minimum aRMSE was calculated through simulations of the best
subset selection, which decreased the level of the aRMSE for the best performing model in
Section 3.1 from 13.76088 to 13.67993 (std RMSE = 0.71684) for the physical component and
from 11.36805 to 11.27420 (std RMSE = 0.63343) for the mental component (Table S2).

3.3. Input Features of the Best Prediction Model

Table 2 summarizes the beta of features comprising the CNoF of the best performing
model in Section 3.1. The selected features of the best prediction model are indicated with *
in Table 2; the features are arranged in the order of the feature rank methods according to
their physical and mental components, respectively.
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Table 2. Description of beta of features in the best performing model.

Physical Component (LR_FI, CNoF = 15). Beta Mental Component (LR_PV, CNoF = 12) Beta

Demographic characteristics Demographic characteristics

Age * −1.88 Total number of diseases * −2.78
Total number of diseases * −3.63

Questionnaires Questionnaires

Stress response index-modified form (SRI-MF) * −6.98 SRI-MF * −6.91
Total Insomnia severity index (ISI) * −5.08 Total ISI * −3.95
Total Physical activities (PAs) * 4.69 Fear of falling * −3.71
Fear of falling * −6.42

Gait ability Gait ability

Preferred speed_coefficient of variance (CV)
Single-support phase −3.28 Faster speed_Walking speed 2.92

Faster speed_CV Single-support phase * −3.53
Slower speed_Stride time * −0.54

Physical fitness Physical fitness

6-min walking test (6MWT) * 7.66 6MWT 3.96
Standing time (ST) from a long sitting position (LSP) * −6.02 Five times sit-to-stand * −3.86
3-m Timed-up-and-go test right side −6.83 3-m Timed-up-and-go test left side −3.81
Single-leg stance 2.30 3-m Timed-up-and-go test right side −3.61
Five times sit-to-stand −6.06 Bicep curls right 3.33
Handgrip right side * 5.11 Bicep curls left 3.24

ST from LSP −2.83

The best performing models are the multiple linear regression (LR) model with the feature rank based on the feature importance (FI)
with cumulative number of features (CNoF) of 15 for the physical component and the LR model with a feature rank based on the p-value
(PV) with CNoF of 12 for the mental component. Features masked with a symbol, *, indicate that those features are selected for the best
prediction model.

To identify the characteristics of the features of the optimal model, we examined
the relationship between the features and target. The correlation heat-map of the target
and features (Figure 5) and network analysis (Figure 6) were obtained by calculating the
Pearson correlation. Based on the heat-map in the case of the physical component, the
“6MWT” and the target exhibited the highest correlation of 0.44. Furthermore, this feature
highly correlated with “SRI-MF” (r = −0.40), “Fear of falling” (r = −0.37), “ST from LSP”
(r = −0.35), and “Handgrip right side” (r = 0.30). Conversely, in the mental component, the
“SRI-MF” and mental score exhibit the highest correlation of −0.51.

The network analysis, performed by modeling variables as nodes and the relationship
between variables as the edges, determines the inter-relationships among objects. In this
study, the edges are considered as Pearson correlation coefficients. In terms of the Pearson
correlation, the SF-36 physical score is significantly affected by seven features underlying
the physical component, which include “6MWT”, “Total PAs”, and “Handgrip right side”
(with positive effect), “Total ISI”, “SRI-MF”, “Fear of falling”, and “ST from LSP” (with
negative effect). Conversely, in the case of the mental component, the SF-36 mental score is
primarily influenced by four features with a negative effect, including “Total ISI”, “SRI-MF”,
“Fear of falling”, and “Five times sit-to-stand” (Figure 6).
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4. Discussion

We analyzed the 775 samples of elderly adults using the ML algorithms based on the
96 independent variables, such as the demographic characteristics, questionnaires, gait
ability, and physical fitness, to identify the optimal features that can effectively predict the
QoL in terms of the physical and mental components. During the processing, we figured
that the LR model showed the best performance in the significant interval in using the
feature selection technique. The LR with the FI was selected as the best model for the
physical component with a CNoF of 15; and the LR with the PV was selected as the best
model for the mental component with a CNoF of 12; both models indicated the lowest
aRMSE values. Additionally, the input features of each best model, which was derived by
applying the best subset method, were indicated by the 11 best variables out of 15 in the
physical component; additionally, the best model was indicated by the five best variables
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of 12 in the mental component. The primary findings of this study can be summarized
as follows:

1. In terms of the physical component, demographic characteristics (age and the total
number of diseases), questionnaires (total PAs, total ISI, and total SRI-MF and fear
of falling), gait ability (CV of single-support phase at faster speed and stride time at
slower speed), and physical fitness (walking distance during 6MWT, ST from LSP,
and handgrip) features were identified as significant variables.

2. In terms of the mental component, demographic characteristics (total number of
diseases), questionnaires (total ISI, total SRI-MF, and fear of falling), and physical
fitness (five times sit-to-stand) features were identified as significant variables.

3. In particular, the 6MWD, ST from LSP, SRI-MF, fear of falling, and handgrip (r = 0.30–0.44)
were highly correlated with the physical component; the total SRI-MF (r = −0.51) was
the most highly correlated feature with the mental component. These findings are
discussed in detail in the subsequent sections.

4.1. Feature Selection and Machine-Learning Model

The performance of an algorithm is dependent on significant feature selection relevant
to target of interest. [51]. As the framework of our study demonstrates, we designed
the ML with feature selection to improve both performance and explainability. Feature
selection is an important procedure to obtain statistically significant factors for the power
of performance [52,53]. Recently, several works on QoL in other fields have also focused on
the feature selection while not only concentrating on the prediction power of the model but
also detecting the important features affecting the target feature [54,55]. In this study, PV
method focuses on the main effect of the feature on target marginally [48], while FI based
on RF focuses on joint effect among features [49,50]. In terms of ML methodologies, LR
model considers the relationship between independent variables and the target variable as
a linear combination [56]. The main disadvantage of a single decision tree is overfitting of
the training data, and the RF method prevents such overfitting [57]. As shown in Figure 3,
these characteristics were also well shown in the framework of this study. We derived the
best performing model by combining the two different cases of feature selection and the
ML methodologies, such as LR, RF, and SVM.

Furthermore, the subset selection was also considered to select most significant fea-
tures as well as the optimal model leading to the minimum aRMSE considering all the
possible subset of features included in the selected best model [46]. As aforementioned,
the aRMSE based on the result of the 100-times resampled data was utilized as a metric
to determine the best model. It is guaranteed for the selected best model to be robustness.
Therefore, it turns out that our ML models based on the LR with the FI and the LR with
the PV can suitably predict the physical and mental components of the HRQoL in elderly
adults, respectively.

4.2. HRQoL in Elderly Adults Based on the Physical Component

The results obtained from the ML techniques verified that demographic characteristics,
questionnaires, gait ability, and physical fitness are the significant variables in terms of the
physical component in elderly adults. Particularly, 11 variables were used to form the best
subset of the features in the physical component. The demographic and questionnaire char-
acteristic features, such as the SRI-MF score, total ISI score, fear of falling, total number of
diseases, and age, were considered significant. The SRI-MF is a questionnaire that evaluates
stress levels; it comprises several subscales, such as somatization, anger, and depression.
The higher SRI-MF total score indicates severe stress levels [40]. Additionally, the ISI is
a questionnaire that assesses the severity of sleep onset, sleep maintenance difficulties,
and satisfaction with current sleep [37]. The higher ISI total score reflects severe insomnia
status [37,38]. Previously, studies have reported that poor mental health and quality of
sleep or severity of insomnia are associated with lower physical functionality in elderly
adults [28,58]. Furthermore, several studies reported that the QoL can be associated with
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chronic diseases [6,8]. With an increase in the number of diseases, the QoL in elderly adults
decreases [7]. Particularly, individuals with chronic non-communicable diseases, such as
diabetes, high blood pressure, obesity, cancer, asthma, osteoarthritis, smoking, and exces-
sive alcohol consumption, indicated lower scores of physical and mental components [6,8].
Additionally, fear of falling is one of the most common psychological concerns, and it
can lead to modified behavior as well as restriction of activity in elderly adults [59–61];
several studies reported higher fear of falling may be associated with a lower HRQoL for
the physical component [11,13]. Therefore, we conclude that the physical component of
the HRQoL in elderly adults can be associated with the severity levels of stress, insomnia,
diseases, and fear of falling, which concurs with the results of existing studies.

Poor physical functions, such as slower walking speeds and weaker muscle strength,
are associated with a lower HRQoL for physical and mental status in elderly adults [18].
Typically, variables such as walking speed, handgrip, and 6MWD are used to evaluate
the physical functions in elderly adults [18]. For instance, slower walking speed reflects
weaker muscle strength and increased risk of falling in elderly adults [19,20]. Moreover,
6MWD is a simple and reliable test, and the maximum distance covered during this test
can be used to evaluate the functional exercise capacity [62–64]. Additionally, the 6MWD
is a useful task, as it is similar to daily activities [63]. Several studies have used this task on
both pathological patients [62] and healthy elderly adults [63–65]. The performance during
the 6MWD can be affected by age, sex, body weight and height, obesity, muscle strength,
and disease factors [62–66]; relatively lower 6MWD value in the patients may reflect the
risk of mortality [62,63]. Consequently, the walking speed is a predictor of mortality in
elderly adults [21]. Furthermore, PA levels and exercise interventions can reduce the risk of
falling, improving the HRQoL in terms of both the physical and mental components [23].

A slower walking speed affects the lower gait quality in elderly adults with increased
falling risks [67], which may reduce the HRQoL. Recently, several studies suggested
utilizing advanced gait-related variables, such as the GV and coefficient values for the
spatiotemporal parameters, to evaluate the dynamic stability in elderly adults [68,69].
Particularly, gait phases are essential variables to evaluate the gait stability during one
gait cycle, which is the duration from one stride to the subsequent stride. A slower
walking speed and shortened stride length can lead to longer double support and stance
phases and a shorter single-support phase [70], which indicate the weakness of the lower
limbs [19,20]. The GVs for the gait phase are particularly useful variables, and the increased
GV values may reflect a relatively low dynamic stability during walking [19,68]. In this
study, the GV for the single-support phase at a faster speed and stride time at a slower
speed were a significant independent variable for the physical component in elderly adults.
A challenging task, such as faster or slower than self-preferred walking speed conditions,
requires more mechanical energy with increased muscle activations [71]. It also requires
an increased cognitive load during walking tasks, which reduces the gait automaticity
in elderly adults [69]. The reduced gait automaticity can be associated with an increased
GV value based on the stride-to-stride fluctuations, which indicates a decreased dynamic
stability [72]. Similar investigations conducted on challenging walking tasks reported that
the GV for the gait phase is a significant variable to evaluate the gait ability in patients
with Parkinson’s disease [28] or healthy individuals. It can indicate reduced functions,
such as cognitive functioning [30], subthreshold insomnia severity [29], and functional
movement ability [31]. Particularly, the changes in GV can be associated with the fear of
falling in elderly adults [19,73], and the GV value indicates a high falling risk when elderly
adults walk at slower speed [41]. Thus, the GV value reflects gait ability and contributes to
a negative effect for maintaining independence in elderly adults, which may reduce their
QoL. Therefore, the GV for the gait phase during the faster speed condition can serve as a
useful variable for evaluating the physical component of the HRQoL in elderly adults.

Furthermore, the handgrip strength is a valid variable to evaluate the general health
status. It serves as an indicator in both healthy elderly adults and patients. A low handgrip
strength can be associated with the QoL of elderly adults, which may affect an early all-
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cause mortality, cardiovascular mortality, disability, and sarcopenia [16–18]. A previous
study suggested that individuals with low handgrip strength should undergo exercise in-
terventions, such as resistance training, to improve their QoL [16]. Our study demonstrated
that handgrip strength is an important independent variable to evaluate the physical
component of the HRQoL in elderly adults, which concurs with the results of previous
studies [16–18]. We determined that the ST from LSP is a significant variable for evaluating
the physical component of HRQoL in elderly adults. Furthermore, as sitting on the floor is
a life characteristic in East Asian countries, such as Korea and Japan [74], standing from a
sitting position on the floor may be a familiar motion. Therefore, this is a more appropriate
task than the sit-to-stand from the chair task to assess the lower body strength in Korean
elderly adults.

Our results demonstrated that the top 10 features indicated significant independent
variables to predict the status of the physical component of the HRQoL. Among them, five
variables, namely the 6MWD (r = 0.44), SRI-MF (r = −0.40), fear of falling (r = −0.37), ST
from LSP (r = −0.35), and handgrip strength (r = 0.30) exhibited relatively higher correla-
tions with the physical component, and variables such as physical performances [5,16–18],
mental-related health [6], and falling risk [11,13] are well-known to deteriorate the HRQoL.
Therefore, to evaluate the physical component of the HRQoL in elderly adults, we recom-
mend considering variables that can evaluate the functional endurance, muscle strength,
stress levels, and falling risk; these variables include 6MWD, ST from LSP, handgrip, and
SRI-MF. Thus, the study findings can provide reliable and objective results to enhance
the understanding of the physical component of the HRQoL in elderly adults, and the
intervention programs need to consider these factors to improve the physical component
of the HRQoL.

4.3. HRQoL in Elderly Adults Based on the Mental Component

In the case of the mental component, five variables were used to form the best subset
of the features. The demographic characteristics and questionnaire variables comprised
of five features, namely the total number of diseases, SRI-MF score, total ISI score, and
fear of falling, which are similar with previously reported results. The SF-36 includes
several subscales of related mental evaluation, such as vitality, social functioning, role
limitations caused by emotional problems, and mental health [9,35]. Additionally, the
SRI-MF evaluates stress levels considering somatization, anger, and depression [40]. Thus,
the low level of mental health indicates worse stress levels in elderly adults. Our results
demonstrated that the relationship between the mental component and SRI-MF exhibited
the highest correlation value (r = −0.51) in comparison with other variables. Furthermore,
elderly adults with insomnia may be affected by mental disorders, such as depression
and anxiety [75]. Similar results have been reported previously, wherein the ISI score
was associated with the SRI-MF score, indicating that severe insomnia may worsen stress
levels [29]. The risk of diseases also affects mental health, which can reduce the HRQoL in
terms of both physical and mental components [6,8].

Furthermore, the 5 times sit-to-stand exercise assesses the lower body strength, which
indicates a better performance as the completed time is faster. According to a previous
study, the mental component may be associated with sarcopenia owing to self-perceived
anxiety and depression. This is because individuals with sarcopenia may exhibit reduced
mobility functions caused by the loss of strength and muscle mass, which can increase
the fear of falling [76]. As sarcopenia-related index was not considered in this study,
the decline in mental health can be associated with the decreased physical performance
functions. Additionally, fear of falling affects in lowering the HRQoL considering the
mental components in elderly adults [12,13]. Our study also indicates that the fear of
falling is an important variable for predicting HRQoL considering the mental component
in elderly adults, which is similar with previous studies [59–61]. Therefore, to evaluate the
mental component of the HRQoL in elderly adults, we recommend considering additional
variables apart from the mental-health-related variables. These variables need to evaluate
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functions, such as stress, insomnia severity, number of diseases, lower body strength,
and fear of falling, which can be used to understand the HRQoL in terms of the mental
component and can thereby serve as a reference.

4.4. Limitations and Future Applications

Our study demonstrated several strengths of the HRQoL in elderly. First, we evaluated
the HRQoL in 775 elderly adults considering both the physical and mental components
based on 96 independent variables, such as demographic characteristics, gait ability, and
physical fitness, using the ML approach. We determined the best features among the
98 variables in terms of both the physical and mental components. This multidisciplinary
approach could provide essential information on the importance of variables to enhance
the understanding of the HRQoL in elderly. Furthermore, the study findings can be
utilized by intervention programs as reference values to improve the physical and mental
health of elderly adults. The intervention programs to improve specific factors (e.g.,
muscle strength, stress level, gait ability, and etc.) can help to effectively enhance theirs
daily QoL in general. However, we also recognized several limitations of this study
that need to be addressed. We predicted the HRQoL using the ML approach with only
775 samples, which may be relatively insufficient to normalize the model. Additionally,
we did not consider the essential HRQoL model based on disease characteristics, such
as cardiovascular diseases, neurodegenerative diseases, and musculoskeletal diseases.
Therefore, we believe that a higher number of samples than that used in our study can
enhance the reliability of the model and establish an accurate ML model considering
different types of disease characteristics. Finally, our study determined that the ST from
LSP is a significant independent variable that can evaluate the HRQoL in terms of the
physical component in elderly adults. Although this variable can evaluate the lower body
strength in elderly adults, sitting on the floor is uncommon in most countries, except East
Asian countries. Therefore, if the ST from LSP is a necessary task to evaluate the HRQoL
considering the physical component, it should be validated for various races and cultures,
such as European, North American, South American, African, and Asian, to accurately
evaluate the lower body strength in elderly adults.

5. Conclusions

Our study determined the best prediction models to identify the HRQoL in elderly
adults in terms of both the physical and mental components based on the demographic
characteristics, questionnaires, gait ability, and physical fitness using the ML approach.
Feature selection worked well for the both components. This contributed to increase the
performance and reduce the complexity of the model. Consequently, the approach of the
ML algorithm for analyzing the HRQoL dataset is effective. In the case of the physical
component, 11 variables were used to form the best subset of the features. We recommend
performing several tasks to evaluate the functional endurance, muscle strength, stress level,
and falling risk to effectively estimate the physical component of the HRQoL in elderly
adults. Furthermore, in the case of the mental component, five variables were used to
form the best subset of the features. Therefore, both mental-health-related and additional
variables must be used to evaluate functions, such as stress, insomnia severity, number of
diseases, lower body strength, and fear of falling for determining the mental component of
the HRQoL. These findings can provide more reliable and objective results and improve
the understanding of HRQoL in terms of both the physical and mental components in
elderly adults, and we recommend considering these factors to improve their HRQoL in
elderly undergoing intervention programs.
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