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Abstract: The investigation of the phenomenon of dephasing assisted quantum transport, which
happens when the presence of dephasing benefits the efficiency of this process, has been mainly
focused on Markovian scenarios associated with constant and positive dephasing rates in their
respective Lindblad master equations. What happens if we consider a more general framework, where
time-dependent dephasing rates are allowed, thereby, permitting the possibility of non-Markovian
scenarios? Does dephasing-assisted transport still manifest for non-Markovian dephasing? Here,
we address these open questions in a setup of coupled two-level systems. Our results show that
the manifestation of non-Markovian dephasing-assisted transport depends on the way in which
the incoherent energy sources are locally coupled to the chain. This is illustrated with two different
configurations, namely non-symmetric and symmetric. Specifically, we verify that non-Markovian
dephasing-assisted transport manifested only in the non-symmetric configuration. This allows us
to draw a parallel with the conditions in which time-independent Markovian dephasing-assisted
transport manifests. Finally, we find similar results by considering a controllable and experimentally
implementable system, which highlights the significance of our findings for quantum technologies.

Keywords: non-Markovianity; quantum transport; quantum technologies

1. Introduction

Dephasing-assisted transport means currents enhanced by dephasing [1,2]. This
implies that open system dynamics may surpass the correspondent unitary evolution in
terms of transport efficiency. On the one hand, this defied the notion that, in general,
the presence of noise tends to jeopardize the efficiency of tasks performed by quantum
systems [3].

On the other hand, it helped us to understand energy transport behavior in quantum
systems subject to heavily noisy conditions in harsh natural environments, which shows
an outstanding ability to effectively transfer energy. A paradigmatic example is the widely
studied Fenna–Mathew–Olson (FMO) complex, a structure present in green sulphur bacte-
ria that channels the energy captured from solar light to a reaction centre [4–9]. As well,
the comprehension of dephasing-assisted transport is of central importance for quantum
technologies.

Indeed, the possibility of exploiting this to achieve improved transport efficiencies
is very appealing from the point of view of practical implementations, principally for
quantum technology applications including controlled quantum systems, such as disor-
dered organic semiconductors [10], networks of fiber-optic resonators [11], reconfigurable
networks for the simulation of single-particle quantum transport [12], nuclear magnetic
resonance systems [13], and quantum emitters near a graphene sheet under the influence
of a magnetic field [14].

The theoretical studies of dephasing-assisted transport have been mainly focused
on time-independent interaction between the system and environment [1,15,16]. There-
fore, investigations of time-dependent dephasing in a transport scenario that includes
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more general Markovian as well as non-Markovian evolutions have the potential to drive
new applications in the context of quantum technologies [17,18]. Furthermore, in recent
years, there has been a great interest in the fundamental and practical aspects of non-
Markovianity [13,19–26]. With the tools resulting from these studies and the experimental
advances that have been reported, it is natural to envisage new possibilities to exploit such
systems in the context of quantum transport.

In this work, we will study how the presence of time-dependent dephasing in a
chain of coupled two-level systems affects quantum transport efficiency in Markovian
and non-Markovian scenarios. In doing so, we tackle a relevant question in the field of
open quantum systems, which is the impact of time-dependent scenarios on quantum
transport. We will be using the fact that important examples of non-Markovian evolutions
can be characterized by Lindblad-like master equations for which the time dependent
decoherence rate achieves negative values [17,27–30].

This paper is organized as follows. First, we review the canonical form of the Lindblad-
like master equations and the characterization of non-Markovianity via master equations in
Section 2. Then, we describe the transport model in Section 3. In Section 4, we present our
results and analyse the transport efficiency in some time-dependent dephasing scenarios,
and extend the analysis for results obtained in the context of a controlled quantum system
in Section 5. In Section 6, we present our conclusions.

2. Characterizing Time-Dependent Non-Markovian Evolutions

Time-local master equations [31,32] can be expressed in a Lindblad-like form as

ρ̇(t) = −i[H(t), ρ] +
d2−1

∑
k

γk(t)
(

L̂k(t)ρL̂†
k(t)−

1
2
{L̂†

k(t)L̂k(t), ρ}
)

, (1)

with a unique set of functions γk(t), not necessarily positive for all times [30]. Here, d is
the dimension of the state space, H(t) is a Hermitian operator, and L̂k(t) constitutes an
orthonormal basis of traceless operators, i.e.,

Tr[L̂k(t)] = 0, Tr[L̂†
j (t)L̂k(t)] = δjk. (2)

Since any time-local master equation can be written in this canonical form, in which
each γk(t) is uniquely determined, it turns out that Equation (1) may be used to characterize
non-Markovianity [30]. In fact, γk(t) ≥ 0 means Markovianity, since it is equivalent to the
divisibility of the map into completely positive evolutions [27–29,33]. Therefore, a strictly
negative value of γk(t), for some k and at any instant of time t, indicates non-Markovianity.
The fact that each γk(t) is unique in Equation (1) motivated the use of

fk(t) ≡ max[0,−γk(t)] ≥ 0, (3)

as an indicator of non-Markoviany in the channel k and its integration in time

Fk(t, t′) =
∫ t′

t
ds fk(s), (4)

as a quantifier of the total amount of non-Markovianity of a given channel k in an interval
of time from t to t′ [30].

In general, γk(t) must satisfy certain constraints for a completely positive evolution.
For instance, consider a master equation for a two-level system given by

ρ̇(t) = −i[H(t), ρ(t)] +
1
2 ∑

k
γk(t)(σkρ(t)σk − ρ(t)), (5)
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where σi are Pauli matrices (σ1 = σx, σ2 = σy, σ3 = σz), and H(t) is Hermitian. Complete
positivity of the map, in the interval from 0 to t, is guaranteed if the following set of
conditions are fulfilled [34]

Γj + Γk ≤ 1 + Γl , (6)

for all permutations j, k, l of 1, 2, 3 where Γj ≡ exp(−
∫ t

0 ds[γk(s) + γl(s)]).
Let us illustrate this with a simple case where γ1(t) = γ2(t) = 0 and γ3(t) = γ(t), i.e.,

ρ̇(t) = −i[H(t), ρ(t)] +
1
2

γ(t)(σzρ(t)σz − ρ(t)). (7)

It is straightforward to show that
∫ t

0 γ(s)ds ≥ 0 is the requirement for the map to be
completely positive. This master equation will be important for our investigation of the
phenomenon of non-Markovian dephasing-assisted transport in the rest of the paper. An
example is given by γ(t) = γ sin(νt), where ν is integer and γ ≥ 0 [35]. Such functions
satisfy the aforementioned condition and, therefore, the map is CP for all t.

3. The Model

We consider a linear chain of N two-level systems in a first-neighbour coupling model,
whose Hamiltonian is given by (h̄ = 1)

H =
N

∑
i=1

ωi
2

σz
i +

N−1

∑
i=1

λi(σ
+
i σ−i+1 + σ+

i+1σ−i ), (8)

where σ+
i is the operator causing transition from ground to excited state in site i, σ−i = (σ+

i )†,
σz

i and ωi are the Pauli z operator and the energy associated with ith site, respectively, and λi
is the coupling constant between sites i and i + 1. This model has been extensively used to
describe quantum transport, and this kind of interaction can be implemented, for instance,
in the context of trapped ions and circuit QED [26,36,37].

In turn, the chain is considered to be locally coupled to incoherent energy sources,
responsible for incoherent injection and extraction of energy. More specifically, we consider
energy injection at site 1 and extraction at site k, where 2 ≤ k ≤ N. This situation is
described by the following terms, to be added to the master equation

Linjρ =
1
2

κinj(2σ+
1 ρσ−1 − σ−1 σ+

1 ρ− ρσ−1 σ+
1 ),

Lextρ =
1
2

κext(2σ−k ρσ+
k − σ+

k σ−k ρ− ρσ+
k σ−k ), (9)

where κinj (κext) describes the rate of injection (extraction) of energy into (out of) the chain.
In order to simplify the notation, we omitted the time-dependence of ρ(t) in Equation (9).
From now on, we will adopt this simplified notation.

Finally, we consider that each site is also subjected to local dephasing. This assumption
of local coupling to the environment is reasonable for a weak intercoupling strength
between the sites of the chain when compared to the local frequencies [38–43]. For the
sake of simplicity, we will assume that each site is subjected to equivalent dephasing
environments. Therefore, the total dephasing to which the chain is subjected to is given by

Ldephρ =
N

∑
i

1
2

γ(t)(σz
i ρσz

i − ρ). (10)

Then, non-Markovianity is the result of γ(t) assuming negative values. Finally, the to-
tal master equation representing the evolution of the system will read

ρ̇ = −i[H, ρ] + Ldephρ + Linjρ + Lextρ. (11)
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The reason why we do not consider a general local environment as in Equation (5),
which contains all Pauli matrices, is that we want to have a fair comparison among cases
where the only way energy can enter or leave the chain is by means of the same mechanism
of incoherent injection and extraction of energy caused by Equation (9). Reference [44] has
shown that it is possible to simulate arbitrary pure-dephasing dynamics of a qubit through
a generic dephasing simulator for one-qubit dephasing. In this way, it is important to point
out that all time-dependent dephasing models discussed here would be experimentally
implementable using the results tools of [44].

For the investigation of transport efficiency, we will consider the stationary value of the
rate of variation of the total number operator N̂ = ∑i σ+

i σ−i . In a broad sense, it can be called
the exciton current. In the stationary state, one finds Tr[N̂ρ̇] = Tr[N̂Linρ] + Tr[N̂Lextρ] = 0.
Consequently, Tr[N̂Linρ] = −Tr[N̂Lextρ]. As a figure of merit for the transport efficiency,
we then consider JN̂ = |Tr[N̂Lextρ]| = κext pext(∞), where pext(∞) is the asymptotic popu-
lation of the extraction site. To be more specific, we will be evaluating the rescaled current
J̃N̂ ≡ (κextN)−1 JN̂ . The basic transport models used here are detailed in the review [45].

4. Time-Dependent Dephasing Assisted Transport

We start our analysis by considering time-dependent dephasing models with sinoidal
time dependence. We focus on two specific situations, called symmetric and non-symmetric
configurations, having in mind the case N = 7 as a benchmark for the Markovian case [15].
In the non-symmetric configuration, the fifth site is the extraction site, which breaks the
inversion symmetry. In the symmetric configuration, the extraction site is the 7th site.
These two configurations are illustrated in Figure 1.

Chains of different sizes and other choices of extraction sites breaking inversion
symmetry can also be studied, and they present similar behavior to the ones presented
here. In both configurations, the chain has uniform frequencies ωi = ω and inter-site
couplings λi = λ. The injection site is always chosen to be the first site. In the symmetric
configuration, the extraction site is on the other tip of the chain, i.e., the last site.

As shown in [15], Markovian dephasing-assisted transport manifests only in the non-
symmetric configuration. We investigate what happens when non-Markovian dephasing
is introduced in these configurations. To set a specific scenario, we fix λ = 0.1ω and
κext = κinj = 0.01ω for all simulations, i.e., all frequencies and couplings are set in units
of ω.

From an experimental point view, we are in the strong-coupling regime where λ is
comparable to ω [46]. If one were to consider a typical scenario in a natural system, such
as the ones involving exciton transfer complexes, typical parameters would be κinj (κext)
of the order of ps−1, on-site gap energies around ωi = 104 cm−1 and coupling constants
two order of magnitudes weaker λi = 102 cm−1. However, our main goal is to illustrate
new transport phenomena driven by instances of time dependent-dephasings, which are
amenable to quantum simulation [44].
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Figure 1. Representation of the networks considered in this work (i) non-symmetric and (ii) sym-
metric configurations. The injection and extraction sites for each configuration are indicated by the
ingoing and outgoing arrows, respectively.

4.1. Non-Symmetric Configuration

In Figure 2, we plot the current J̃N̂ as a function of γ ≥ 0 for the time-dependent
dephasing model γ(t) = γ sin(νt), and different values of ν in the non-symmetric config-
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uration. We also consider the average of these three sine functions. This model happens
to be non-Markovian for any finite value of the positive constant γ. The Markovian case
corresponding to γ(t) = γ is also plotted as a benchmark. The first point to be noticed is
that dephasing-assisted transport manifests in both cases: Markovian and non-Markovian.
This corresponds to the first portion of the curves where the current increases with γ.
Regardless of being Markovian or not, there is always an optimal value of γ above which
dephasing becomes detrimental. Notwithstanding, we see that the non-Markovian cases
are more efficient than their Markovian counterpart for higher dephasing magnitudes γ.

Figure 2. Non-symmetric configuration—current J̃N̂ as a function of γ/ω for γ(t) = γ sin(νt), where
ν = 0.3, 2, 4, and the normalized sum of these functions. The Markovian case corresponding to
γ(t) = γ is also plotted.

In Figure 3, we consider the current J̃N̂ for another model, for which γ(t) = γ+ γ0 sin(t)
in the non-symmetric configuration, with γ0 = 1. Now we have a transition from non-
Markovian to Markovian depending on a physical parameter, i.e., the resulting dynamics is
non-Markovian for 0 < γ < 1. One can also see the time-independent Markovian benchmark
in the same plot. As a glimpse of how rich the transport scenario is in the presence of time-
dependent dephasing, this model does not present efficiency enhancement by dephasing.

Compared to the Markovian case for γ = 0, i.e., closed system dynamics, the case with
γ(t) = γ + sin(t) is always less efficient. This is in clear contrast to the model considered
before. However, the present model shows an interesting non-monotonic behavior with γ,
and it also turns out to be more efficient than the time-independent Markovian counterpart
for higher values of γ.

Figure 3. Non-symmetric configuration—current J̃N̂ as a function of γ/ω for γ(t) = γ + γ0 sin(t).
The dotted red vertical line corresponds to γ = 1. The system is decreasingly non-Markovian in the
interval 0 < γ < 1. For γ ≥ 1, the system is Markovian since we have γ(t) ≥ 0 for all t. The gray
curve corresponds to γ(t) = γ.
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4.2. Symmetric Configuration

Now, we focus on the symmetric configuration, and again plot the current J̃N̂ as
a function of γ for the model γ(t) = γ sin(νt). The Markovian case corresponding to
γ(t) = γ is also plotted and shows a monotonic behavior as γ is increased. In other
words, there is no Markovian dephasing-assisted transport in the symmetric case, which is
in agreement with [15]. For each non-Markovian curve shown in Figure 4, we also have that
non-Markovian dephasing-assisted transport does not manifest, as the maximum current
is reached for γ = 0. Nevertheless, it is remarkable to see that the non-Markovian cases
become, once again, more efficient than their Markovian counterparts as γ is increased.

Figure 4. Symmetric configuration—current J̃N̂ as a function of γ/ω for γ(t) = γ sin(νt), where
ν = 0.3, 2, 4, and the normalized sum of these functions. The Markovian case corresponding to
γ(t) = γ is also plotted.

In Figure 5, we consider once again the model given by γ(t) = γ + γ0 sin(νt),
with γ0 = 1 in the symmetric configuration. As we can see, a non-monotonic behav-
ior is also observed in this case, and, by comparing it to the the benchmark, we see that it
can also help efficiency regardless of being Markovian (γ < 1) or not (γ ≥ 1).

Figure 5. Symmetric configuration—current J̃N̂ as a function of γ/ω for γ(t) = γ + γ0 sin(t).
The dotted red vertical line corresponds to γ = 1. The system is decreasingly non-Markovian in the
interval 0 < γ < 1. For γ ≥ 1, the system is Markovian since we have γ(t) ≥ 0. The gray curve
corresponds to γ(t) = γ.
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4.3. Spread of Occupations and Efficiency

Next, we seek to analyse how the spread of occupations correlates with the current
maximum in the time-dependent dephasing scenarios presented above. We consider the
spread of occupations ∆n [15], with ni ≡ pi(∞),

∆n = 1−
(

1
N ∑

i
ni − nk

)2

, (12)

where nk is the population of the extraction site k, nk ≡ pk(∞). The maximum of this quan-
tity is associated with a minimum spread of the occupations. A correlation between the max-
imal of ∆n and the maximum of the current is verified in [15] for several time-independent
Markovian cases. Here, we certify that, for the time-dependent non-Markovian cases stud-
ied above, the same tendency is verified: ∆n is maximum when the current is maximum,
as shown in Figures 6 and 7, which shows plots of ∆n and the current as a function of γ.
These results suggest that this quantity is an indicator of optimal transport scenarios in the
more general time-dependent and non-Markovian dephasing picture.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. ∆n (dashed purple line) and the current J̃N̂ (solid line) as a function of γ/ω for each non-Markovian evolution,
corresponding to the γ(t) in the caption of each figure. The plots in figures (a–d) correspond to the non-symmetric
configuration, while the plots in figures (e–h) correspond to the symmetric configuration. (a) γ1(t) = γ sin(0.3t). (b) γ2(t) =
γ sin(t). (c) γ3(t) = γ sin(4t). (d) γ(t) = 1

3 (γ1(t) + γ2(t) + γ3(t)). (e) γ1(t) = γ sin(0.3t). (f) γ2(t) = γ sin(t). (g) γ3(t) =
γ sin(4t). (h) γ(t) = 1

3 (γ1(t) + γ2(t) + γ3(t)).
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(a)

(b)

Figure 7. ∆n (dashed purple line) and the current J̃N̂ (green/coral solid lines) as a function of γ/ω,
for γ(t) = γ + sin(t) for the non-symmetric and symmetric configurations. (a) Non-symmetric
config. (b) Symmetric config.

5. Example: Controlled Quantum System

In the scope of controlled quantum systems, time-dependent dephasing, including
non-Markovian evolutions, can be introduced and externally controlled [13,19–22]. In a
recent work [18], for example, it is shown that the dynamics of a driven quantum harmonic
oscillator subject to non-dissipative noise is formally equivalent to single-particle dynamics
in a dynamically-disordered photonic network, and it is shown that non-Markovianity can
be advantageous in the noise-assisted transport phenomenon.

In quantum technologies, one can induce non-Markovianity through the use of con-
trolled auxiliary systems. Specifically, a model in the context of nuclear magnetic resonance
(NMR) experiments, where a Ising-like interaction takes place between two spin 1/2 sys-
tems, is studied in [19]. One of these two-level systems is considered to be the system of
interest, and the other is seen as part of the environment, providing a structured bath.

The strength of the coupling between the system and the environment is given by
the parameter J, and θ is a parameter that gives the state in which the environment is
initialized, before the interaction. It turns out that the parameters J and θ are controllable
in the NMR experimental realization. In particular, the following superoperator can be
engineered for any site i of the chain [19]

Liρ =
1
2

γi(t)(σz
i ρσz

i − ρ)− isi(t)[σz
i , ρ], (13)

where

γi(t) = γi +
π J sin2(2θ) sin(2π Jt)

3 + 2 cos(4θ) sin2(π Jt) + cos(2π Jt)
, (14)

is a time-dependent dephasing rate, and

si(t) =
2π J cos(2θ)

3 + 2 cos(4θ) sin2(π Jt) + cos(2π Jt)
, (15)
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is an environment-induced time-dependent energy shift. As mentioned before, in
Equations (14) and (15), J and θ are fully controlled parameters.

First, it is worth studying the behavior of the function γi(t) in Equation (14), which
is a periodic function satisfying the condition for a completely positive evolution for any
value of γi ≥ 0 as discussed in Section 2. In all the plots in this section, we will consider
J = 1. In Figure 8, we plot γi(t) for several values of the parameter θ while keeping γi = 0.

Figure 8. γ(t) in Equation (14) with γ = 0 and J = 1 and different values of θ.

We can see that, for γi = 0 the system is always non-Markovian, and its non-
Markovianity increases as θ increases in the interval [0, π/2]. For simplicity, we assume
that γi = γ so that all γi(t) are the same. Thus, the whole chain will be subjected to the fol-
lowing total master equation, which also takes into account the coupling to the incoherent
energy sources responsible for injection and extraction of energy, as described before,

ρ̇ = −i[H, ρ] +
N

∑
i

1
2

γi(t)(σz
i ρσz

i − ρ)− isi(t)[σz
i , ρ] + Linjρ + Lextρ. (16)

5.1. Non-Symmetric Configuration

We now focus on the model with time-dependent dephasing as described by
Equations (14)–(16). First, we consider γ = 0 in Equation (14). In Figure 9, we have the
current J̃N̂ plotted as a function of θ—see the solid green line. We see that non-Markovian
dephasing-assisted transport happens, as the maximum of the current is associated with
a value θ 6= 0. This is similar to the behavior discussed before and illustrated in Figure 2,
but here θ is the parameter controlling the non-Markovian dephasing. In other words,
by increasing θ in the range shown, one increases the presence of non-Markovian dephasing
in the system’s evolution.

The effect of increasing the positive contribution γ is shown in Figure 10 for fixed J
and θ (J = 1 and θ = 0.52, for which γ(t) is plotted in Figure 8), where the solid green
line is the plot of the current as a function γ in the non-symmetric configuration. The
non-Markovian dynamics becomes Markovian for the value of γ ≈ 1.17 correspondent
to the dotted red line. For γ & 1.17, the system is Markovian. We see that the increase in
the Markovian contribution, γ, cannot lead to an increase in the current, J̃N̂ . We note that
the same effect – the decrease of J̃N̂ as γ increases – is observed for other values of J and θ.
Therefore, the decrease in the non-Markovianity of the system by increasing γ jeopardizes
the transport efficiency.
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Figure 9. Current J̃N̂ as a function of θ (rad) for γ = 0. The solid green line represents the non-
symmetric case, while the dashed coral line represents the symmetric one.

Figure 10. Current J̃N̂ as a function of γ/ω for J = 1 and θ = 0.52. The dashed red vertical line
corresponds to γ = 1.17. The system is decreasingly non-Markovian in the interval 0 < γ . 1.17.
For γ & 1.17, the system is Markovian since we have γ(t) > 0. The green line represents the
non-symmetric case, while the dashed coral line represents the symmetric one.

5.2. Symmetric Configuration

We consider the case γ = 0 in Equation (14) in the symmetric configuration. In
Figure 9, we have the current J̃N̂ plotted as a function of θ, see the dashed coral line. We
see that non-Markovian dephasing-assisted transport does not happen, as we have a
monotonic behavior of the current with θ. This behavior is similar to the cases discussed
before for Figure 4, where we also have a monotonic behavior for the current in all the cases.

Next, we study what happens when the positive contribution γ is increased, by taking
J = 1 and θ = 0.52 once again, but now in the symmetric configuration. In Figure 10,
the dashed coral line shows the current as function of γ. As in the non-symmetric case,
we see a monotonic decreasing behavior of the current J̃N̂ as γ decreases. Once again,
the non-Markovian dynamics becomes Markovian for γ ≈ 1.17, indicated by the dotted
red line in Figure 10. As in the non-symmetric case, therefore, non-Markovian scenarios
are shown to be associated with a greater transport efficiency.

6. Conclusions

The investigation of the influence of time-dependent dephasing on the efficiency of
quantum transport is a very relevant problem in the context of open quantum systems re-
search, notably in non-Markovian scenarios. Here, we provided a systematic investigation
of this phenomenon for a chain of coupled two-level systems, which is, in turn, locally
subjected to incoherent injection and extraction of energy in and out of the chain. An
exciton current is then established and evaluated when the system is in the stationary state.
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Specifically, the models treated here are characterized by complete positive maps
associated with time-dependent dephasing rates described by linear combinations of sine
functions and constants in the canonical representation of the corresponding master equa-
tion. Based on that, we studied the behavior of the exciton current in the non-symmetric
and symmetric scenarios. We found that the phenomenon of non-Markovian dephasing-
assisted transport occurred in the non-symmetric cases, thereby, establishing a parallel
with the time independent Markovian cases as investigated elsewhere [15].

Substantial advances for the understanding of the effect of Markovian and non-
Markovian dephasing in the transport efficiency has been made recently in the context
of disordered chains [18,26,37,47–49]. In [48], for instance, it was found that Markovian
dephasing can help transport even for disordered symmetric chains. In [18], it was found
that the dephasing rate range in which dephasing-assisted transport occurs is significantly
larger in the non-Markovian scenario than in the Markovian counterpart [18]. Similarly,
researchers [37] found that non-Markovian dephasing can hold larger values for transport
efficiency over a broader parameter range when compared to the Markovian case. These
behaviors are qualitatively similar to the ones verified here, which indicates that non-
Markovian dephasing may be a useful technique when it comes to transport efficiency.

As a final remark, one can also investigate the so-called “maximally non-Markovian
evolution” [50], to find that different degrees of non-Markovianity in that model do not
change the efficiency of quantum transport. This indicates that the generalization of
non-Markovian dephasing-assisted transport, beyond the models studied here, is not
straightforward, and certainly deserves to be further investigated. We hope that our work
will serve as a motivation for further advances related to this interesting problem.
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