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Abstract

Background

Predictive models could help clinicians identify risk factors that cause adverse events after

total knee arthroplasty (TKA), allowing for appropriate preoperative preventive interventions

and allocation of resources.

Methods

The National Inpatient Sample datasets from 2010–2014 were used to build Logistic

Regression (LR), Gradient Boosting Method (GBM), Random Forest (RF), and Artificial

Neural Network (ANN) predictive models for three clinically relevant outcomes after TKA—

disposition at discharge, any post-surgical complications, and blood transfusion. Model per-

formance was evaluated using the Brier scores as calibration measures, and area under the

ROC curve (AUC) and F1 scores as discrimination measures.

Results

GBM-based predictive models were observed to have better calibration and discrimination

than the other models; thus, indicating comparatively better overall performance. The Brier

scores for GBM models predicting the outcomes under investigation ranged from 0.09–

0.14, AUCs ranged from 79–87%, and F1-scores ranged from 41–73%. Variable impor-

tance analysis for GBM models revealed that admission month, patient location, and

patient’s income level were significant predictors for all the outcomes. Additionally, any

post-surgical complications and blood transfusions were significantly predicted by defi-

ciency anemias, and discharge disposition by length of stay and age groups. Notably, any

post-surgical complications were also significantly predicted by the patient undergoing

blood transfusion.
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Conclusions

The predictive abilities of the ML models were successfully demonstrated using data from

the National Inpatient Sample (NIS), indicating a wide range of clinical applications for

obtaining accurate prognoses of complications following orthopedic surgical procedures.

Introduction

The American Joint Replacement Registry (AJRR) recorded that approximately one million total

knee arthroplasty (TKA) procedures were conducted in the United States in 2020 [1], and this is

further projected to increase to 1.5 million cases per year by 2050 [2]. Commonly cited complica-

tions after TKA are blood loss requiring blood transfusion [3], venous thromboembolisms [4],

infections [5], and extended care upon discharge [6]. Predictive models could help clinicians iden-

tify risk factors that cause adverse events after surgery, allowing for appropriate preoperative pre-

ventive interventions and allocation of resources. For instance, TKAs have commonly been

associated with high rates of blood transfusion [7] and the prediction of this complication prior to

the surgery can help the clinicians predetermine the patient’s need for this limited resource,

which can then be allocated accordingly. Logistic regression (LR) methods have commonly been

used for predicting outcomes after TKA, such as length of stay [8], mortality [9], persistent pain

[10] etc. The primary drawback for these regression models is that they require the users to specify

the relationship between outcome and predictor variables, and incorrect specification leads to

suboptimal predictive performance due to biased regression coefficients and invalid statistical

inferences [11]. This issue is exaggerated while utilizing large administrative databases. With doz-

ens or even hundreds of variables, as is often the case in such databases, model specification

becomes a daunting task with no guarantee of success. Machine learning (ML) based predictive

models have recently been increasingly explored in the field of orthopedics as powerful tool that

can be utilized for conducting risk assessments in a clinical setting, as opposed to predictive mod-

els based on traditional regression methods. Unlike LR, ML automates analytical model building

during data analysis by using algorithms that iteratively learn from data, and detect patterns, rules

and statistical dependencies without being explicitly programmed where to look.

For the purposes of our study, we used multi-year data from the Healthcare Cost and Utiliza-

tion Project National Inpatient Sample (HCUP NIS), the largest annual all payer database in the

nation and sought to build predictive models using LR and ML methods for a set of clinically rele-

vant surgical outcomes after TKA. ML is data driven and the more data fed into a ML system, the

more it can learn and apply the results to higher quality prediction. Data scarcity is often responsi-

ble for poor performances in ML studies. Therefore, ML based predictive models built using large

datasets, such as the NIS, are more likely to have accurate and dependable performance due to the

large sample size of the study dataset. The outcomes under consideration in our study were–dis-

position of the patient at discharge, any post-surgical complications, and blood transfusion. After

generating the various predictive models, the performance of these models were then compared

and we sought to use the model with the best performance in order to generate patient-level pre-

dictions and better understand the relative relevance of the various predictor variables in influenc-

ing the likelihood of patients experiencing adverse outcomes after TKA.

Methods

Data source

This is a retrospective study (Level 3 evidence), conducted using the 2010–2014 NIS data. NIS

annual data files are sponsored by the Agency of Healthcare Research and Quality. Detailed
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information on the NIS design can be found on the HCUP website [12]. Because the HCUP--

NIS database includes only de-identified patient data, this study was deemed exempt by the

George Washington University Committee on Human Research, Institutional Review Boards.

We identified patients who had undergone primary TKA between 2010–2014 as recorded

in the NIS using the International Classification of Diseases, 9th Revision (ICD-9) procedure

code, 81.54. Our outcomes of interest were disposition of patients at discharge, any post-surgi-

cal complications, and blood transfusion. Disposition of patients at discharge was categorized

as either routine (patient’s residence) or non-routine (transfer to short-term, skilled nursing

facility, intermediate care facility, another type of specialized care facility, home health care,

against medical advice, death, and discharge alive with unknown destination). Blood transfu-

sion was identified using the relevant ICD-9 procedure codes for blood transfusion and classi-

fied as “Received blood transfusion” or “Did not receive blood transfusion” (Table I, Appendix

in S1 File). The outcome of any post-surgical complications was defined using a number of

ICD-9 diagnosis codes for specific complications that occur after TKA (Table II, Appendix in

S1 File), and was dichotomized as being either present or absent.

Predictors, including age, gender, race, admission month, admission on a weekend, admis-

sion type, health insurance, median household income for patient’s zip code, patient geograph-

ical location, ownership of hospital, bed size of hospital, location and teaching status of

hospital, and comorbidities, namely—weight loss, valvular disease, solid tumor, renal failure,

pulmonary circulation disorders, psychoses, peripheral vascular disorders, paralysis, obesity,

other neurological disorders, fluid and electrolyte disorders, lymphoma, liver disease, hypothy-

roidism, hypertension, drug abuse, diabetes with chronic complications, depression, coagulo-

pathy, chronic pulmonary disease, congestive heart failure, chronic blood loss anemia,

rheumatoid arthritis, deficiency anemias and alcohol abuse, were used to predict the three out-

comes of interest among patients who had a TKA.

Statistical analysis

Model development and validation. We developed predictive models based on logistic

regression (LR) and three ML methods including gradient boosting machine (GBM), random

forest (RF), and artificial neural networks (ANN). We deployed these three powerful methods

inspired by the latest trends in ML. The description of the ML models, along with an outline of

the parameter values used for these models, have been elaborated upon in the Appendix (S1–

S3 Figs). Fig 1 consists of an illustrative flowchart that outlines the steps taken during model

development for these predictive algorithms, for each of the outcomes of interest. In Step 1, we

identified missing observations. In Step 2, missing data imputation was conducted using

sequential regression multiple imputation (SRMI) [13,14] for handling the moderate amount

of missing values for several predictors—such as race, admission month, and patient’s median

household income for patient’s zip code. More specifically, missing data imputation was con-

ducted for this study since in a recent study [15], we identified serious consequences (e.g.,

biased results) of ignoring missing data in the HCUP NIS and illustrated the advantage of

advanced statistical methods such as multiple imputation (MI) for handling missing data. Step

2 resulted in 5 unique complete study datasets with no missing data. Given the large sample

size of the NIS, 5 imputations should be sufficient [17]. In order to facilitate internal validation

of the study results, each of these imputed datasets was then split into a training, validating,

and test dataset [16] with a split ratio of 5:2:3 in Step 3. In the next step, predictive models

were developed using each of the imputed training and validating datasets, and model predic-

tion was conducted using the corresponding imputed test datasets. The performance of the

predictive models was assessed using various calibration and discrimination measures, and the
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5 sets of results from the imputed training and test datasets were pooled using the rules of

Rubin [17] in Step 5 of the model development and validation process. Finally, the results were

compared between the LR and ML based predictive models for the outcomes of interest.

As previously discussed, performances of the predictive models were evaluated based on

two main measures, calibration and discrimination [18]. Calibration is a measure of the agree-

ment between predicted probabilities and observed outcomes, and the measure utilized in this

study was the Brier score, where a lower score is indicative of better model performance [19].

Discrimination refers to a model’s ability to discriminate between cases and non-cases; and

that is usually measured the area under the receiver operating characteristic (ROC) curve

(AUC), sensitivity, specificity and the F1-scores [20,21]. The sensitivity of a model is the mea-

sure of its ability to accurately predict positive outcomes, whereas the specificity of a model

measures the ability to accurately predict negative outcomes. The AUC is a function of the sen-

sitivity and specificity of a model, and its value ranges from 0 to 1. The F1-score for a model is

a function of the positive predictive value (PPV), which is the percentage of positive outcomes

that were accurately predicted by the model, and sensitivity of the model. AUC and F1-scores

for the positive outcomes are reported in this study. Unlike the Brier score, the higher the

F1-score and AUC, the better the model.

Fig 1. An illustrative flowchart of the development and validation of predictive models.

https://doi.org/10.1371/journal.pone.0263897.g001
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Results

Patient and hospital characteristics

A total of 636,062 patients had undergone TKA between 2010 to 2014. These patients were pri-

marily white (75.44%), female (62.33%), and between the ages of 44–64 (42.34%). A significant

proportion of these patients had their healthcare costs covered by Medicare (55.52%) and pri-

vate insurance (37.94%). Some of the comorbidities had a comparatively high prevalence in

this population: hypothyroidism (16.2%), uncomplicated diabetes (20.31%), obesity (23.46%),

and hypertension (68.66%), and the remaining comorbidities had a much lower prevalence in

the study population (Fig 2). Other characteristics are outlined in Table 1, along with informa-

tion of missing data in the original data. Race was found to have the highest degree of missing-

ness, with 13.46% or 18,188 of the patients missing in race. This is followed by admission type

(7.84% or 10,745 missing records) and admission month (6.46% or 8,300 missing records).

Disposition of patient at discharge

This outcome was defined as being either routine or non-routine in our study, and the models

were generated to predict routine discharges. A majority of the patients (73.05%) were

observed to have a non-routine discharge, implying that they required extra post-surgical care

after the procedure was completed. Results from the three models are outlined in Table 2,

where we observed that the GBM, RF and ANN models perform better than the LR model

across all metrics for the test data. Specifically, the Brier score (where higher score indicates

worse model) for the LR model was found to be 0.180—which was higher as compared to the

scores of 0.132, 0.149 and 0.137 for the GBM, RF and ANN model (17–27% improvement

Fig 2. Frequency of comorbidities in the 2010–2014 NIS study dataset.

https://doi.org/10.1371/journal.pone.0263897.g002
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Table 1. Characteristics of patients with total knee arthroplasty discharges in 2010–2014 NIS sample.

Variable Frequency (n = 636,062) Percent %

Age group

44–64 years 269,508 42.34

65–74 years 230,683 36.28

75+ years 135,871 21.35

Sex

Male 239,636 37.67

Female 396,426 62.33

Race

White 479,689 75.44

Black 45,082 7.10

Hispanic 31,841 5.05

Asian or Pacific Islander 7,188 1.13

Native American 2,822 0.44

Other 13,258 2.09

Missing 56,182 8.75

Median household income for patient’s zip code

0-25th percentile 140,870 22.18

26th-50th percentile 168,536 26.52

51st-75th percentile 167,763 26.36

76th-100th percentile 149,141 23.41

Missing 9,752 1.53

Patient location

“Central” counties of metro areas�1 million pop 139,264 21.86

“Fringe” counties of metro areas�1 million pop 156,835 24.64

Counties in metro areas of 250,000–999,999 pop 134,036 21.15

Counties in metro areas of 50,000–249,999 pop 67,989 10.69

Micropolitan counties 81,815 12.84

Not metro/micropolitan counties 56,123 8.83

Health insurance

Medicare 353,117 55.52

Medicaid 18,669 2.95

Private/HMO 241,355 37.94

Other 22,921 3.60

Admission day

Admitted weekday 634,412 99.74

Admitted weekend 1650 0.26

Admission type

Elective 113,712 85.62

Non-elective 8,568 6.54

Missing 10,745 7.84

Admission month

January 55,852 8.78

February 49,048 7.71

March 50,891 8.00

April 49,740 7.83

May 47,694 7.50

June 52,656 8.28

(Continued)
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achieved by ML models). The AUC (where higher score suggests better model) for the LR

model was observed to be 0.685, which was lower than the measures for the GBM, RF and

ANN models which were 0.857 (55% improvement), 0.841 (50% improvement) and 0.848

(52% improvement). It was observed that the F1-scores for routine discharges were lower for

the LR model, with a score of 0.51, as compared to the GBM, RF and ANN models which had

Table 1. (Continued)

Variable Frequency (n = 636,062) Percent %

July 48,116 7.58

August 48,795 7.67

September 49,947 7.66

October 59,312 9.34

November 54,575 8.59

December 49,692 7.82

Missing 19,744 3.05

Bed size of hospital

Small 137,177 21.35

Medium 166,965 26.43

Large 331,920 52.22

Location/teaching status of hospital

Rural 76,696 12.01

Urban non-teaching 274,241 43.04

Urban teaching 285,125 44.95

Control/ownership of hospital

Government, non-federal 55,360 8.67

Private, not-for-profit 481,076 75.54

Private, investor-owned 99,626 15.80

Year

2010 123,806 19.43

2011 126,540 19.34

2012 123,021 19.53

2013 129,552 20.56

2014 133,143 21.13

Length of hospital stay

> = 3 days (prolonged) 468,946 73.63

< 3 days (normal) 167,116 26.37

Discharge disposition

Routine discharge 171,329 26.96

Non-routine discharge 464,733 73.05

Any complication

Yes 228,386 35.89

No 407,676 64.12

Blood transfusion

Yes 73,020 11.41

No 563,042 88.59

Abbreviations: NIS, National (Nationwide) Inpatient Sample; pop, population; HMO, health maintenance

organization.

https://doi.org/10.1371/journal.pone.0263897.t001

PLOS ONE Predicting surgical outcomes after total knee arthroplasty

PLOS ONE | https://doi.org/10.1371/journal.pone.0263897 March 22, 2022 7 / 16

https://doi.org/10.1371/journal.pone.0263897.t001
https://doi.org/10.1371/journal.pone.0263897


scores that were higher by 51–55%. The sensitivity score for the LR model (12%) was much

lower than the ML models (�64%). Additionally, all the ML models were observed to have

high specificity (>80%), but the LR model had the comparatively highest specificity of 97%.

Any post-surgical complications

The predictions were modeled for the presence of any post-surgical outcomes. It was observed

that more than half of the patients (64.12%) had no post-surgical complications. The results

from the test data indicate that the GBM, RF and ANN models have better performance than

the LR model (Table 2). The LR model had a higher Brier score (0.162) than the GBM and

ANN model, which had scores of 0.136 and 0.141 (16% and 13% improvement achieved by the

models, respectively). However, the Brier score of the RF model (0.168) was slightly higher

than the LR model. The AUC for the LR model was found to be lower, with a value of 0.781, as

compared to the GBM, RF and ANN models, which had AUC measures of 0.871 (11%

improvement), 0.847 (8% improvement) and 0.861 (10% improvement). F1 scores are lower

for the LR model as well, with a value of 0.646, as compared to the GBM, RF and ANN model

which recorded improvements of 16–25%. The sensitivity score, and therefore the accuracy of

predicting class 1 (post-surgical outcomes), was lower for the LR model (59%) as compared to

the ML models (�66%). All the predictive models were observed to have high specificity

(>80%), and the ANN model had the highest specificity as compared to the other predictive

models.

Blood transfusion

The models were built to predict blood transfusion during TKA and predicted whether the

patient had received an analogous blood transfusion during the course of their surgery. Fre-

quency analyses revealed that a vast majority of the TKA patients (88.59%) did not receive

blood transfusion. As noted in results from the test data in Table 2, the Brier score for the LR

Table 2. Comparison of predictive model performance on test data using logistic regression and machine learning methods.

Outcome Metrics Logistic Regression Gradient Boosting Machine Random Forest Neural Network

Disposition of Patient at Discharge AUC

AUC—95% CI

0.685

(0.682, 0.688)

0.857

(0.855, 0.859)

0.841

(0.838, 0.843)

0.848

(0.840, 0.856)

Sensitivity 0.122 0.711 0.706 0.741

Specificity 0.966 0.841 0.816 0.796

F1 Score 0.201 0.664 0.641 0.647

Brier Score 0.180 0.132 0.149 0.137

Any Complication AUC

AUC—95% CI

0.781

(0.779, 0.784)

0.871

(0.869, 0.872)

0.847

(0.845, 0.849)

0.861

(0.850, 0.871)

Sensitivity 0.593 0.760 0.726 0.662

Specificity 0.864 0.826 0.811 0.884

F1 Score 0.646 0.734 0.704 0.707

Brier Score 0.162 0.136 0.168 0.141

Blood Transfusion AUC

AUC—95% CI

0.707

(0.704, 0.711)

0.797

(0.794, 0.800)

0.783

(0.780, 0.787)

0.812

(0.805, 0.820)

Sensitivity 0.450 0.531 0.517 0.525

Specificity 0.817 0.862 0.854 0.865

F1 Score 0.315 0.410 0.392 0.408

Brier Score 0.095 0.091 0.094 0.088

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; NIS, National Inpatient Sample.

https://doi.org/10.1371/journal.pone.0263897.t002
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model (0.095) was marginally higher than the scores of 0.091 for the GBM, 0.094 for the RF

and 0.088 for the ANN model (4%, 1% and 7% improvement, respectively). The LR model had

a lower AUC (0.707) as compared to the AUC for the GBM (0.797), RF (0.783) and ANN

(0.812) models, which showed an improvement of 31%, 26% and 36% respectively (Table 2).

The LR model was also found to have a significantly lower F1-score of 0.315 as compared to

0.410 for the GBM (14% improvement), 0.392 for the RF (11% improvement) and 0.408 for

the ANN (14% improvement) models. The sensitivity score of the LR model was 45%, which

was lower than the scores observed for the ML models (51–53%). All the predictive models

were observed to have good specificity, indicating a high degree of accuracy in predicting the

outcome of not having received a blood transfusion, and the scores ranged from 81–87%. The

LR model had comparatively lower specificity than the ML models.

Summary of comparison measures

The performance measures used for evaluating the predictive models indicate that the ML

models had better performance than the LR model for all the outcomes under consideration.

Within the context of our study, the GBM model was found to have slightly better calibration

and discrimination measures when compared to the RF and ANN based predictive models.

On the basis of our results, we selected the GBM model as the representative ML algorithm in

order to demonstrate the clinical applicability of the model. This was done by assessing the rel-

ative importance of the different predictor variables considered for each outcome of interest

and subject-level predictions were also generated using the randomly sampled records from

the study dataset. The code for our final model has been uploaded on GitHub for easy review

and access by clinicians and other researchers (https://github.com/postincredible/TKA_

predictive_modeling).

Variable importance in the GBM model

Based on the predictive models, some individual variable importance graphs were generated

for the different algorithms for the outcomes of interest. Specifically, findings from the GBM

based predictive model have been reported due to relatively better performance of this model

and Fig 3 is an illustrative example demonstrating the importance of the various predictor var-

iables. For the outcome of any post-surgical complications, deficiency anemias, blood transfu-

sion, admission month, patient location, and median household income for the patient were

the predictors found to have the greatest significance in predicting the outcome. Blood transfu-

sion was most significantly predicted by admission month, year of admission, patient location,

deficiency anemia as a comorbidity, and median household income for the patient. The stron-

gest predictors for the outcome of discharge disposition were observed to be admission

month, patient location, median household income for the patient, health insurance provider

and age category. A similar illustrative figure has also been generated for the RF model

(Appendix, S4 Fig).

Patient-level predictions using the GBM model

Since these predictive models have been built to ultimately predict post-surgical outcomes for

individual patients, we generated variable importance graphs for patient-level outcomes in

order to assess the importance of different patient- and hospital-level predictor variables. Fig 4

provides an illustrative example using the GBM model, since this prediction algorithm was

observed to have better overall performance as compared to the other methods assessed in this

paper. For the outcome of any post-surgical outcomes, case 3 from the dataset was used as a

test subject in order to identify the most significant predictors for this patient’s clinical
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outcome. The patient was observed to have a high probability (87%) of having any post-surgi-

cal complications following their TKA procedure. The presence of the anemia deficiency

comorbidity, absence of blood loss comorbidity, and blood transfusion conducted after the

procedure were found to positively predict the outcome. On the other hand, the absence of the

comorbidities of pulmonary circulation disorders, coagulopathy, fluid and electrolyte disor-

ders, weight loss, and renal failure were negatively associated with the probability of the patient

suffering from any post-surgical complications. Fig 4 also contains similar graphs outlining

the direction of association of the most significant predictor variables for the other two out-

comes under consideration–disposition of patient at discharge and blood transfusion.

Discussion

The models built in this study are used to predict the clinically relevant outcomes of discharge

disposition, post-surgical complications and blood transfusion procedures among 636,062

patients in the NIS database that had undergone TKA between 2010 to 2014. ML-based models

performed better in this capacity to predict post-surgical outcomes, and these models were

found to have consistently better calibration and discrimination measures as compared to the

LR models. Within the ML models, the GBM model was observed to have slightly better over-

all performance and the assessment of the relative importance of the predictor variables used

in this model revealed some significant common predictors for the three adverse outcomes

under investigation. In order to demonstrate the clinical applicability of this ML model,

patient-level predictions were also generated using sample records from the NIS database for

the outcomes under investigation in order to better understand the impact of the predictor

variables that could help physicians identify the patient’s likelihood of experiencing complica-

tions following their surgical procedure.

Fig 3. Relative importance of the predictor variables in the GBM predictive model.

https://doi.org/10.1371/journal.pone.0263897.g003
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The predictors used in the GBM model which were observed to have the most importance

in predicting the disposition of patients at discharge were as follows–admission month, patient

location, median household income for patient’s zip code, health insurance, age group, year,

race, sex, any post-surgical complications, diabetes (uncomplicated), obesity, hypertension,

chronic pulmonary diseases, blood transfusion, and bed size of hospital. Studies that have pre-

viously been conducted in order to predict discharge disposition following orthopedic surger-

ies have reported some of the same predictors which were observed to have the highest degree

of significance in the predictive model. Barsoum et al. had observed that discharge disposition

following total joint arthroplasty (TJA) was also significantly predicted by age, gender, diabe-

tes, hypertension, pulmonary conditions, infection, and home location for the patient [22]. Lu

et al. had developed predictive models using extreme gradient boosting methods in order to

assess the probability of nonroutine discharge following unicompartmental knee arthroplasty,

and they had also noted that length of stay, age, gender, and diabetes were significant predic-

tors for this adverse outcome [23]. Based on our literature review, we identified the following

unique significant predictors during our analyses for the outcome of discharge disposition–

admission month, year, health insurance provider, race, obesity, and any post-surgical compli-

cations. The variable for any post-surgical complications includes diagnosis codes for a wide

range of common complications (Table II, Appendix), and clinicians could potentially benefit

from taking these various complications under consideration while assessing the probability of

the patient requiring extended care upon discharge. Predictors such as race and health insur-

ance status are important proxy indicators for socioeconomic status, and provide an avenue

for future research in order to better understand the inequities in healthcare outcomes such as

the patient disposition after discharge can be affected by these variables.

For the outcome of blood transfusion, the most significant predictors in the GBM model

were–admission month, year, patient location, deficiency anemias, median household income

for patient’s zip code, age group, race, sex, health insurance, fluid and electrolyte disorders,

Fig 4. Diagrammatic representation of the patient-level predictions obtained using the GBM predictive models.

https://doi.org/10.1371/journal.pone.0263897.g004
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hypertension, obesity, diabetes (uncomplicated), control/ownership of hospital, and hospital

bed size. Frisch et al. have previously developed predictive models for predicting blood trans-

fusion following total hip and knee arthroplasty and the common significant predictors that

they had noted are as follows–gender, age, and BMI (indicator for obesity) [24]. Yoshihara and

Yoneoka had also assessed the significant predictors for allogenic blood transfusion (ALBT)

following total hip and knee arthroplasty, and reported the following similar significant predic-

tors for ALBT after TKA–age group, gender, anemia, insurance status, and hospital ownership

[25]. In our study, we found that the significant predictor variables for admission month,

patient location, patient income, race, fluid and electrolyte disorders, hypertension, diabetes,

and hospital bed size had previously not been reported to be important indicators for the out-

come of blood transfusion among patients undergoing TKA, based on our review of existing

literature. Similar to the outcome of discharge disposition, we observed that certain represen-

tative indicators of the socioeconomic status of the patient–patient location, patient income,

and race–play an important role in the prediction of this adverse outcome. Taking these vari-

ables into consideration while designing treatment plans can help improve patient outcomes

following TKA and other orthopedic procedures in a more equitable manner. The other

unique variables identified included certain patient comorbidities, and further clinical research

can help identify the biological mechanisms that cause patients with these comorbidities to

require blood transfusions following TKA.

The outcome variable for any post-surgical complications was generated using specific

diagnosis codes for this study, and there are no other studies for comparing the reported sig-

nificant predictors. The most significant predictors for this outcome were observed to be defi-

ciency anemias, blood transfusion, admission month, patient location, median household

income for patient’s zip code, fluid and electrolyte disorders, year, age group, race, health

insurance, sex, obesity, hypertension, coagulopathy, and chronic blood loss anemia. These

results indicate that comorbid conditions are likely to put the patient at a high risk of suffering

from various complications following TKA. Comorbidities that could cause substantial loss of

blood are especially relevant in predicting this outcome. In accordance with our previous

observations regarding the patient’s discharge disposition and blood transfusion following

TKA, proxy indicators for socioeconomic status–such as race and health insurance–play a sig-

nificant role in predicting any post-surgical complications as well. The results from all of the

three outcomes under investigation generally indicate that there are some common risk factors

for the adverse outcomes that can be applicable across different cohorts of patients, and can

therefore be accounted for during the process of designing the treatment plan for any patient

who is scheduled to undergo an orthopedic surgical procedure.

Using the GBM model, we also generated some patient-level predictions for the outcomes

under investigation. Patient records from the study dataset were used for these models and we

were able to successfully demonstrate the potential real-world utility of using the predictive

model as a tool for aiding in the decision-making process prior to conducting a TKA proce-

dure. Significant predictors, and their corresponding weightage in terms of their relevance to

the adverse outcome under investigation, can be generated for individual patients using the

final GBM model. Similar models could also be generated for other orthopedic surgical proce-

dures in order to assess specific outcomes for the patients on the basis of their clinical

importance.

One of the primary strengths of our study is making use of this large nationally representa-

tive healthcare dataset for training the predictive models, so that they can learn complex and

meaningful patterns not usually available in other datasets. However, the NIS database consists

of a moderate amount of missing data for a number of demographic variables which can, in

turn, affect the accuracy of predictive models being generated [26]. This is because ignoring
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missing data would introduce a certain degree of bias into the study results by affecting the

observed relationships between the predictor and outcome variables [27]. By conducting

SRMI in our study, we negate this effect of missing data on the study results and increase the

overall performance of the predictive models. Another important consideration while building

predictive models is to minimize the risk of overfitting. Overfitting is a common issue among

predictive models and occurs when the model tracks and “memorizes” the patterns that exist

in the training data, limiting their predictive abilities and inhibiting their generalization to the

test and other clinical datasets [28]. It can be identified by comparing the model performance

between the training and test datasets, and determining whether the model performance in the

test data is significantly worse than the training data. Our results indicate that there was mini-

mal overfitting in any of the predictive models.

One of the limitations of our study is that the final GBM based predictive model was not

externally validated using a separate dataset. External validation should ideally be conducted

using other large datasets (eg. Medicare or Medicaid data) so that the predictive power of the

final model can be demonstrated across different datasets; this was beyond the scope of this

study, but will be explored further in future research. Moreover, sufficient comparisons could

not be made between the three ML models and they had been observed to have very similar

performance, in terms of calibration and discrimination. This is partially because fine-tuning

the hyperparameters was not conducted extensively for the models during the course of this

study. The performance of ML models depends on how they are individually fine-tuned,

which is complicated enough to warrant a thorough investigation. Work is underway to com-

pare the performance of different ML models for prediction of surgical outcomes.

An additional limitation of this work is that we only performed feature selection for Logistic

Regression based on backward selection but not for the three Machine Learning models. How-

ever, as the Machine Learning models already outperformed Logistic Regression, had we con-

ducted feature selection for these models their performance would have been even better than

that of Logistic Regression. In other words, our reported findings will only be strengthened,

rather than weakened, by including feature selection. In our future work we plan to perform

extensive fine-tuning of our pipeline. Concretely, we will fine-tune data preprocessing includ-

ing conducting feature selection, feature engineering, dimensionality reduction. We will also

fine-tune the key hyperparameters of each model. The best setting of the fine-tuning will be

reported so as to provide good practices to researchers.

Conclusions

We achieved our objective of developing predictive models based on LR and ML-based meth-

ods, and further demonstrated the importance of previously unreported proxy indicators for

socioeconomic factors that can help predict the likelihood of patients experiencing adverse

outcomes after the TKA procedure. The final predictive model recommended for clinical

applications based on the comparative analysis conducted in our study was the GBM model.

In summary, ML-based methods have significant potential for their applicability in determin-

ing risk factors for patient cohorts undergoing orthopedic and other surgical procedures, and

should be highly recommended since they are readily available in major statistical software.

Prior knowledge of these factors can aid clinicians in making decisions with the most optimal

outcomes from the lens of both economic viability and patient-centered healthcare.
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