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Abstract: In-situ pH-sensitive cellulose fibers (IS-pH-SCF) were prepared by anchoring bromothymol
blue (BTB) onto cellulose fibers (CF) modified with hydroxypropyltriethylamine (HPTTL) groups.
Fourier transform infrared and X-ray photoelectron spectrum analyses demonstrated that the HPTTL
groups were grafted onto the CF. X-ray diffraction proved that cellulose I in the CF transformed into
cellulose II after quaternization. Scanning electron microscopy suggested that the quaternized CF
(QCF) surface was clean and uniformly ridged. The adsorption of BTB onto QCF was carried out
via batch adsorption experiments. A kinetic study illustrated that the adsorption was a spontaneous
process and described well by pseudo-second-order, Freundlich and Temkin isotherms. The activation
energy for the BTB adsorption onto QCF was 52.89 kJ/mol, which proved that the BTB adsorption
onto QCFs was chemically controlled. The pH response demonstrated that the IS-pH-SCF was highly
sensitive to pH, with an obvious color change for pH 4 to 8. The release tests showed that BTB was
anchored on QCFs and that no BTB was released. IS-pH-SCF has a potential use for indicating pH
changes in food.

Keywords: cellulose fiber; cationic modification; anchoring; bromothymol blue; in-situ pH-sensitive

1. Introduction

Foods are rich in nutrients and are the most basic materials for human survival. Food safety
is directly related to human physical health and life safety, and is critical to ensure both economic
and social stability. Food quality deteriorates because of moisture, light, microbial reproduction
during transportation, and storage. Food spoilage could lead to a reduction or loss of nutritional
value and even cause food poisoning, with a potential for great harm and significant economic losses.
Improvements in living standards have resulted in people paying increased attention to food safety.
The traditional food quality test is based on a chemical analysis, which requires the destruction of
foods, expensive analytical instruments, professional operators, and extended times [1]. Such analyses
are not always feasible because the detection is not readily accessible by the public. To overcome these
disadvantages, intelligent packaging materials and indicators have been favored by scholars for the
real-time detection of food quality [2]. In general, the spoilage of foods may be accompanied by pH
changes. For example, protein-rich foods (fish and pork, for example) release organic amines during the
spoilage, which results in an increase in pH [3]. Polysaccharide-rich foods release carbon dioxide and
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other acidic gases, which leads to a reduction in pH. In recent years, pH-sensitive sensors [4–10] and
pH-sensitive packaging films [11–14] have been reported. Synthetic dyes are highly sensitive and have
obvious color changes for tiny pH changes, and this phenomenon has been used by many researchers.
A pH dye-based indicator, prepared by coating a mixed solution of bromothymol blue and methyl red
on a film that was prepared with nylon with linear low-density polyethylene, was applied to monitor
a golden drop (a premium dessert produced in Thailand), and proved that it can serve as a real-time
indicator for spoilage via color changes [15]. Lee [3] prepared a gas-freshness indicator composed
of bromothymol blue-phenol red, which was used to indicate the freshness of fish by obvious color
changes based on the quantity of volatile amines. Although synthetic dyes are much more sensitive to
pH changes, their inedibility makes them potentially harmful for human health when they migrate
from the matrices to food. Therefore, researchers have focused on natural pigments extracted from
fruits or vegetables [16–18] to prepare pH indicators or pH sensitive packaging materials [19–21].
Chen reported that a pH sensitive fabric dyed by using turmeric showed a significant color change
when the pH changed from neutral to alkaline [22]; however, no obvious color change resulted when
the pH changed from neutral to acidic. Ma [19] prepared an intelligent packaging film by incorporating
anthocyanins that were extracted from mulberry to monitor the putrefaction of fish. The color changed
to green when the fish was putrid. However, the color change was not sensitive or not sufficiently
accurate to indicate the inflection point from freshness to slight spoilage of the fish. As a result of their
chemical structures, natural pigments are not accurately sensitive to slight pH changes. To obtain
highly pH-sensitive fibers, pH sensitive synthetic dyes are required and migration must be prevented
via firm interactions. To our knowledge, no report exists on in-situ pH-sensitive cellulose fibers (CFs)
via the anchoring of pH-sensitive synthetic dyes.

Bromothymol blue (BTB) is a pH-sensitive synthetic dye that is used extensively in
indicators [23–25]. As shown in Figure 1, it is negatively charged in alkaline solution. Cellulose
fiber (CF) is a rich, renewable, biodegradable and non-toxic material composed of a linear chain of
β-(1→4)-linked D-glucopyranosyl units [26]. CF is insoluble in water and any other common organic
solvents [27]. It is a favorite carrier to anchor pH-sensitive synthetic dyes. However, OH-rich CF
cannot anchor BTB because the interactions between the molecules are too weak. Therefore, a cationic
modification is necessary for CF to anchor BTB in alkaline conditions through electrostatic attraction.
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In this study, CFs were positively charged via a cationic modification in which quaternary
ammonium groups were grafted onto cellulose molecules. In-situ pH-sensitive CFs (IS-pH-SCF)
were prepared by anchoring BTB onto quaternized CFs (QCF) in a NaOH solution. The QCF and
IS-pH-SCF were analyzed by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron
spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). QCF was tested
as an adsorbent for BTB from a NaOH solution. The effects of the QCF dosage and contact time were
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investigated. The kinetics and isotherms of the adsorption process were studied. The pH-sensitivity of
the IS-pH-SCF and the non-release of BTB were measured.

2. Materials and Methods

2.1. Materials

Bleached softwood kraft pulp was used as a cellulose fiber (CF) and offered by Henfeng Paper Co.,
Ltd. (Mudanjiang, China). Bromothymol blue (BTB) was supplied by the Guangfu Chemical Research
Institute (Tianjin, China). All other chemicals, including sodium hydroxide, epoxy chloropropane,
triethylamine, hydrochloric acid, absolute ethyl alcohol and buffer solutions (pH 4 to 8), were supplied
by Yongda Chemical Reagent Co., Ltd. (Tianjin, China). All chemicals were of analytical grade and
used without purification.

2.2. Preparation and Characterization of Quaternized Cellulose Fiber (QCF)

2.2.1. Preparation of the QCF

QCF was prepared according to the literature with slight modifications [28]. The CF was ground
to a powder with a size of 125~180 µm. The CF powder (5 g) and 125 mL of a NaOH solution (20% w/w)
were stirred at 500 rpm and 25 ◦C for 2 h. A NaOH solution (125 mL, 10% w/w) and 60 mL of epoxy
chloropropane were added into the flask after the solution had been removed by filtration. The mixture
was heated to 65 ◦C and stirred at 500 rpm for 7 h. 70 mL of triethylamine/absolute ethyl alcohol
solution (34% v/v) was added into the flask after a solid-liquid separation, and the mixture was stirred
at 500 rpm and 75 ◦C for 4 h. Absolute ethanol was used to wash the resulting product to remove the
unreacted triethylamine. Then, the product was washed successively with 0.1 M NaOH, 0.1 M HCl
and distilled water until it reached a pH of 7. The QCF was dried at 65 ◦C for 10 h.

2.2.2. Characterization of the QCF

The FTIR spectra of the CF and the QCF were measured by using a Nicolet 6700 spectrometer
(ThermoFischer, Waltham, MA, USA), and tests were conducted from 500 to 4000 cm−1 with a
resolution of 4 cm−1. An XPS analyzer with K-Alpha (Thermo, VGS, Waltham, MA, USA) was
employed to detect the X-ray photoelectron spectroscopy. The XRD patterns of the CF and the QCF
were acquired by using a D/MAX-2500 diffractometer (Cu-K α target, 40 kV, 30 mA) at 1200 W (Rigaku,
Tokyo, Japan). A Hitachi SU-70 microscope (Hitachi, Ibaraki, Japan) was employed to analyze the
surface morphology of the CF and the QCF. A thin layer of gold was deposited on the surface of the
samples before the observation.

2.3. Adsorption Experiments

The adsorption of BTB on the QCF in the dilute alkaline solution (0.1 M NaOH) and the effects
of both the QCF dosage and the adsorption time on the adsorption were investigated by batch
adsorption experiments. The standard curve of BTB in a 0.1 M NaOH solution was obtained by using
an ultraviolet–visible spectrophotometer (UV-2600, Shimadzu, Kyoto, Japan). For each adsorption
experiment, 50 mL of BTB/NaOH solution with 1000 mg/L and a certain amount of QCF were added
into a beaker under magnetic stirring of 200 rpm for different times until the adsorption reached
an equilibrium. The mixture was separated by using a benchtop high-speed centrifuge (TG16-WS,
Changsha, China) at 10,000 r/min for 6 min. Subsequently, the residual BTB/NaOH solution was
diluted 50 times with a 0.1 M NaOH solution, and then the absorbance was measured with the
ultraviolet–visible spectrophotometer at 615 nm. The concentration of BTB was calculated according
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to the standard curve. The adsorption capacity at time t (qt, mg/g) and the equilibrium (qe, mg/g) are
obtained from the following equations:

qe = [(C0 − Ce)/m] × V (1)

qt = [(C0 − Ct)/m] × V (2)

where C0, Ce and Ct (mg/L) denote the concentration of the BTB/NaOH solution at initial, equilibrium
and t (min), respectively. V (L) represents the volume of BTB/NaOH solution and m (g) presents the
QCF dosage.

2.4. Adsorption Kinetics and Isotherms

2.4.1. Kinetic Models

The adsorption experiments were performed by magnetically stirring 100 mg of QCF and
50 mL of BTB/NaOH solution with 1000 mg/L at 200 rpm for different time intervals at various
temperatures to explore the kinetics. The adsorption process was analyzed via pseudo-first-order and
pseudo-second-order models [29]. In general, the pseudo-first-order is used to elaborate the initial
stage of the adsorption process and can be shown as:

ln(qe − qt) = lnqe1 − K1t (3)

where qe and qt (mg/g) indicate the quality of BTB adsorbed onto the QCF at equilibrium and t
(min), respectively. The qe1 (mg/g) denotes the theoretical value of BTB adsorbed onto the QCF at
equilibrium, and K1 (1/min) represents the rate constant.

The pseudo-second-order model describes the whole process of the adsorption and conforms to
the mechanism of chemical adsorption [30]. The model can be matched by the following equation:

t/qt = 1/(K2qe2
2) + t/qe2 (4)

where qe2 (mg/g) denotes the theoretical quality of BTB adsorbed onto the adsorbent at equilibrium,
and qt (mg/g) is denotes the theoretical quality of BTB adsorbed onto the adsorbent at time t (min).
The K2 (g/mg min) represents the rate constant.

The activation energy Ea [31] of the adsorption can be calculated by using the following equation:

lnK2 = lnA − Ea/(RT) (5)

where A represents the Arrhenius factor.

2.4.2. Isotherm Models

50 mL of a BTB/NaOH solution with 1000 mg/L and a certain quality (100, 200, 300, 400,
500, or 600 mg) of QCF were stirred in a magnetic stirring water bath at 200 rpm for 4 h at
different temperatures (303.15, 313.15, or 323.15 K) to study the adsorption isotherm. Langmuir [32],
Freundlich [33] and Temkin [34] isotherms were applied to analyze the experiment data and to help
understand the adsorption process. The adsorption isotherm models can be represented as:

Ce/qe = 1/(KLqm) + Ce/qm (6)

qe = Kf × Ce
1/n (7)

qe = A + B × lnCe (8)
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where qm (mg/g) is the maximum adsorption capacity, qe (mg/g) is the equilibrium adsorption
capacity, Ce (mg/L) represents the concentration of the BTB/NaOH solution at equilibrium, and KL

(L/mg) denotes the Langmuir adsorption constant. Kf denotes the Freundlich constant and n denotes
the heterogeneity factor. A and B are the Temkin dasorption isothermal constants [35].

2.5. Preparation and Characterization of In-Situ pH-Sensitive Cellulose Fibers (IS-pH-SCF)

2.5.1. Preparation of IS-pH-SCF

The QCF (2 g) and 200 mL of a BTB/NaOH solution (1000 mg/L) were added into a beaker and
stirred in a magnetic stirring water bath at 200 rpm for 4 h at 50 ◦C. The mixture was separated via
filtration with a 200 mesh filter cloth. The isolated solids were soaked in distilled water and stirred at
~500 rpm for 5 min, followed by a vacuum filtration, and this was repeated 5 times until the filtrate
was colorless and neutral. 0.1 g of IS-pH-SCFs and distilled water (50 mL) were stirred at 500 rpm to
disperse the IS-pH-SCFs uniformly. Following this, the suspension was added slowly into the Buchner
funnel equipped with two layers of filter paper and vacuum filtration was performed at 0.08 MPa.
Circular IS-pH-SCF felts were obtained and dried at 65 ◦C.

2.5.2. Characterization of IS-pH-SCF

The FTIR analysis and SEM observation of IS-pH-SCF were conducted by using the same methods
as those for QCF.

2.6. pH Response of IS-pH-SCF

The circular pieces of IS-pH-SCF felts were cut into rectangles (2 cm × 2 cm). Individual
buffered solutions (5 mL, pH = 4, 5, 6, 7, and 8) were placed in glass culture dishes (marked 4
to 8). The IS-pH-SCF felt was soaked in a buffer solution for 30 s, then removed with tweezers and
placed on several layers of filter paper. A portable colorimeter (Xrite2600d, X-rite, Grand Rapids, MI,
USA) was employed to analyze the color of the IS-pH-SCF rectangles, including L (luminosity), a
(carmine-green) and b (yellow-blue). Five detections were performed for each IS-pH-SCF. The total
chromatic difference (∆E) was obtained as:

∆E =

√
(L− L0)

2 + (a− a0)
2 + (b− b0)

2 (9)

where L0, a0 and b0 are chromatic values of the IS-pH-SCF. L, and a and b are chromatic parameters of
the IS-pH-SCF at different pH values.

2.7. Release of BTB from IS-pH-SCF

A piece of the IS-pH-SCF was soaked in distilled water (pH = 7) for 24 h, before the IS-pH-SCF was
taken out with a pair of tweezers. Subsequently, the color of the resulting distilled water was observed
after the very small fibers were separated by centrifugation. An HCl solution (0.1 M) was dropped on
an IS-pH-SCF felt on a piece of filter paper, and the color change of the IS-pH-SCF was observed. After
5 min, the IS-pH-SCF was removed and the color of the original location where IS-pH-SCF had been
was observed before and after drying. In addition, the experiments were also conducted by using a
NaOH solution (0.1 M).

3. Results and Discussion

3.1. Analyses of the QCF

Figure 2A shows the FTIR spectra of the CF and the QCF. The band from 3695 to 2978 cm−1

is the O–H stretching vibration, and the band at ~2906 cm−1 corresponds to the C–H stretching
of the –CH2– groups. The bands at ~1158, 1098, 1057, and 1030 cm−1 originated from the C–O–C
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stretching from the glycosidic bonds of the cellulose molecule [36]. After quaternization, the O–H
stretching band weakened and moved to a high wavenumber, and a new band occurred at ~1460
cm−1, corresponding to the C–N stretching vibration of –N+(C2H5)3 [37]. The changes showed
that the –N+(C2H5)3 has been grafted onto the cellulose skeleton. In the XPS spectrum (Figure 2B),
peaks at 398.81 and 401.26 eV showed that nitrogen was present in the QCF in ternary and quaternary
states [38,39], respectively. The former is likely to be an admixture of trimethylamine in the QCF
preparation. The total nitrogen content of the QCF was 1.73% from the XPS analysis. The XPS results
further confirmed the FTIR analysis.
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Figure 2. (A) FTIR spectra of CF and QCF; (B) N1s spectrum of QCF; (C) XRD patterns of CF and QCF;
(D) SEM photographs of CF ((a) ×500, (b) ×5000) and QCF ((c) ×500, (d) ×5000); and (E) the chemical
structure of QCF.

Figure 2C exhibits the XRD patterns of the CF and the QCF. The CF showed a typical cellulose I
structure including peaks at 15.62◦, 22.62◦ and 34.08◦. Compared with the CF, the characteristic peaks
disappeared and a new peak at 20.32◦ appeared in the XRD pattern of the QCF, which indicated a
typical cellulose II structure, and showed that intermolecular and intramolecular hydrogen bonds of
CF were destroyed during quaternization. The SEM photographs of the CF and the QCF are exhibited
in Figure 2D. The CF fibers [Figure 2 (Da,Db)] were ribbon-like with impurities, showing a rough and
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wrinkled surface. After quaternization, the impurities disappeared and the surface was uniformly
ridged [Figure 2 (Dc,Dd)]. The chemical structure of the QCF can be described as shown in Figure 2E
based on the above analysis.

3.2. Effect of Contact Time

The effects of the adsorption time on the BTB adsorption onto the QCF at 303.15, 313.15 and
323.15 K are exhibited in Figure 3a. The entire adsorption process can be distributed into three sections:
a rapid adsorption phase (0~60 min) which shows a liner growth trend; a slow adsorption phase
(60~90 min) and an equilibrium stage from 120 to 240 min. The increase in the adsorption rate during
the primary stage may have resulted from the higher force and sufficient availability of active sites for
BTB to transfer to the QCF. The amount of active sites decreased rapidly with an increase in contact
time, which resulted in a reduction in the adsorption rate. The equilibrium adsorption capability
increased as the temperature increased, which demonstrated that a higher temperature benefited the
BTB adsorption on the QCF.
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3.3. Effect of Adsorbent Dosage

As can be seen from Figure 3b, the equilibrium adsorption capacity decreased with an increase
of the QCF dosage, showing a liner reduction. The increased quality of the QCF could provide
more active sites for BTB adsorption, and the adsorption reached saturation with a small amount
of the QCF. The equilibrium adsorption capacity gradually increased as the temperature increased,
which demonstrated that a high temperature promoted the adsorption.

3.4. Adsorption Kinetics

Pseudo-first-order [40] and pseudo-second-order [41] models were applied to explore the
adsorption process. The fitted curves and parameters of the two models are shown in Figure 4
and Table 1. The linearity of the pseudo-first-order model was poor, and the difference between the
calculated qe (qe,cal) and experimental qe (qe,exp) values was large. This disparity showed that the
adsorption of BTB on the QCF cannot be accurately described with the pseudo-first-order kinetic
model. The R2 of the pseudo-second-order at three experimental temperatures were 0.998, 0.997 and
0.997, which indicated excellent linearity. The difference between the calculated qe (qe,cal) and the
experimental qe (qe,exp) is smaller. Therefore, the pseudo-second-order can describe the adsorption
process well.
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Table 1. Kinetic parameters of the adsorption BTB onto QCF.

Parameters
Temperature (K)

303.15 313.15 323.15

qe,exp (mg/g) 21.016 24.661 27.549
Pseudo-first-order

K1 (min−1) 0.034 0.045 0.049
qe,cal (mg/g) 28.703 28.022 25.972

R2 0.975 0.979 0.975
Pseudo-second-order
K2 (mg·g−1·min−1) 0.0032 0.0026 0.0017

qe,cal (mg/g) 21.459 26.316 28.303
R2 0.998 0.997 0.997

Ea (kJ·mol−1) 52.89

The activation energy of adsorption was calculated from the Arrhenius equation. In general,
the values of the activation energy can be applied to distinguish whether the adsorption is physically
(4~40 kJ/mol) or chemically controlled (higher than 40 kJ/mol) [42]. The activation energy for the BTB
adsorption onto the QCF was 52.89 kJ/mol, which proved that the BTB adsorption was chemically
controlled. The interaction between the QCF and BTB was very strong and the strategy for anchoring
BTB on cationic cellulose was successful.

3.5. Adsorption Isotherms

Adsorption isotherms can tell us how the adsorption conducts and help us analyze the interaction
between the adsorbate and the adsorbent [43,44]. Langmuir, Freundlich and Temkin isotherms were
tested to investigate the best description for the BTB sorption equilibrium, and to help understand
the adsorption mechanism. The fitting curves and parameters of each isotherm are listed in Figure 5
and Table 2. The parameters of the Langmuir isotherm showed that the values of qm and KL are
negative, which indicated that the adsorption of BTB onto the QCF did not fit the Langmuir model
well. However, the values of the correlation coefficient (R2) were higher than 0.96 for the Freundlich
and Temkin isotherm models, which described the BTB adsorption onto the QCF well.

3.6. Analyses of IS-pH-SCF

The SEM photographs in Figure 6A show that the surface of IS-pH-SCF was similar to that of
the QCF due to only ~4.0% of BTB being adsorbed on the surface, which resulted in little effect. As
shown in Figure 6B, the FTIR spectra of the QCF and IS-pH-SCF were very similar. For the QCF,
the band at ~3335 cm−1 was ascribed to the O–H. The band at ~2880 cm−1 was attributed to the C–H
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for –CH2– groups. The bands at ~1158, 1098, 1057, and 1030 cm−1 corresponded to the C–O–C from
the glycosidic bonds of the cellulose molecule. After adsorption, the strength of the O–H band was
enhanced and moved to a low wavenumber. The band at 2880 cm−1 became stronger, which indicated
that the new –CH2– groups had been introduced into the QCF structure. A new peak at ~1330 cm−1

indicated the S=O stretching, and showed that the BTB had been included in the IS-pH-SCF structure.
From the adsorption experiments, the maximum adsorption capacity was 38 mg/g for 1000 mg/L of
BTB/NaOH solution and a dosage of 100 mg for 4 h. The BTB content of IS-pH-SCF is 0.038% (w/w).

Polymers 2018, 10, x FOR PEER REVIEW  8 of 13 

 

Table 1. Kinetic parameters of the adsorption BTB onto QCF. 

Parameters 
Temperature (K) 

303.15 313.15 323.15 
qe,exp (mg/g) 21.016 24.661 27.549 

Pseudo-first-order    
K1 (min−1) 0.034 0.045 0.049 

qe,cal (mg/g) 28.703 28.022 25.972 
R2 0.975 0.979 0.975 

Pseudo-second-order    
K2 (mg·g−1·min−1) 0.0032 0.0026 0.0017 

qe,cal (mg/g) 21.459 26.316 28.303 
R2 0.998 0.997 0.997 

Ea (kJ·mol−1)  52.89  

3.5. Adsorption Isotherms 

Adsorption isotherms can tell us how the adsorption conducts and help us analyze the 
interaction between the adsorbate and the adsorbent [43,44]. Langmuir, Freundlich and Temkin 
isotherms were tested to investigate the best description for the BTB sorption equilibrium, and to 
help understand the adsorption mechanism. The fitting curves and parameters of each isotherm are 
listed in Figure 5 and Table 2. The parameters of the Langmuir isotherm showed that the values of 
qm and KL are negative, which indicated that the adsorption of BTB onto the QCF did not fit the 
Langmuir model well. However, the values of the correlation coefficient (R2) were higher than 0.96 
for the Freundlich and Temkin isotherm models, which described the BTB adsorption onto the QCF 
well.  

 
Figure 5. Fitting curves of (a) Langmuir; (b) Freundlich; and (c) Temkin isotherms. 

Table 2. Isotherm parameters of the adsorption BTB onto QCF. 

Parameters 
Temperature (K) 

303.15 313.15 323.15 
Langmuir    

KL (L·mg−1 × 10−4) −7.039 −0.162 −3.922 
qm (mg/g) −13.514 −37.037 −62.893 

R2 0.992 0.892 0.770 
Freundlich    

K2 ([mg1 − (1/n)/(g·L−1/n]) 286.00 135.64 90.56 
1/n 0.363 0.554 0.649 
R2 0.995 0.981 0.967 

Temkin    
A 6.442 6.195 6.075 
B 0.015 0.020 0.021 
R2 0.980 0.995 0.982 
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Table 2. Isotherm parameters of the adsorption BTB onto QCF.

Parameters
Temperature (K)

303.15 313.15 323.15

Langmuir
KL (L·mg−1 × 10−4) −7.039 −0.162 −3.922

qm (mg/g) −13.514 −37.037 −62.893
R2 0.992 0.892 0.770

Freundlich
K2

([mg1 − (1/n)/(g·L−1/n]) 286.00 135.64 90.56

1/n 0.363 0.554 0.649
R2 0.995 0.981 0.967

Temkin
A 6.442 6.195 6.075
B 0.015 0.020 0.021

R2 0.980 0.995 0.982
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3.7. pH Response of IS-pH-SCF

The response of the IS-pH-SCF at different pH values was shown in Table 3. The IS-pH-SCF color
changed obviously when exposed to buffer solutions with a pH range from 4 to 8. The IS-pH-SCF was
orange at pH 4, reddish-brown at pH 5, yellow-green at pH 6, purplish-blue at pH 7, and dark-blue at
pH 8. The buffer solution also seems to exhibit a corresponding color; the reason is that the IS-pH-SCF
felt was made of short fibers (~150 µm) whose intermolecular interactions are particularly weak and
which will disperse once immersed in a buffer solution. The color parameters of the IS-pH-SCF were
also tested for responses in different pH buffer solutions, as shown in Table 3. The b value of the
IS-pH-SCF decreased rapidly from 72.510 to −0.152, which suggested that the color changed from
yellow to blue. The values of a decreased significantly with an increase in pH, which indicated that the
IS-pH-SCF changed from red to green. The L values exhibited a decreasing tend, which showed that
the lightness of IS-pH-SCF decreased gradually with an increase in pH. These results agreed with the
photographs of the IS-pH-SCF in Table 3. In general, color changes could be detected with the naked
eye when the total color change (∆E) exceeded 5 [45]. The ∆E at each pH exceeded 5, which showed
that the IS-pH-SCF was highly sensitive to pH values from 4 to 8.

Table 3. pH response of IS-pH-SCF under pH from 4 to 8.

pH L a b ∆E Photos

4 42.228 ± 1.569 48.675 ± 2.211 72.510 ± 2.716 104.503 ± 2.026
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3.8. Release of BTB from IS-pH-SCF

The release of BTB from IS-pH-SCF in distilled water and dropping acid or alkaline solutions
was investigated. As shown in Figure 7a, the color of the IS-pH-SCF did not change and the resulting
distilled water after centrifugation was still colorless after the IS-pH-SCF was soaked for 24 h,
which demonstrated that no BTB escaped from the fibers into distilled water. The IS-pH-SCF turned
orange after making contact with the HCl solution. Subsequently, the color returned to the initial
dark-blue immediately after a NaOH solution was dropped on the color-changed part. The filter paper
under the IS-pH-SCF was colorless, as shown in Figure 7b, which further indicated that no BTB was
released from the IS-pH-SCF. The results show that BTB successfully anchored on cationic cellulose
fibers and that the fibers loading BTB are in-situ sensitive to pH change.
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4. Conclusions

IS-pH-SCF was prepared by anchoring BTB molecules on a cationic cellulose fiber through
adsorption. It was proven by FTIR and XPS analyses that the cationic modification by grafting
hydroxypropyltriethylamine groups onto CFs was completed. SEM observations showed that the
QCF surface became uniformly wrinkled. QCF was used as an adsorbent to anchor BTB in the
alkaline solution. A higher temperature favored BTB adsorption onto the QCF. The maximum
adsorption capacity was 38 mg/g for 1000 mg/L of BTB/NaOH solution and a dosage of 100 mg
for 4 h. The adsorption of BTB on the QCF followed pseudo-second-order kinetics, and Freundlich
and Temkin isotherms. The IS-pH-SCF exhibited a different color for each pH value from 4 to 8.
Simultaneously, the BTB was not released during the pH response, which conformed that the BTB
was anchored firmly on the cationic cellulose fiber. This study provides a new path for fabricating a
pH-sensitive fiber that could be used to monitor the freshness of food without any pollution.
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