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Cellular senescence is a complex biological process that leads to irreversible cell-cycle arrest. Various extrinsic and intrinsic insults
are associated with the onset of cellular senescence and frequently accompany genomic or epigenomic alterations. Cellular
senescence is believed to contribute to tumor suppression, immune response, and tissue repair as well as aging and age-related
diseases. Long noncoding RNAs (lncRNAs) are >200 nucleotides long, poorly conserved, and transcribed in a manner similar to
that of mRNAs. They are tightly regulated during various cellular and physiological processes. Although many lncRNAs and
their functional roles are still undescribed, the importance of lncRNAs in a variety of biological processes is widely recognized.
RNA-binding proteins (RBPs) have a pivotal role in posttranscriptional regulation as well as in mRNA transport, storage,
turnover, and translation. RBPs interact with mRNAs, other RBPs, and noncoding RNAs (ncRNAs) including lncRNAs, and
they are involved in the regulation of a broad spectrum of cellular processes. Like other cell fate regulators, lncRNAs and RBPs,
separately or cooperatively, are implicated in initiation and maintenance of cellular senescence, aging, and age-related diseases.
Here, we review the current understanding of both lncRNAs and RBPs and their association with oxidative stress, senescence,
and age-related diseases.

1. Introduction

Cellular senescence is a biological process in which cells cease
growth permanently. Hayflick and Moorehead firstly
described replicative senescence (RS), which is an exhaustion
of replicative potential in human diploid fibroblasts after
continuous cultivation [1, 2]. More than a half-century from
that first description that early concept of cellular senescence
has been remarkably extended in recent days. RS can be con-
sidered a defense mechanism that limits proliferation poten-
tial of older cells containing irreparable and dangerous
mutations. In contrast to RS, which is driven by telomere
shortening, cells can prematurely undergo senescence in
response to diverse forms of cellular stresses. Stress-induced
cellular senescence (SIPS) can be triggered by DNA damage,
oncogenic mutations, strong mitotic signals, genomic insta-
bility, lack of nutrients, improper cell contacts, and many
other factors [3]. An excess of reactive oxygen species

(ROS) specifically participates in induction and maintenance
of cellular senescence. ROS including superoxide anion,
hydrogen peroxide, and hydroxyl radicals are inevitably gen-
erated as byproducts of aerobic metabolism and are also
derived from radiation, chemotherapeutic agents, carcino-
gens, and other intrinsic and extrinsic factors. Physiological
ROS level regulates signal transduction, gene expression,
and proliferation. However, ROS shifts from physiological
to pathophysiological level are referred to as oxidative stress.
Oxidative stress results in damage to lipids, proteins, and
nuclear and mitochondrial DNA and is involved in various
changes, such as epigenetic modification and signaling path-
ways, finally resulting in cellular senescence [4]. Cellular
senescence programs are induced by persistent activation of
the p53/p21 stress response pathway and/or the RB/p16
tumor suppressor pathway. Senescent cells are characterized
by a variety of phenotypes including enlarged and flattened
morphology, senescence-associated β-galactosidase (SA-β-
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Gal) activity, formation of senescence-associated heterochro-
matin foci (SAHF), and altered gene expression and protein
processing [5]. In the last decade, many research groups have
demonstrated that anticancer drugs and ionizing radiation
can effectively induce SIPS in cancer cells in vitro and
in vivo [6]. Currently, in accord with the role of
senescence-associated secretory phenotypes (SASP) in tumor
prevention, therapy-induced senescence is considered a pow-
erful strategy for cancer treatment [7]. Although senescent
cells irreversibly lose their dividing capability, they are meta-
bolically active and secrete a myriad of SASP-related factors
including cytokines, chemokines, growth factors, and prote-
ases [1]. SASP can influence multiple facets of tissue micro-
environments and contribute to the inflammatory response
and many other aging phenotypes. Since cellular senescence
can potentially contribute to various physiological and path-
ological aging processes, cellular senescence is an important
hallmark of human aging and an attractive target for thera-
peutic exploitation [6–10]. Aging is the gradual deterioration
of the physical, mental, and biological state of an organism
with time, eventually resulting in increased vulnerability to
death. Moreover, aging is the irreversible loss of physiological
integrity and the major risk factor in various age-related dis-
eases such as neurodegenerative diseases, immune response,
metabolic diseases, muscle dysfunction, atherosclerosis, and
cataract. Various factors and processes have been implicated
in the initiation, regulation, and progression of the aging pro-
cess. An “oxidative stress theory of aging” was proposed long
ago, and oxidative stress is primarily associated with cellular
senescence and aging. Several studies have shown that tran-
scriptional events are implicated in the regulation of gene
expression during oxidative stress responses, cellular senes-
cence, and the pathogenesis of age-related diseases [11–14].
Activation of transcriptional factors such as p53, NF-κB,
HIF-1α, CEBP, STAT, and E2F1 governs mRNA expression
via promoter activation, microRNA induction, and epige-
netic regulation in senescence, aging, and age-related disease
[11]. Schematic relationships among DNA damage and oxi-
dative stress, cellular senescence, and age-related diseases
are shown in Figure 1. Herein, we revisit current knowledge
of the mechanistic, functional, and pathological roles of long
noncoding RNAs (lncRNAs) and RNA-binding proteins
(RBPs) that are primarily related to DNA damage, oxidative
stress, cellular senescence, aging, and age-related diseases. In
this review, we will not describe lncRNAs and RBPs associ-
ated with telomeres and cancer because those topics have
already been extensively introduced in other reviews [15–18].

2. Long Noncoding RNAs

The lncRNAs are transcripts more than 200 nucleotide long
that have no protein-coding potential. Moreover, they are
poorly conserved, transcribed from the intergenic and intro-
nic regions of genome primarily by polymerase II, 5′methyl-
capped, and polyadenylated in manner similar to that of
mRNAs [16]. The lncRNAs modulate gene expression at all
regulation levels: transcriptional, posttranscriptional, trans-
lational, and posttranslation. They can regulate gene expres-
sion via interaction with chromatin modifiers, RBPs, DNA,

and RNA [15]. To date, many lncRNAs have been character-
ized. Most of those are nuclear localized and act as enhancer
RNAs (eRNAs), chromatin modifiers via recruitment of var-
ious DNA methyltransferases, and histone modifiers via
Polycomb repressive complexes or histone methyltransfer-
ases [16]. Some lncRNAs are transported to the cytoplasm
and regulate translation or mRNA stability. Moreover,
lncRNAs affect key cellular processes such as proliferation,
differentiation, quiescence, senescence, stress and immune
response, and many other cellular functions related to the
biology of aging [19].

2.1. DNA Damage Response and Oxidative Stress

2.1.1. LincRNA-p21. LincRNA-p21 is 3.1 kb long and is tran-
scribed from the opposite strand to p21 (CDKN1A) in a p53-
dependent manner [20]. LincRNA-p21, which is also induced
by hypoxia and/or hypoxia inducible factor-1α (HIF-1α), is
able to bind HIF-1α and VHL, and it disrupts the VHL–
HIF-1α interaction. This disassociation attenuates VHL-
mediated HIF-1α ubiquitination and causes HIF-1α accumu-
lation. These results indicate a positive feedback loop
between HIF-1α and lincRNA-p21 under hypoxia [21]. In
addition, LincRNA-p21 is highly inducible by UVB through
a p53-dependent pathway and plays key role in the UVB-
induced apoptotic pathway [22].

2.1.2. LincRNA-RoR. LincRNA-RoR, a 2.6 kb long transcript,
was first described as having potentially important functions
in embryonic stem cells and induced pluripotent stem cells
(iPSCs) [19]. LincRNA-RoR regulates genes involved in the
p53 response, such as responses to oxidative stress and
DNA damage [23]. Depletion of p53 can partially rescue
the apoptotic phenotype by ablation of lincRNA-RoR.
LincRNA-RoR dramatically represses DNA damage-induced
p53 compared to that in unstressed cells. Depletion of
lincRNA-RoR did not regulate p53 mRNA levels, suggesting
posttranscriptional regulation of p53. Mechanistically,
lincRNA-RoR has a 28-base heterogeneous nuclear ribonu-
cleoprotein I- (hnRNP I-) binding motif and directly inter-
acts with phosphorylated hnRNP I in the cytoplasm. The
interaction between lincRNA-RoR and phosphorylated
hnRNP I directly represses p53 translation and results in
the modulation of cell-cycle progression and apoptosis. Thus,
lincRNA-RoR and p53 act within an autoregulatory feedback
loop in response to cellular stress [24]. A recent study
revealed that lincRNA-RoR can epigenetically regulate the
expression of TESC by recruiting G9A methyltransferase in
the TESC promoter [25].

2.1.3. Pint. Pint (p53-induced noncoding transcript), previ-
ously named lincRNA-Mkln1, has highly conserved canoni-
cal p53-binding motifs in the promoter and is a
transcriptional target of p53 [20]. Pint is a nuclear lincRNA
and is transcribed from an intergenic region on mouse chro-
mosome 6. Pint has three p53 response elements and is
directly regulated by p53 upon DNA damage [26]. Depletion
of Pint significantly decreases cell proliferation, and overex-
pression of Pint conversely increases cell growth. Pint
directly interacts with Polycomb repressive complex 2
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(PRC2) and represses expression of PRC2 targeting genes
via H3K27 trimethylation. PINT, the pint human ortholog,
is also regulated by p53. However, overexpressed PINT
diminishes tumor cell proliferation, indicating both anal-
ogy and difference between murine Pint and human
ortholog PINT [26].

2.1.4. PANDA. To detect functional noncoding RNAs
(ncRNAs) in the regulatory region of human cell-cycle
genes, ultrahigh-density array fabrication was performed

and the lncRNA PANDA (P21-associated ncRNA DNA
damage-activated) was identified at the CDKN1A locus
[27]. PANDA is specifically induced by DNA damage in a
p53-dependent manner. PANDA is a 5′-capped, polyadeny-
lated lncRNA located approximately 4.5 kb upstream of the
CDKN1A transcriptional start site. In human fibroblasts
treated with doxorubicin, PANDA prevents NF-YA activa-
tion, through its association with NF-YA, finally suppressing
transcription of proapoptotic genes. Thus, PANDA induced
by DNA damage impedes apoptosis through recruitment
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of NF-YA [27]. Another study reported that PANDA can
stabilize p53 proteins in response to DNA damage [28]. In
addition, it was revealed that silencing of PANDA causes
G1 arrest via an increase in the mRNA level of cyclin-
dependent kinase inhibitor p18 [29].

2.1.5. LncRNA-JADE. LncRNA-JADE is induced by ATM-
NF-кB signaling and is mainly localized in the nucleus in
the DNA damage response (DDR) [30]. In response to
DDR, increased lncRNA-JADE interacts with breast cancer
type 1 susceptibility protein (Brca1) and induces expression
of Jade1, a major component of human acetylase binding to
ORC 1 (HBO1) histone acetylation complex. Consequently,
depletion of lncRNA-JADE renders sensitivity to DNA dam-
aging drugs through the functional link between DDR and
histone H4 acetylation in the DDR. [30].

2.1.6. H19. H19 was first described as an imprinted ncRNA
transcript at the Igf2 locus. A number of studies have
reported that H19 is upregulated in both primary and meta-
static tumors and is closely involved in migration, angiogene-
sis, and inflammatory diseases [31]. HIF-1α and p53 are
involved in the upregulation of H19 in hypoxic cancer cells
[32]. Recently, it was demonstrated thatH19 expression is ele-
vated under hypoxic conditions in mesenchymal stem cells
[33]. In addition, overexpression of H19 in diabetic rats can
attenuate oxidative stress, inflammation, and apoptosis [34].

2.1.7. ANRIL. ANRIL (antisense noncoding RNA in the INK
locus) is transcribed in the antisense direction to the INK4B-
ARF-INK4A locus and is transcriptionally upregulated by
the transcription factor E2F1 in an ATM-dependent manner
after DNA damage. Such elevated levels of ANRIL suppress
the expression of INK4A-ARF-INK4B in the late-DDR stage,
allowing negative feedback to the DDR. Thus, ANRIL helps
the cell to return to a normal status at the completion of
DNA repair [35].

2.1.8. LncRNA-LET. LncRNA-LET (lncRNA low expression
in tumor) transcripts are underexpressed in tumor tissues
compared to their expression in paired nontumor tissues
[36]. Moreover, LncRNA-LET is downregulated by hypoxia-
induced histone deacetylase 3 (HDAC3) under hypoxic con-
ditions. LncRNA-LET is associated with degradation of
nuclear factor of activated T cells 90 kDa (NF90) protein
via the regulation of ubiquitin-proteasome pathway. Since
NF90 stabilizesHIF-1αmRNAwithout altering HIF-1α tran-
scriptional activity, lncRNA-LET finally decreases HIF-1α
stability due to its association with NF90. These findings
illustrate that lncRNA-LET could be a key regulator of
hypoxia signaling [36].

2.1.9. LINK-A. LINK-A (long intergenic noncoding RNA for
kinase activation) is 1.5 kb long and mainly localized in the
cytoplasm [37]. LINK-A facilitates breast tumor kinase
(BRK) activation through the recruitment of BRK to the
EGFR :GPNMB heterodimeric complex upon HB-EGF stim-
ulation. Consequently, activated BRK induces phosphoryla-
tion of HIF-1α at Tyr565 and inhibits hydroxylation of
HIF-1α, finally resulting in HIF-1α stabilization. In addition,

LINK-A interacts with leucine-rich repeat kinase 2 (LRRK2)
and enhances phosphorylation of HIF-1α at Ser797. Phos-
phorylation of Ser797 increases transcriptional activation of
HIF-1α via HIF-1α–p300 interaction. These events illustrate
the magnitude and diversity of cytoplasmic lncRNA LINK-A
in signal transduction related to HIF-1α under normoxic
conditions [37].

2.2. Cellular Senescence and Aging

2.2.1. 7SL. 7SL is a 300 bp long transcript and an RNA com-
ponent of signal recognition proteins (SRP) [38]. 7SL is
widely upregulated in cancer tissues and involved in cell pro-
liferation. 7SL decreases p53 translation and accumulation by
interacting with the 3′-untranslated region (3′-UTR) of TP53
mRNA, which encodes tumor suppressor p53. Depletion of
7SL increases the occupancy of HuR to TP53 mRNA and
p53 production. 7SL-depleted cells undergo cellular senes-
cence and autophagy, indicating that 7SL promotes cell
growth via p53 suppression [39].

2.2.2. HOTAIR. HOTAIR (HOX antisense intergenic RNA)
was first identified as HOX lncRNA located in the HOXC
locus through transcriptomic analyses of HOX loci [40]. This
antisense lncRNA increases the occupancy of Suz12 on the
HOXD locus and silences HOXD locus genes by changing
the chromatin structure [40]. HOTAIR enhances cancer
progression and malignancy by leading to altered H3K27
methylation due to retargeting of PRC2 [41]. Depletion of
HOTAIR induces cell-cycle arrest in various cancer types.
In addition, HOTAIR can contribute to cellular senescence
via a positive feedback loop cascade of an NF-кB–HOTAIR
axis [42].

2.2.3. UCA1. UCA1 (urothelial carcinoma-associated 1), an
lncRNA with a length of 1.4 kb, was first identified in bladder
cell carcinoma [43]. UCA1, a direct target of coactivator of
AP1 and estrogen receptor α (CAPERα)/T-box3 (TBX3)
repression, sequesters hnRNP I, which suppresses transcrip-
tion of CDKN2A and destabilizes CDKN2A mRNA [44].
Oncogenic stress dissociates the CAPERα/TBX3 corepressor
and activatesUCA1. CAPERα/TBX3 and UCA1 coordinately
induce oncogene-induced senescence (OIS). In addition,
UCA1 can bind with hnRNP I and competitively inhibit
hnRNP I binding to p27 mRNA [45]. hnRNP I enhances
translation of p27 mRNA, and there is a negative correlation
between p27 expression and UCA1 level.

2.2.4. LincRNA-p21. Overexpressed lincRNA-p21 increases
p21 expression at both mRNA and protein levels, and it
impedes cell-cycle progression [46]. LincRNA-p21 is neces-
sary for the recruitment of hnRNP K to the p53 response
element and for increasing the binding efficiency of p53
on the p21 promoter region. Moreover, lincRNA-p21
affects theG1/Scheckpoint andp21 levels throughderegulated
expression and altered chromatin state of some Polycomb
target genes. Thus, lincRNA-p21 is required for the positive
regulation of p21 expression and finally is involved in cellular
senescence [46].
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2.2.5. ANRIL. ANRIL is a 3.8 kb long lncRNA transcribed in
an antisense orientation from the INK4B/ARF/INK4A gene
cluster, and it overlaps with the promoter of p14/ARF and
the two exons of p15/CDKN2B [47]. ANRIL is required for
the recruitment of chromobox (CBX7), a component of
PRC1, to the INK4B/ARF/p16 gene locus. This complex
exhibits high-affinity binding to methylated histone H3 at
lysine 27 (H3K27me) and represses the transcription of
INK4b/ARF/INK4a [48]. Moreover, depletion of ANRIL dis-
rupts the binding of suppressor of zeste 12 protein homolog
(Suz12), a component of PRC2, to INK4B locus, and
increases the expression of p15 [49, 50]. Recent studies have
reported that ANRIL promotes silencing of KLF2 and P21
transcription via epigenetic silencing [51]. Such epigenetic
transcriptional repression of INK4B/ARF/INK4A by ANRIL,
which is associated with senescence, was reviewed by Aguilo
et al. [52].

2.2.6. ANRASSF1. ANRASSF1 (antisense intronic noncoding
RASSF1) is an intronic lncRNA transcribed from the anti-
sense to RAS-association domain family member 1A
(RASSF1A) gene [53]. RASSF1A, a tumor suppressor gene,
is associated with cell-cycle arrest and senescence via p53-
independent regulation of p21 [54]. Highly expressed
ANRASSF1 recruits PRC2 to the RASSF1A promoter and
increases the H3K27me3 level, resulting in decreased
RASSF1A expression. Therefore, ANRASSF1 mediates cellu-
lar senescence through the epigenetic inactivation of the
RASSF1A gene [53].

2.2.7. PANDA. PANDA (P21 associated ncRNA DNA
damage-activated) is capable of interacting with scaffold-
attachment-factor A (SAFA) [55]. SAFA is a nuclear protein
that is able to bind DNA and RNA, including ncRNA, and is
involved in transcriptional and posttranscriptional regula-
tion by acting as an adaptor molecule for DNA-RNA-
protein interactions [56]. In proliferating cells, the SAFA
and PANDA interaction recruits Polycomb repressive com-
plex 1 (PRC1) and PRC2 complexes to senescence target
genes including CDKN1A in order to silence their expression
[55]. Thus, PANDA depletion leads to senescence pheno-
types by derepression of p21 due to disruption of SAFA-
PANDA-PRC interactions. However, in senescent cells,
PANDA sequesters transcription factor NF-YA and limits
the expression of NF-YA-E2F-coregulated proliferation-
promoting genes. Therefore, PANDA levels modulate cell
fates to enter or exit from senescence [55].

2.2.8. FAL1. FAL1 (focally amplified lncRNA on chromo-
some 1) was identified from a genome-wide analysis of
somatic copy number alterations [57]. FAL1 interacts with
epigenetic repressor BMI1 protein, a subcomponent of
PRC1, and increases BMI1 stability. Thus, FAL1 can nega-
tively regulate a large number of genes such as CDKN1A,
FAS, and BTG2. In addition, FAL1 promotes tumor prolifer-
ation and represses senescence primarily by decreasing
CDKN1A transcription [58].

2.2.9. MIR31HG. WhereasMIR31HG lncRNA is upregulated
duringOIS, its depletion promotes p16-dependent senescence

phenotypes [59]. MIR31HG interacts with the INK4A and
MIR31HGgenomic loci andmediates repressionof the INK4A
locus with Polycomb group (PcG) proteins.MIR31HG plays a
role during OIS as a transcriptional regulator of p16 via direct
interaction with PcG proteins [59].

2.2.10. SALNR. SALNR (senescence-associated long noncod-
ing RNA) expression is downregulated in senescent human
fibroblasts. SALNR interacts with NF90, a RNA-binding
protein involved in microRNA (miRNA) biogenesis, and reg-
ulates its nuclear localization. SALNR and the NF90 com-
plexes impede premature senescence through the regulation
of senescence-associated miRNAs, specifically miR-181a
and miR-22 [60].

2.2.11. VAD. VAD is a vlincRNA (very long intergenic
ncRNA) that is differentially expressed in RAF-induced
senescence and is localized in the chromatin. VAD is
involved in the maintenance of senescence features. Mecha-
nistically, VAD modulates chromatin structure in cis and
increases the expression of INK4 genes in trans. VAD
decreases the occupancy of the repressive histone variant
H2A.Z at INK4 promoters during senescence induction [61].

2.3. Age-Related Diseases

2.3.1. Neurodegenerative Diseases
(1) Alzheimer’s Disease. Alzheimer’s disease (AD) is the most
common neurodegenerative disease and accounts for the
majority of dementia cases. Amyloid β (Aβ) plaques and
neurofibrillary tangles are the two primary pathological
hallmarks of AD. The amyloid cascade hypothesis suggests
that deposition of Aβ might be cause of neuronal
dysfunction and death of brain tissue in AD. Recently, the
cleavage patterns of amyloid precursor protein (APP) to Aβ
peptides (Aβ1–40 and Aβ1–42) by secretases, small oligomers
of Aβ (2~12 peptides), Aβ concentration, and Aβ stability
have been proposed as important factors in AD [62].

BC200 is a 200 bp long RNA pol III-transcribed
lncRNA that is predominantly expressed in the brain
[63]. BC200 is downregulated in normal aged brains, but
BC200 is significantly upregulated in AD brains. Specifi-
cally, BC200 is highly expressed in AD-related regions
(e.g., Broadmann’s area 9) compared to its expression in
nonrelated regions (e.g., area 17) [64].

BACE1-AS (BACE1-antisense transcript) is a 2 kb long
transcript from the antisense strand of β-secretase-1
(BACE1) and is a crucial enzyme in AD pathology. BACE1-
AS regulates BACE1 mRNA and protein expression in vitro
and in vivo. In response to cell stress, elevated BACE1-
AS increases BACE1 mRNA and protein levels due to
RNA duplex formation, generating additional Aβ 1–42
peptides [65]. Moreover, modulation of BACE1 and the
BACE1-AS transcript can participate in the alteration of
oligomeric Aβ aggregation pattern and Aβ-related hippo-
campal neurogenesis [66].

NDM29 (neuroblastoma differentiation marker 29) is a
cytoplasmic lncRNA transcribed by polymerase (pol) III.
NDM29 is highly expressed in neuroblastoma cells and is
involved in neuroblastoma maturation [67]. In addition,
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elevated NDM29 expression is detected in the brain of
AD patients. NDM29-dependent cell maturation induces
APP synthesis and results in an increase of Aβ secre-
tion. Moreover, an increase in the production of copies
of NDM29 transcripts can be driven by inflammatory
stimuli [68].

17A is a 159 bp long lncRNA synthesized by RNA pol
III that induces an increase of GABA B2 receptor splice
variant B, which affects GABA-B function. Thus, 17A
impairs GABA-B signaling and might enhance Aβ secre-
tion. In addition, 17A is upregulated in AD compared to
its level in control tissues [69]. Other lncRNAs such as
51A, NAT-Rad18, and GNDFOS might also be involved
in AD [70, 71].

(2) Parkinson’s Disease. Parkinson’s disease (PD) is a com-
mon and complex neurodegenerative disease characterized
by defects in the body’s motor functions (slow or lack of
movements, and tremor). The classical features of PD are
associated with Lewy bodies and loss of dopaminergic neu-
rons in the substantia nigra pars compacta in the midbrain.
The resultant deficiency of dopamine ultimately induces
movement disorder, which is a characteristic of PD [72].

AS Uchl1 (antisense to mouse ubiquitin carboxy-terminal
hydrolase L1) is a 1.2 kb lncRNA transcribed from the oppo-
site strand of the ubiquitin carboxy-terminal hydrolase L1
(Uchl1) gene and induces UChl1 translation. AS Uchl1 is
expressed in mesencephalic regions, which are degenerated
in PD. AS Uchl1 is regulated by Nur11, a major transcription
factor functioning in the differentiation and maintenance of
dopaminergic neurons. Expressions of AS Uchl1 and UCHL1
have been decreased in PD models in vitro and in vivo [73].

NaPINK1 is transcribed from the antisense direction of
the PINK1 gene, which is implicated in PD through an asso-
ciation with unbalanced mitochondrial homeostasis. As
naPINK1 is able to stabilize PINK1 splice variant (svPINK1)
expression in neurons via a dsRNA-mediated mechanism,
naPINK1 might be involved in PD through regulation of
the PINK1 locus [71, 74].

(3) Huntington’s Disease. Huntington’s disease (HD) is a
dominantly inherited disease characterized by chorea, psy-
chiatric problems, and dementia. HD is caused by mutation
in the huntingtin (HTT) gene. Expansion of the CAG-
triplet repeat sequence within the first exon of HTT results
in abnormal protein production, which gradually leads to
death of brain cells [75].

TUG1 (taurine upregulated gene 1) was first identified in
a screen for genes upregulated by taurine in developing reti-
nal cells [76] and, subsequently, in a genome analysis to
examine lncRNAs physically associated with chromatin-
modifying complexes [77]. Depletion of TUG1 increases the
phenotypes of apoptosis [76], and TUG1 expression is
elevated in HD [78]. Mechanistically, TUG1, a direct tran-
scriptional target of p53, combines with enhancer of zeste
homolog 2 (EZH2), a component of the PRC2 complex,
and epigenetically regulates gene expression. TUG1 and
EZH2 bind to the promoter of homeobox B2 (HOXB7) and
represses HOXB7 expression [79].

MEG3 is highly expressed in adult human and mouse
brains and is differentially expressed in HD patients. MEG3
can associate with the PRC2 complex and is found in the
chromatin region in the nucleus, suggesting that MEG3
might be involved in epigenetic regulation in HD [16, 78].
Other lncRNAs such as HAR1 (human accelerated region 1),
NEAT1 (nuclear paraspeckle assembly transcript 1), and
DGCR5 (DiGeorge syndrome critical region gene 5) also
exhibit altered expression in HD patients, as shown bymicro-
array studies [16, 78].

HTTAS (huntingtin antisense) is a natural antisense
transcript at the HD CAG repeat. HTTAS is mainly spliced
into HTTAS-V1 (exons 1 and 3) and HTTAS-V2 (exons 2
and 3). HTTAS-V1 expression is reduced in human HD
frontal cortex, and its overexpression negatively regulates
HTT transcription [80].

2.3.2. Immune Response. The immune response is a wide
variety of physiological and pathological processes originat-
ing from immune system activation. It is triggered by patho-
gens, antigens, tissues injury, and other noxious stimulations.
The innate immune response provides immediate defense
against infection and is evolutionarily conserved. The
adaptive immune response is highly specific to particular
pathogens and provides long-lasting protection. Adaptive
immune responses are mainly mediated antibody and cell-
mediated immune responses. The inflammatory response is
considered an innate immune response. Inflammation
functions to eliminate the initial cause of the original insult
and to initiate tissue repair, which are regulated by immune
mediators including cytokines, chemokines, and soluble
inflammatory proteins [81].

THRIL (TNFα- and hnRNP L-related immunoregulatory
lincRNA) is an approximately 2 kb lncRNA that changes
expression upon activation of innate immune signaling in
macrophages. THRIL recruits heterogeneous nuclear ribonu-
cleoprotein L (hnRNP L) to the TNFα promoter and
increases the secretion of TNFα, an inflammatory cytokine.
An increase in TNFα downregulates THRIL expression via
a negative feedback mechanism. Moreover, THRIL is associ-
ated with maintaining expression of many innate immunity-
associated genes [82].

Lnc-DC is exclusively expressed in human conventional
dendritic cells and is involved in dendritic cell (DC) differen-
tiation and DC capacity to stimulate T cell activation. Lnc-
DC prevents signal transducer and activator of transcription
3 (STAT3) dephosphorylation by SHP1 through a direct
association with STAT3. Lnc-DC is known as a specific regu-
lator of DC differentiation and function [83].

Lnc-IL7R, which overlapswith the 3′-UTRof interleukin-7
receptorα (IL7R) gene, showsalteredexpression in response to
LPS stimulation. Lnc-IL7R functionally diminishes the LPS-
induced inflammatory response and is mechanistically
involved in trimethylation of H3K27 at the E-selectin and
VCAM-1 promoters. Lnc-IL7R is a regulator of proinflamma-
tory genes via epigenetic modification [84].

LincRNA-EPS is downregulated in response to inflamma-
tory triggers. Gain-of-function and rescue studies have
revealed that lincRNA-EPS represses transcriptions of
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immune response genes by interacting with hnRNP L.
LincRNA-EPShas a critical role in restraining lethal inflamma-
tory responses [85].

2.3.3. Diabetes. Diabetes is a metabolic disease associated
with high blood sugar levels. Diabetes can be caused by the
pancreas not producing insulin (type 1 diabetes (T1DM))
or by insulin resistance (type 2 diabetes (T2DM)). The
majority of type 1 diabetes cases are attributed to a T cell-
mediated autoimmune attack, which leads to loss of the
insulin-producing beta cells of the islets of Langerhans in
the pancreas. It is traditionally termed juvenile diabetes and
is partially inherited. T2DM is the most common type of dia-
betes. Insulin resistance in T2DM might be combined with
reduced insulin secretion and defective responsiveness of
insulin receptors [86].

RNCR3 is involved in diabetes-induced retinal neurode-
generation [87]. Knockdown of RNRC3 reduces the release
of cytokines and results in fewer apoptotic retinal cells and
improved visual function. RNCR3 increases in response to
high glucose stress in vitro and in vivo and regulates retinal
endothelial cell function through the RNCR3/KLF2/miR-
185-5p network [88].

MEG3 is reduced in the retinas of STZ-induced diabetic
mice and in endothelial cells under high glucose and oxida-
tive stress. MEG3 knockdown aggravates diabetes-related
retinal vessel dysfunction, which is mainly mediated by acti-
vation of PI3K/AKT signaling [89]. MEG3 expression is
upregulated in hepatocytes through histone acetylation in
high-fat diet and ob/ob mice. In addition, MEG3 is involved
in hepatic insulin resistance via an increase in FoxO1 expres-
sion [90].

HI-LNC25 was first identified in a transcriptome
mapping study of human pancreatic islets and β cells [87].
HI-LNC25 is a β cell-specific lncRNA and an integral compo-
nent of β cell differentiation and maturation [87]. Depletion
ofHI-LNC25 decreases expression of GLIS3 mRNA, which is
associated with pancreatic β cell function and mass mainte-
nance [91]. KCNQ1OT1 and HI-LNC45, which were
previously genetically associated with T2DM [92], are signif-
icantly dysregulated in diabetes islets [91].

2.3.4. Muscle Dysfunction.Muscle development is a multistep
process that includes myogenesis, muscle differentiation, and
regeneration. Myogenesis is a tightly regulated developmen-
tal program to direct myoblasts to form muscle fibers.
Myogenic pathways are primarily governed by transcription
factors, MyoD, Myf5, myogenin, and MRF4 at the molecular
level. Impairment of these processes might be a cause of
muscle dysfunction and is an age-related pathological
phenomenon [93].

SRA (steroid receptor RNA activator) was initially
characterized as an lncRNA functioning to enhance steroid
receptor-dependent gene expression [94]. SRA has an
unusual property that functions as both SRA RNA and
SRAP protein through alternative splicing. The ratio
between SRA RNA and SRAP increases during myogenic
differentiation, but there is no increase in myotonic
dystrophy patients. SRA RNA is an enhancer of myogenic

differentiation and myogenic conversion through regulation
of MyoD activity [95].

MUNC (MyoD upstream noncoding RNA) is transcribed
from the upstream of myogenic differentiation (MyoD), a
master transcriptional regulatory factor in muscle differenti-
ation and specifically expressed in skeletal muscle. MUNC
depletion reduces myoblast differentiation and impairs
muscle regeneration in vivo. MUNC is involved in gene
expressions of MyoD, Myogenin, and Myh3 (myosin heavy
chain) by acting in trans. MUNC also stimulates the
transcription of other genes that are not recognized as
MyoD-inducible genes.MUNC is an evolutionarily conserved
promyogenic lncRNA that acts directly or indirectly onmulti-
ple promoters to increase myogenic gene expression [96].

Linc-RAM (linc RNA activator of myogenesis) is a skele-
tal muscle-specific lncRNA that localizes in both cytoplasm
and nucleus of myoblast. Depletion of linc-RAM impairs
myoblast differentiation and muscle regeneration. Mechanis-
tically, linc-RAM promotes assembly of the MyoD-Baf60c-
Brg1 complex and facilitates the recruitment of the SWI/
SNF core on target myogenic genes, resulting in transcription
of myogenic differentiation genes [97].

Other muscle-specific lncRNAs such as linc-MD1 and
lncRNA Dum are also involved in the control of muscle gene
expression and muscle regeneration [98, 99].

2.3.5. Atherosclerosis. Atherosclerosis is the primary cause of
heart disease and stroke. It is a chronic disease of the large
arteries and is characterized by narrowing or closing of an
artery with lipids and fibrous elements. Pathological studies
have provided evidence of the critical role of endothelium
in mediating inflammation and accumulation of oxidized
low-density lipoproteins (LDL) in the intima to recruit
monocytes and form macrophage-derived foam cells [100].

SENCR (smooth muscle and endothelial cell-enriched
migration/differentiation-associated long noncoding RNA)
is an antisense transcript from the first intron of friend leuke-
mia virus integration 1 (FLI1) and is localized in the cyto-
plasm. SENCR is highly expressed in both smooth muscle
and endothelial cells [101]. SENCR impedes migration and
proliferation of smooth muscle cells through the regulation
of FoxO1 and TRPC6 expression [102]. In addition, SENCR
is associated with the regulation of endothelial cell differenti-
ation and angiogenic capacity of human umbilical endothe-
lial cells (HUVECs) [103].

Recent studies have reported several lncRNAs that are
involved in atherosclerosis-related smooth muscle cell, endo-
thelial cell, macrophage, and lipid metabolism regulation,
suggesting a potential function of such lncRNAs in athero-
sclerosis development [104].

2.3.6. Cataract. Cataract is characterized by the clouding of
an eye’s lens. Cataract accounts for half the cases of blind-
ness. Lens proteins denature and degrade over time, and this
process is accelerated by age and diseases such as diabetes
and hypertension. ROS may be mechanistically involved in
cataractogenesis. The only treatment for cataract is surgery
in the current state of technology [105].
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LncRNA-MIAT (lncRNA myocardial infarction associ-
ated transcript) is highly expressed in patients with cataracts
and is involved in the maintenance of human lens epithelial
cells (HLECs) whose dysfunction results in cataract forma-
tion. MIAT regulates viability, proliferation, and migration
of human HLECs in response to oxidative stress. Mechanisti-
cally, MIAT acts as a competing endogenous RNA (ceRNA)
and can regulate HLEC function through a feedback loop
with AKT and miR-150-5p [106].

A mechanistic diagram of representative lncRNAs
involved in DNA damage and oxidative stress, cellular senes-
cence, and age-related diseases is shown in Figure 2.

3. RNA-Binding Proteins

The RBPs have a pivotal role in mediating posttranscrip-
tional regulation of gene expression by affecting pre-mRNA
splicing and maturation as well as mRNA transport, storage,
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turnover, and translation [107]. RBPs can regulate a broad
spectrum of cellular process including cell proliferation,
death, differentiation, and development, and differential
expression or altered activity of certain RBPs is involved
in the pathogenesis of several human diseases [107–109].
RBPs interact with mRNAs via a limited set of modular
RNA-binding domains (RBDs), such as the heterogeneous
nuclear RNA K-homology (KH) domain, RNA recognition
motif (RRM), and the zinc-finger (Znf) domain [110]. In
addition, RBPs interact with other RBPs and/or ncRNAs
such as miRNAs and lncRNAs via cooperative or competitive
interaction [111, 112].

3.1. DNA Damage and Oxidative Stress

3.1.1. HuR. HuR is a member of human antigen (Hu) family
and governs turnover and translation of target mRNAs
involved in the regulation of cell proliferation, growth, sur-
vival, and differentiation in response to various stresses
[113]. HuR has been reported to have protective roles during
DDR and oxidative stress by governing RNA stability and
translation of various target mRNAs including VEGF,
HIF-1α, p53, c-myc, SIRT1, and prothymosin α. The roles of
HuR in the regulation of stress response have been exten-
sively reviewed by others [114, 115]. A recent report has
shown that HuR targets and upregulates heme oxygenase 1
(HO1) during oxidative stress [116]. HuR is also implicated
in DDR by directly regulating RNA metabolism of p53,
WEE1, and non-POU domain-containing octamer-binding
protein (NONO, also known as p54NRB) [117, 118]. Esoph-
ageal cancer-related gene 2 (ECRG2), a DNA damage-
inducible tumor suppressor, can regulate XIAP-mediated cell
death by downregulating HuR expression [119].

3.1.2. Heterogeneous Nuclear Ribonucleoproteins. Heteroge-
neous nuclear ribonucleoproteins (hnRNPs) are nuclear pro-
teins regulating a broad spectrum of RNA metabolism
including alternative splicing, translocation, and translation
[120]. hnRNP A0 is phosphorylated by MAPK-activated
protein kinase 2 (MK2) and stabilizesGADD45αmRNA dur-
ing DDR [121]. In response to UV radiation or hypoxic
stress, hnRNP A18 is induced and has protective roles by
increasing the expression of UV- or stress-response genes
such as replication protein A (RPA2), thioredoxin (TRX), or
HIF-1α [122, 123]. hnRNP A1 is reported to regulate alterna-
tive splicing of hdm2 and UVE-triggered translation of Apaf-1
in response to UV exposure [124]. After ionizing radiation,
hnRNP C has been found in DNA-damage sites and regulates
BRCA gene expression and homologous recombination.
Depletion of hnRNP C reduces the abundance of key HR
proteins including BRCA1/2, RAD51, and BRIP1 by affecting
alternative splicing [125]. hnRNP H/F is reported to increase
after DNA damage and to enhance p53 expression by interfer-
ing 3′-end processing of p53 mRNA, thereby regulating
apoptosis [126]. hnRNP I (also known as PTB) has been
known to increase HIF-1α-mediated gene expression by
enhancing translation of HIF-1α in hypoxia [127].

3.1.3. FUS. FUS (also known as hnRNP P2) binds RNA and
single- and double-stranded DNA, and it affects multiple

steps of DNA/RNA metabolism. FUS has been observed in
sites with laser-induced DNA double-strand breaks (DSBs)
and regulates DSB repair [128]. FUS also has an important
role in the DDR in neurons by directly interacting with his-
tone deacetylase 1 (HDAC1), and recruitment of FUS and
HDAC1 is essential for DDR signaling [129].

3.1.4. T Cell-Restricted Intracellular Antigens. T cell-
restricted intracellular antigen-1 (TIA-1) is a member of
RNA-binding protein involved in alternative pre-mRNA
splicing and mRNA translation. TIA-1 is a component of
stress granules (SGs) triggered by hypoxia, ischemia, and
anoxia, and it has essential roles in regulating mRNAs
involved in oxidative stress and DDR through its associations
with other SG components [130]. A recent study has shown
that TIA-1 oxidation, mediated by reactive oxygen species
(ROS), suppresses SG formation and increases cell death
after oxidative stress [131]. TIA-related protein (TIAR) has
been reported to increase and regulate neuronal cell death
after cerebral ischemic injury [132]. After UVC-induced
DNA damage, TIAR is dissociated from C-rich motif-
containing mRNAs, including Apaf-1 mRNA, and enhances
their translation [133].

3.1.5. Wig1. Wig1 (also known as ZMAT3) is a transcrip-
tional target gene of p53 and has a zinc-finger domain that
binds to double-strand RNA (dsRNA) [134]. Wig1 has been
known to stabilize p53mRNA by protecting it from deadeny-
lation, thereby enhancing the p53-mediated stress response
[135]. Depletion of Wig1 is responsible for increases in cell
death and cell-cycle arrest upon DNA damage. Wig1 func-
tions as a survival factor during stress response by regulating
FAS and 14-3-3σ [136].

3.2. Cellular Senescence and Aging

3.2.1. HuR. HuR is implicated in cellular senescence and the
aging process based on its involvement in regulating stability
and translation of various target mRNAs including p21, p16,
cyclin A, cyclin B1, c-fos, and SIRT1 [137]. Recent reports
have shown that loss of HuR is related to a shorter life span
in Drosophila as well as to several senescence-associated phe-
notypes in mouse embryonic fibroblasts (MEF) [138, 139].
The HuR level is downregulated in RS and aging, and its
expression is controlled by positive feedback mechanisms
[140]. Coactivator-associated arginine methyltransferase 1
(CARM1) has been known as a regulator of HuR by inducing
methylation on R217 residue of HuR, and loss of CARM1
downregulates HuR activity in RS [141].

3.2.2. AU-Rich Element RNA-Binding Protein 1. AU-rich
element RNA-binding protein 1 (AUF1; also known as
hnRNP D) includes four alternative spliced isoforms
(p37, p40, p42, and p45) containing two RRMs and regu-
lates mRNA stability and turnover. In addition, AUF1 has
been shown to affect proliferation, stress response,
immune response, and cellular senescence. AUF1 is differ-
entially regulated during aging and cellular senescence
[140]. AUF regulates the mRNA stability of p21 and p16
in a competitive or cooperative manner with HuR and
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influences cellular senescence [142, 143]. Pont et al.
reported that AUF1-deficient mice exhibit decreased telo-
merase level and activity, increased DNA damage at telo-
mere ends, enhanced cellular senescence, and rapid
premature aging [144].

3.2.3. TIA-1/TIAR. TIA-1 and TIAR regulate alternative
splicing, SG formation, and translation of various target
genes including TNFα, COX-2, c-myc, calmodulin 2, small
nuclear ribonucleoprotein polypeptide F (SNRPF), and cas-
pase-8 in response to various cellular stresses [145]. It has
been shown that TIA-1 is downregulated during RS and
aging [140]. TIA-1/TIAR depletion promotes cellular senes-
cence of MEF cells [146]. However, the detailed mechanisms
underlying TIA-1/TIAR-mediated regulation of cellular
senescence or aging need to be elucidated.

3.2.4. CUGBP1. CUG triplet repeat, RNA-binding protein 1
(CUGBP1) is a member of the CELF/BRUNOL protein
family containing two N-terminal RRMs and regulates pre-
mRNA alternative splicing, mRNA editing, and translation
[147]. CUGBP1 has a role in enhancing p21 expression and
regulates cellular senescence [148]. CUGBP1 binds to the
5′-UTR of p21 and increases translation of p21 by competing
with calreticulin. In senescent cells, increased phosphoryla-
tion of CUGBP1 promotes binding to p21 mRNA.

CUGBP1 has been known to increase with aging in fat tis-
sue and to regulate CCAAT/enhancer-binding protein β (C/
EBPβ) expression [149]. CUGBP1 binds to C/EBPβ mRNA
and enhances its translation, thereby accumulating C/EBPβ-
liver-enriched inhibitory protein (C/EBPβ-LIP), a dominant
inhibitor of differentiation, in fat cells. Augmented expression
of CUGBP1 is responsible for the impairment of adipogenesis

RBPs

Functions Protein-protein
interaction 

Stress granule
formation 

mRNA stability
& translation 

Alternative
splicing 

p53
VEGF
Glut1
TGF�훽
HO1
PIM1
c‒myc
TNF�훼
COX2

HIF-1�훼
RPA2
TRX
Hdm2
Apaf-1

Camodulin2
SNRPF

Caspase-8

SIRT1
GADD45�훼
BRCA

BRCA1/2
RAD51
BRIP1

p53
ProT�훼
WEE1
NONO
HDAC
FAS

14-3-3

p16
p21
E47

E6-AP

SIRT1
CCNA
CCNB1
c-fos

C/EBP�훽

Insulin
APP
UCP1

IGF2
BACE1

BACE1-AS

Target
mRNAs 

Oxidative stress DNA damage Genetic mutation
others (inflammation, etc.)

DNA damage
response

Cellular senescence
Aging

Age-related disease
Neurodegenerative disease
Metabolic disease

(I)
(II)

FMRP

IGF2BP
21/IMP

TDP-43

RBFOX2

TIAR
/TIA1hnRNPs CUGBP1AUF1 FUSTTP Wig1HuR

HDAC1
recruitment

TIAR
/TIA1

�훼

Figure 3: Representative RBPs involved in DNA damage and oxidative stress, cellular senescence, and age-related diseases.
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Table 1: A list of lncRNAs involved in DNA damage response, oxidative stress, cellular senescence, and age-related diseases.

LncRNAs Functions References

DNA damage response

LincRNA-p21 Represses gene expression with hnRNP K [20–22]

LincRNA-RoR
Suppresses p53 translation with hnRNP I and inhibits p53-mediated cell-cycle arrest

and apoptosis
[23–25]

Pint Connects p53 activation with epigenetic silencing by PRC2 [20, 26]

PANDA Regulates proapoptotic genes with NF-YA [27–29]

LncRNA-JADE Connects the DNA damage response to histone H4 acetylation [30]

Oxidative stress

H19 Upregulated by oxidative stress [31–34]

ANRIL Represses the expression of INK4A-ARF-INK4B [35]

LncRNA-LET Degrades NF90 via ubiquitin-proteasome pathway [36]

LINK-A Regulates the stabilization of HIF-1α [37]

Cellular senescence

7SL Promotes cell growth via suppression of p53 [38, 39]

HOTAIR Represses transcription of HOXD with PRC2 [40–42]

UCA1 Negative correlation between p27 and UCA in breast cancer tissue [43–45]

LincRNA-p21 Influences the p53 tumor suppressor pathway by regulating p53-mediated p21 expression [46]

ANRIL Regulates CDKN2A/B by epigenetic mechanisms [47–52]

ANRASSF1 Represses the expression of RASSF1A [53, 54]

PANDA
Interacts with PRC1, PRC2, and NF-YA and represses the transcription of senescence-promoting

genes
[55, 56]

FAL1 Oncogenic activity of FAL1 is repression of p21 [57, 58]

MIR31HG Interacts with both INK3A and PcG proteins and represses INK4A [59]

SALNR Regulates NF90 activity [60]

VAD Regulates chromatin structure and increases the expression of INK4 [61]

Neurodegenerative diseases

BC200 Upregulation of BC200 related to the severity of AD [63, 64]

BACE1-AS Regulates BACE1 mRNA and generates Aβ 1–42 [65, 66]

NDM29 Induces APP and increases Aβ secretion [67, 68]

17A Enhances Aβ secretion by impairing GABA-B signaling [69, 71]

AS Uchl1 Induces Uchl1 expression by increasing its translation [73]

naPINK1 Regulates the stabilization of svPINK1 expression [71, 74]

TUG1 Downstream target of p53 and regulates cell-cycle genes [76–79]

MEG3 Epigenetically regulates chromatin in HD [16, 78]

HTTAS-V1 Overexpression of HTTAS-V1 reduces HTT transcripts [80]

Immune response

THRIL
Regulates TNFα expression and is associated with childhood acute inflammatory

diseases
[82]

Lnc-DC Exclusively expressed in dendritic cells and regulates DC differentiation [83]

Lnc-IL7R Diminishes LPS-induced inflammatory response [84]

LincRNA-EPS Regulated in macrophages to control the expression of immune response genes [85]

Diabetes

RNCR3 Regulates retinal endothelial cell function via RNCR3/KLF2/miR-185-5p [87, 88]

MEG3 Downregulates MEG3 in the retinas of STZ-induced diabetic mice [89, 90]

HI-LNC25 Regulates β cell differentiation and maturation [91, 92]

Muscle dysfunction

SRA Enhances the activity of nuclear receptors and regulates differentiation of MyoD [94, 95]

MUNC Facilitates the function of MyoD in skeletal myogenesis [96]
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in aged-fat tissues. In old liver, CUGBP1 phosphorylation at
S302 residue by GSK3β facilitates the association of CUGBP1
with eukaryotic initiation factor 2 (eIF2) and increases
translation of HDAC1 and C/EBPβ, which are responsible
for epigenetic regulation of gene expression [150, 151].

3.2.5. Tristetraprolin. Tristetraprolin (TTP) is an ARE-
binding protein involved in destabilizing target mRNAs,
and its expression is upregulated during cellular senescence
and aging [152]. TTP is elevated in B lymphocytes from aged
mice compared to the level in cells from young mice, and it
destabilizes transcription factor E47 mRNA [153]. Sanduja
et al. have reported that TTP promotes cellular senescence
by destabilizing E6-AP ubiquitin ligase mRNA [154]. E6-
AP downregulation mediated by TTP results in p53 and
hTERT accumulation in cells.

3.2.6. Wig1. Wig1 is also implicated in the regulation of
cellular senescence. Kim et al. reported that Wig1 prevents
cellular senescence by regulating p21 expression [155].
Wig1 binds to the stem-loop structure near the miRNA-
binding site of p21 mRNA and recruits the RNA-induced
silencing complex (RISC) by interacting with Ago2,
thereby destabilizing p21 mRNA. Depletion of Wig1
results in a decrease of miR-mediated p21 mRNA decay
and promotes cellular senescence via p21 upregulation in
various cell types.

3.3. Age-Related Diseases

3.3.1. Neurodegenerative Diseases. Neuronal cells have their
own systems for regulating RNA expression in response to
various stimuli via RBPs that are uniquely expressed in neuro-
nal cells. Accumulating evidence indicates that abnormalities
in RNAmetabolism are a common feature of neurodegenera-
tion [156, 157]. Therefore, mutations or dysregulation of
RBPs is widely involved in the pathogenesis of neurodegener-
ative diseases, including amyotrophic lateral sclerosis, AD,
HD, and PD, by governing RNA metabolism [158].

(1) TDP-43. TDP-43 was identified as the major component
of ubiquitin-positive neuronal inclusion bodies observed in
amyotrophic lateral sclerosis (ALS) and frontotemporal lobar
degeneration (FTLD) patients [159]. TDP-43 functions as a
translational repressor and known to have essential roles in
transcriptional regulation and miRNA maturation [160].
Also, TDP-43 regulates axonal transport of RNA granules

by interacting with hnRNP A2/B1 [161, 162]. Mutations of
TDP-43 genes found in ALS patients are related to delocali-
zation and aggregation of TDP-43. Formation of insoluble
aggregates of TDP-43 in the cytoplasm alters interactions
between TDP-43 and its target mRNAs having important
functions in the brain, thereby indicating the involvement
of TDP-43 in ALS/FTLD pathogenesis [163].

(2) FUS. Mutations in the gene coding FUS are found in 5%
of familial ALS patients and in rare sporadic cases. Like
TDP-43, mutations on FUS gene facilitate delocalization
and abnormal aggregation of FUS to cytoplasm and affect
the alternative splicing of its target genes [164, 165]. Also,
FUS mutations are responsible for an increase in DNA
damage in ALS patients [129].

(3) HuD. HuD (also known as nELAVL or ELAVL4) is
expressed in the brain and has been implicated in various
aspects of RNA metabolism [166]. HuD functions as a piv-
otal regulator of neurogenesis, axonal growth, and neuronal
function, and dysregulation of HuD results in neuronal
defects [167]. HuD has been reported to increase in the brain
of AD patients and to stabilize APP mRNA, β-site APP-
cleaving enzyme 1 (BACE1) mRNA, and BACE1 antisense
(BACE1-AS) lncRNAs, thereby facilitating the accumulation
of the toxic APP cleavage product Aβ [168].

(4) FMRP. Fragile X mental retardation protein (FMRP) is a
gene product encoded by fragile X mental retardation 1
(FMR1) and plays essential roles in normal cognitive devel-
opment and female reproductive function [169]. Mutations
on the FXR1 gene lead to fragile X syndrome (FXS), autism,
AD, and PD by dysregulating translation of its target genes
[170]. FMRP inhibits APP mRNA translation by recruiting
APP mRNA into P-bodies [171]. FMRP has been shown to
decrease in the brain of sporadic AD patients [172].

(5) hnRNPs. hnRNP A1 has essential roles in the regulation
of pre-mRNA processing, transport, and translation of
mRNAs [173]. Loss of hnRNP A1 expression or presences
of mutations (D262) are observed in ALS patients [162]. In
addition, hnRNP A1 shows a decrease in the AD brain and
has been known to regulate alternative splicing of RAGE
and APP mRNAs [174, 175].

hnRNP A2/B1 affects alternative splicing of ALS-
associated D-amino acid oxidase, and ALS mutant (hnRNP

Table 1: Continued.

LncRNAs Functions References

Linc-RAM
Promotes assembly of MyoD-Baf60-Brg1 complex and increases the transcription of

myogenic differentiation genes
[97]

Atherosclerosis

SENCR
Impedes migration and proliferation of smooth muscle cells by regulating FOXO1 and

TRPC6 expression
[101–103]

Cataracts

LncRNA-MIAT Upregulated in patients with cataracts and involved in the maintenance of LECs [106]
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Table 2: A list of RBPs involved in DNA damage response, oxidative stress, cellular senescence, and age-related diseases.

RBPs Functions References

DNA damage response and oxidative stress

HuR
Protection roles in oxidative stress and DNA damage by regulating RNA metabolism

(reviewed in 114, 115)
Regulates HO1, WEE1, and NONO expression during stress response

[114–119]

hnRNP A0 Phosphorylation of hnRNP A0 by MK2 promotes GADD45α mRNA stabilization [121]

hnRNP A18 Increases gene expression involved in stress-response [122, 123]

hnRNP A1 Involved in alternative splicing of hdm2 and Apaf-1 translation [124]

hnRNP C Regulates BRCA gene expression and homologous recombination after ionizing irradiation [125]

hnRNP H/F Increased in DNA damage response and upregulates p53 expression [126]

hnRNP I Enhances translation of HIF-1α in hypoxia [127]

FUS Interacts with HDAC1 and regulates DNA damage response [129]

TIA-1/TIAR

TIA-1/TIAR are involved in SG formation after stress response and decrease HIF-1α
translation

TIA-1 oxidation by ROS suppresses SG formation and increases cell death
TIAR increases Apaf-1 translation after UVC-induced DNA damage

[130, 131, 133]

Wig1 Stabilizes p53 mRNA and enhancing p53-mediated stress response [136]

Cellular senescence and aging

HuR
HuR loss is related to shorter life span and enhanced senescence-associated phenotypes

(reviewed in 137)
CARM1 downregulates HuR activity in replicative senescence

[137–139, 141]

AUF1
Involved in cellular senescence by regulating mRNA stability of p21 and p16, and AUF1

KO mice show enhanced cellular senescence and rapid premature aging
[142–144]

TIA-1/TIAR
Down-regulated in cellular senescence and TIA-1/TIAR depletion promotes cellular senescence

of MEF cells
[140, 146]

CUGBP1
CUGBP1 phosphorylation promotes the binding to p21 mRNA in senescent cells

Regulates C/EBPβ and HDAC1 in the liver and fat of old mice
[148, 150, 151]

TTP
Upregulated in senescent cells and contributes to p53 accumulation by destabilizing

E6-AP mRNA
[140, 154]

Wig1 Prevents premature senescence by destabilizing p21 mRNA [155]

Neurodegenerative diseases

TDP-43
Functions as a translational repressor

Regulates axonal transport of RNA granules by interacting with hnRNP A2/B1
Mutants form of TDP-43 found in ALS patients are prone to aggregation

[160–162]

FUS
Interacts with DNA/RNA and regulates DNA/RNA metabolism

Mutation found in ALS patients are related to abnormal aggregation of FUS in cytoplasm
and dysregulation of alternative splicing

[164]

HuD
Has pivotal roles in neurogenesis, axonal growth, and neuronal functions
Upregulated in the brain of AD patients and promotes Aβ accumulation

[166, 168]

FMRP
Mutations on FXP1 gene are linked to FXS, AD, and PD by dysregulation translation of

target genes
Downregulated in the brain of sporadic AD patients and regulates APP translation

[170–172]

hnRNP A1
Loss of hnRNP A1 or mutations on D262 residue is found in the ALS patients

Downregulated in the brain of AD patients and affects to splicing of RAGE and APP mRNAs
[174, 175]

hnRNP A2/B1
Mutation on D290 residue dysregulates cellular stress response in ALS

Differentially expressed in the brain of AD and affects alternative splicing
[176, 177]

hnRNP C
Upregulated in the brain of AD patients

Stabilizes APP mRNA and enhances translation of APP
[171, 172]

Metabolic diseases

HuD
Downregulated in the pancreas of T2DM

Regulates insulin biosynthesis, autophagosome formation, lipid synthesis, and apoptosis
in pancreatic β cells

[181–184]
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A2B1 D290V) dysregulates cellular stress responses [162,
176]. hnRNP A2/B1 and hnRNP B1 are also differen-
tially expressed in the AD brain [177].

hnRNP C has been known to stabilize APP mRNA or
enhance its translation by competing with FMRP, therefore
positively regulates APP expression [171]. Borreca et al.
reported augmented expression of hnRNP C in the brain of
sporadic AD patients [172].

3.3.2. Metabolic Diseases.Metabolic disease is associated with
the risk of developing T2DM, obesity, cardiovascular disease
(CVD), and coronary heart disease (CHD) [178, 179].
Increasing evidence indicates that dysregulation of RNA
metabolism in metabolically active and insulin-sensitive
organs, such as the pancreas, liver, muscle, and adipose tis-
sues, is actively implicated in the pathogenesis of metabolic
diseases [180].

(1) HuD. HuD is also found in the islets of the pancreas and
mediates RNA quality control of pancreatic β cells [181]. In
the pancreatic islets of a T2DM mouse model, HuD
expression is downregulated [163]. HuD regulates insulin
biosynthesis by associating with 5′-UTR of insulin2 mRNA
and repressing its translation [181]. In addition, HuD
regulates autophagosome formation and lipid synthesis via
translation regulation of ATG5 and INSIG1, respectively
[182, 183]. Moreover, HuD regulates apoptosis of pancreatic
β cells [184].

(2) CUGBP1. CUGBP1 has been reported to regulate insulin
resistance and alternative splicing of the insulin [185]. In
addition, CUGBP1 negatively regulates insulin secretion by
stabilizing phosphodiesterase subtype 3B (PDE3B) [186].
CUGBP1 expression is higher in diabetic heart and pancreas,
and single nucleotide polymorphisms (SNPs) on the
CUGBP1 locus are associated with obesity [186, 187].

(3) RBFOX2. RBFOX2 (also known as RBM9) is a RNA-
binding protein and a homolog of C. elegans Fox-1 and reg-
ulates alternative splicing by directly binding to the consen-
sus (U)GCAUG motif in the target pre-mRNAs [188]. A
recent study by Nutter et al. showed that 73% of transcripts
misspliced in diabetic hearts have RBFOX2-binding sites,
and a dominant negative form of RBFOX2 (DN-RBFOX2)
was found in diabetic hearts [189]. DN-RBFOX2 precedes
diabetic cardiac complications, as well as delays intracellular

calcium transients in cardiomyocytes by blocking RBFOX2-
mediated alternative splicing.

(4) IGF2BP2/IMP2. Insulin-like growth factor 2 mRNA-
binding protein 2 (IGF2BP2/IMP2) belongs to IGF2
mRNA-binding protein (IMP) family and is known to regu-
late IGF2 translation by interacting with the 5′-UTR of IGF2
mRNA [190]. Genome-wide association studies have shown
that the human IGF2BP/IMP2 gene contains SNPs associ-
ated with T2DM [191, 192]. Dai et al. demonstrated that
mice lacking IGF2BP2/IMP2 resist diet-induced obesity and
have improved glucose tolerance, insulin sensitivity, and lon-
ger lifespan through the increased translation of UCP1 or
mitochondrial components [193].

Representative RBPs involved in DNA damage and oxi-
dative stress, cellular senescence, and age-related diseases
are shown in Figure 3.

4. Conclusion

Increasing evidence indicates that ncRNAs and RBPs are
essential regulators of various cellular processes, and dysreg-
ulation of these RNA regulators is implicated in the patho-
genesis of several diseases including neurodegenerative
diseases, metabolic diseases, and cancer. In this review, we
tried to discuss the regulatory lncRNAs and RBPs that are
involved in stress response, cellular senescence, and the path-
ogenesis of age-related diseases including neurodegenerative
diseases, metabolic diseases, immune response, and muscle
dysfunction (Tables 1 and 2). We have limited our discussion
to lncRNAs and RBPs because miRNAs have been inten-
sively reviewed by others [194–196]. Although the list of
reviewed lncRNAs and RBPs is extensive, additional RNA
regulators are certainly going to be uncovered in future stud-
ies of stress-related responses and age-related diseases.

The results of studies undertaken to uncover the roles of
lncRNAs and RBPs during stress response, cellular senes-
cence, and the pathogenesis of age-related diseases are
prompting several questions for immediate consideration.
For example, what are the molecular targets of lncRNAs
and RBPs? What signaling pathways control the expression
and function of lncRNAs and RBPs during the stress
response or in the pathogenesis of age-related diseases?
How do they contribute to the stress response and cellular
senescence? Do lncRNAs and RBPs interplay in order to fine
tune RNA metabolism? How are RNA regulators including

Table 2: Continued.

RBPs Functions References

CUGBP1

Upregulated in the diabetic hearts and the pancreas and regulates insulin secretion and
insulin resistance

Obesity-related SNPs on CUGBP1 influence alternative splicing, translation, and
turnover of target mRNAs

[185–187]

RBFOX2
Plays essential roles in alternative splicing

In diabetic hearts, majority of misspliced transcripts have RBFOX2-binding sites
[188, 189]

IGF2BP2/IMP
SNPs on IGF2BP2/IMP2 genes are associated to T2DM

IMP2 KO mice show better glucose tolerance, insulin sensitivity, and longer lifespan
[191–193]
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lncRNAs, miRNAs, and RBPs differentially expressed in age-
related diseases? As we begin to consider these questions, the
importance of functional networking between RBPs and
ncRNAs is coming to the forefront [197–199].

A deeper and more comprehensive knowledge of the fine
mechanisms involving lncRNAs and RBPs in the regulation
of RNA metabolism is warranted because regulatory
lncRNAs and RBPs are promising novel targets for interven-
tion in physiopathologies with underlying deficiencies in
stress response, cellular senescence, and the aging process.
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