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Deep learning in cancer pathology: a new generation of clinical
biomarkers
Amelie Echle 1, Niklas Timon Rindtorff2, Titus Josef Brinker3, Tom Luedde4, Alexander Thomas Pearson5 and Jakob Nikolas Kather 1,2

Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers. However, the growing number of these
complex biomarkers tends to increase the cost and time for decision-making in routine daily oncology practice; furthermore,
biomarkers often require tumour tissue on top of routine diagnostic material. Nevertheless, routinely available tumour tissue
contains an abundance of clinically relevant information that is currently not fully exploited. Advances in deep learning (DL), an
artificial intelligence (AI) technology, have enabled the extraction of previously hidden information directly from routine histology
images of cancer, providing potentially clinically useful information. Here, we outline emerging concepts of how DL can extract
biomarkers directly from histology images and summarise studies of basic and advanced image analysis for cancer histology. Basic
image analysis tasks include detection, grading and subtyping of tumour tissue in histology images; they are aimed at automating
pathology workflows and consequently do not immediately translate into clinical decisions. Exceeding such basic approaches, DL
has also been used for advanced image analysis tasks, which have the potential of directly affecting clinical decision-making
processes. These advanced approaches include inference of molecular features, prediction of survival and end-to-end prediction of
therapy response. Predictions made by such DL systems could simplify and enrich clinical decision-making, but require rigorous
external validation in clinical settings.
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BACKGROUND
Decision-making processes in oncology today no longer rely on
workflows that are linear and straightforward; rather, with the
availability of an ever-increasing number of biomarkers, these
flowcharts resemble intricate trees with numerous branches,
which consequently increase the complexity of treatment
recommendations for solid tumours. Currently used molecular
biomarkers in these oncology workflows can be prognostic or
predictive. Prognostic biomarkers allow the categorisation of
patients according to their risk of disease progression or death
and, accordingly, can be used to adjust treatment intensity for
individual patients. For example, in stage II colorectal cancer (CRC),
microsatellite instability (MSI) is a prognostic biomarker; if MSI is
detected, a lower treatment intensity of adjuvant chemotherapy
can be used due to the inherently better prognosis of these
patients.1 By contrast, predictive biomarkers enable a particular
targeted treatment to be chosen for a specific patient group. For
example, in treatment-refractory stage IV CRC, MSI is an FDA-
approved biomarker for immune-checkpoint-inhibitor-based
immunotherapy.2 In this case, the detection of MSI correlates
with the likelihood of a positive therapeutic response, making MSI
a strong predictive biomarker in this setting. Similarly, in breast
cancer, the detection of HER2 positivity3 makes patients eligible
for treatment with anti-HER2 agents, thus acting as a strong
predictive biomarker in this disease.4 The choice of treatment for
non-small-cell lung cancer (NSCLC) is influenced by a high number

of molecular biomarkers,5 with oncogenic mutations in the gene
encoding epidermal growth factor receptor (EGFR) and other
genes, gene fusions of anaplastic lymphoma kinase (ALK) or other
drivers and the overexpression of programmed cell death ligand 1
(PD-L1)6 being part of the standard-of-care molecular panel
required for routine treatment of advanced or metastatic disease.7

It is clear, then, that the rapidly increasing number and clinical
importance of molecular biomarkers in routine clinical practice
allows cancer treatments to be tailored more specifically accord-
ing to the genetic make-up of a particular tumour; consequently,
however, the cost, turnaround time and tissue requirements in
routine workflows also increase.8,9

The design of clinical trials for new therapeutic agents in solid
tumours is increasingly coupled to predictive biomarkers. In
addition to highly prevalent molecular features, many Phase 2 and
3 trials carried out over the past ~5 years have focused on rare
molecular subpopulations of solid tumours, such as those with
MSI,10 homologous repair deficiency11 and fusion-driven tumours
across cancer types.12–14 As mentioned above, MSI is used as a
predictive biomarker for immunotherapy, while homologous
repair deficiency tumours are effectively targetable by inhibitors
of poly ADP-ribose polymerase (PARP), and fusion-driven tumours
respond exceptionally well to molecularly targeted therapy.
However, with the prevalence of these genotypes ranging
between 1% and 10% in real-world populations, screening
potential participants for these trials is costly and hampered by
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the limited availability of molecular assays. So, despite the
increased number of prognostic and predictive biomarkers
enabling a more nuanced treatment of cancer patients, the
complexity of clinical decision-making processes increasingly
becomes an issue in clinical routine and clinical trial recruitment.
Although most new biomarkers in oncology are based on

molecular biology assays, advances in deep learning (DL) are
facilitating the extraction of otherwise hidden information directly
from routinely available data. DL is a method in the realm of
artificial intelligence (AI) that makes use of artificial neural
networks to identify recurring patterns in complex datasets.
Image data in particular has a high information density, making it
ideal for analysis with DL techniques.
Indeed, DL-based image analysis has broad applications in

multiple fields of modern medicine that involve image data: in
radiology, DL performs repetitive tasks with human-like, or super-
human, performance, such as tumour detection or organ
segmentation on computer tomography (CT) images. To date,
more than a dozen DL methods are approved for clinical use in
radiology by the FDA—for example, DL-based analysis of CT data

was carried out in a 2019 lung cancer screening trial,15 and
evidence on the clinical usefulness of these methods is quickly
mounting. Magnetic resonance imaging (MRI) data, which contain
much more information than CT data, are also amenable for DL-
based mining,16 and DL has also shown robust results for non-
radiology tasks such as the analysis of real-time endoscopy
images17,18 and skin cancer detection in dermoscopy images.19,20

Compared to these imaging modalities, however, histology is a
ubiquitous image source with a remarkable information density
that can be derived from routine clinical practice. Being much
larger than radiological images in terms of pixels, images from
histology slides carry much more information: millions of different
cells can be seen in a histology slide and their morphology and
spatial arrangement carry much more information than other
medical images. Even the size of a whole chest CT dataset does
not get close to the size of the dataset from one histological
whole- slide image derived from the tumour of the same patient
when measured in pixels (Fig. 1a, b). This high information density
makes histological images an attractive source for DL-based
biomarker extraction.
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Fig. 1 Consensus pipeline of deep learning in pathology. a Routine histology image of lung cancer (from The Cancer Genome Atlas (TCGA)
and The Cancer Imaging Archive (TCIA)). b Size comparison (in terms of pixels) of a chest CT scan of the same patient. c Consensus image-
processing pipeline. First, either the whole slide or just the tumour region is tessellated into smaller image tiles. d These tiles comprise an
image library, similar to the library preparation (prep.) in genome sequencing. e Tiles are preprocessed to achieve rotational constancy and
augment the dataset. f Deep- learning classifiers are developed and deployed by splitting the patient cohort into a training and testing set, by
using cross-validation or by having multiple cohorts available for training and testing. g Ideally, an additional external dataset is used for
validation of the resulting classifier.
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With this paper, we aim to enable a clear overview of DL
applications in the field of cancer histology by the categorisation
and comparison of DL-based studies from a clinical point of
view. Subsequently, possible use cases and necessary further steps
on the way to beneficial usage in a clinical setting will be
discussed.

DEEP-LEARNING-BASED ANALYSIS OF HISTOLOGY IMAGES
During the diagnostic workup of patients with solid tumours,
tissue samples are usually obtained either by biopsy or by surgical
resection, followed by pathological preparation and in most cases
staining by haematoxylin and eosin (H&E). Therefore, H&E slides
are routinely available for almost every cancer patient, making
them an easy-to-obtain, information-rich data source for the
assessment by DL methods, also explaining the focus of previous
studies on these types of images. Nevertheless, DL is a tool with
applicability in different types of histological stains, such as
immunohistochemistry (IHC)21 or periodic acid-Schiff.22

Image-processing steps
The sheer data size of scanned whole-slide histology images poses
practical challenges for the analysis of DL-based images. Their
large file size does not enable them to be loaded entirely onto the
memory of graphics-processing units (GPUs), the workhorse of DL.
Furthermore, histology images usually contain an abundance of
non-tumour tissue, which dilutes the overall information content.
To deal with such large and heterogeneous images, extensive
preprocessing of these images is required; consequently, a
consensus image analysis pipeline has been created. This step-
by-step analysis includes tessellation (Fig. 1d), preprocessing of
image tiles (Fig. 1e) and training and testing of a DL network, also
called DL classifier (Fig. 1f), that can then be applied to external
validation cohorts (Fig. 1g). The term “classifier” refers to any
computer programme that—after being trained on a set of
examples—can subsequently categorise similar data. In histology
image analysis, a classifier can categorise small image patches as
“tumour” or “non-tumour”, or it can classify patients as “potential
responders” or “potential non-responders”. Among all classifiers,
DL networks are emerging as the most widely used and most
powerful technology.

Basic and advanced applications of DL in cancer histology
Following standardised preprocessing procedures, histological
images can be used for a range of DL applications. DL workflows
use a training cohort of patients to predict a predefined label from
image data. Previous studies have explored a variety of labels,
ranging from predicting the presence of invasive tumour tissue in
prostate tissue,23–25 to determining tumour genotype directly
from histology images.26,27 Here, we propose that these types of
label are distinguished on the basis of their use in basic or
advanced DL applications (Supplementary Fig. 1).
Basic DL applications aim to simplify routine workflows that are

currently entirely performed by human pathologists. Prominent
examples are the detection of tumour tissue in biopsy samples or
tumour subtyping based on morphology, such as Gleason scoring
of prostate cancer samples. In the latter case, the numerical value
of the Gleason score is used as a label for training a DL system.
These basic DL applications can potentially decrease cost and
turnaround time in pathology departments, but do not change
the ultimate readout upon which clinicians base their treatment
recommendations.
Advanced DL applications, on the other hand, go beyond the

standard reporting that is currently performed by pathologists.
One example is the prediction of genetic mutations and survival
directly from H&E-stained tissue slides. In the case of genetic
mutations, the image label is the genotype as determined during
the conventional diagnostic workup using a molecular biology

assay or other gold standard tests as the ground-truth method.
“Ground truth” refers to the type of assay used to label images
during training. Thus, the DL classifier can be trained to reproduce
the “ground truth” (also called “gold standard method”) just by
analysing histology image data. Unlike basic DL applications, such
advanced applications of DL can provide clinicians with additional
information that is not being extracted from routine material in
current clinical workflows: these applications constitute a new
class of biomarkers with potential prognostic and/or predictive
information (Supplementary Fig. 1).
DL is thus a powerful tool with which to extract information

from histology images of solid tumours, and can be used to
automate current workflows or to provide additional information
that is currently not being used in clinical workflows. In the next
few sections, we will summarise the current status of basic and
advanced applications of DL in cancer histology image analysis.

BASIC APPLICATIONS OF DL: TUMOUR DETECTION, GRADING
AND SUBTYPING
In general, every sample of a solid tumour undergoes detailed
analysis by a trained pathologist who confirms the presence of
tumorous tissue and provides further information such as grade
and subtype of the tumour sample at hand. In the field of those
basic but important diagnostic tasks, DL has shown potential to be
useful to automate repetitive tasks in diagnostic pathology.

Automating histopathology workflows by DL
For many years, digital pathology publications have described and
iteratively refined basic image analysis tasks such as tumour
detection,28 tumour subtyping,29 quantification of cell numbers30

and classification of cell types.31 What these approaches have in
common is that the ground-truth method and the DL system use
the same image data as input for their prediction. For example,
the presence of invasive tumour tissue in prostate cancer biopsy
samples is normally assessed from H&E-stained tissue slides by a
pathologist. A basic DL system recapitulates this task and is
trained to predict the presence of invasive cancer from the same
H&E histology image. Thus, such DL-based tumour detectors can
automate tedious tasks that are normally performed manually.
Numerous studies, identified by a predefined search query on

the MEDLINE database as shown in Supplementary Methods, have
demonstrated the robustness of such DL-based tumour detection
approaches across a range of tumour types, as summarised in
Table 1 and Fig. 2a. Classification performance, meaning how well
a DL classifier predicts a pre-specified endpoint, is typically
measured by the area under the receiver-operating curve
(AUROC), and DL-based tumour detectors often achieve AUROC
values >0.99, indicating the almost complete accordance of the
results from pathologists and DL networks. Other potential basic
image analysis problems relate to recapitulating tumour detection
and subtyping based on histological features. For example, the
Gleason system is the single most relevant morphological
biomarker used for patient stratification in prostate cancer.
Gleason grading is usually performed manually by expert
pathologists based on H&E tissue slides, but DL systems have
been successfully applied to automate this task.23 Similarly,
classifying NSCLC into adenocarcinoma or squamous cell carci-
noma has clinical relevance and is reproducibly and quickly
performed by expert pathologists and DL systems alike.26

Ultimately, however, basic DL systems for tumour detection,
grading and subtyping are of limited interest to clinicians as they
do not change clinical practice in oncology. Compared to expert
pathologists, such systems could potentially reduce cost or
turnaround time, but only in rare cases, do they improve
sensitivity and specificity as compared to human expert observers.
Thus, although basic DL systems can bring about profound
changes in the way pathology is practiced, from an oncologist’s
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point of view, they do not immediately change clinical workflows
and treatment recommendations for cancer patients.

Clinical-grade validation of basic DL methods
The most challenging part of developing basic DL systems
in digital pathology is their clinical validation. The use of only a
single dataset for method development and validation carries the
risk of overfitting, resulting in the creation of a DL system that
performs well in that particular patient cohort, but does
not generalise to external cohorts. Correspondingly, validation
of the DL system in external datasets, ideally multicentre
datasets, is paramount for its ultimate routine use and
regulatory approval. The past 2 years have seen an increasing
number of large-scale, multicentre studies of basic DL systems. For
example, three independent studies have demonstrated DL
systems for prostate cancer detection and grading with
pathologist-level performance and external validation in large
patient cohorts.23–25 A key point to take away from these large-
scale efforts is that the performance of DL systems increases with
patient number in the training set, reaching a plateau in
performance after training on 10,000–15,000 histological whole-
slide images,23 which indicates the need for tremendous amount
of images and data when aiming for the development of
sufficiently performing DL systems. These efforts mirror large-
scale international studies using other imaging modalities, such as
mammography imaging.32 Therefore, for simple image recogni-
tion tasks, DL systems could conceivably alleviate workload for
human experts in the near future.

ADVANCED APPLICATIONS: PREDICTION OF MUTATIONS,
SURVIVAL AND RESPONSE FROM HISTOLOGY
Moving beyond basic applications of DL in histology image
analysis
DL systems can approach human performance in tumour
detection, grading and subtyping, but histology images contain
an abundance of information that is currently not systematically
exploited to guide treatment decisions in oncology. As we will
discuss in the following sections, this abundance of information
has been demonstrated by a number of studies that have used DL
to infer high-level labels directly from H&E images. These high-
level labels cannot be reliably inferred by human experts
observing histology images, but require other methods in addition
to routine histopathology. In particular, there is an increasing
focus on predicting clinically relevant labels directly from
histology in three major areas: inference of genetic alterations,
prediction of survival and prediction of treatment response
(Table 2 and Fig. 2b). Similar to research in the broader field of
digital pathology, research in these three key applications of DL
has been rapidly growing in the past few years (Supplementary
Fig. 2a, b). Unlike basic image analysis techniques, these advanced
applications of DL to histology image analysis have the potential
to directly change clinical decision-making in the management of
solid tumours. Here, we review the current state of clinically
applicable DL pathology and its implications on clinical workflows
as well as clinical trial design and recruitment.

Prediction of genotype and gene expression
Oncogenic driver mutations change normal cells into malignant
cancer cells, rewiring the cellular machinery and fundamentally
changing cellular behaviour.33,34 Accordingly, such genetic driver
mutations confer changes in the morphology of cancer cells, such
as the nuclear and cytoplasmatic texture, size and shape within a
histological image. Furthermore, malignant cells can also induce
responses in neighbouring non-malignant cells such as fibroblasts
and lymphocytes, leading to second-order morphological changes
in tumour tissue on a micrometer or millimeter scale.35 Although

each of these morphological features caused by single oncogenic
driver mutations might be subtle, studies have shown that these
changes can be reliably detected by DL. Indeed, merely observing
these morphological patterns in H&E images allows the genotype
of individual genes to be predicted directly from routine histology
images. The first systematic DL-driven study in this area
demonstrated how cancer genotype was reflected in the
histological phenotype of lung adenocarcinoma (Table 2 and
Fig. 2b): Coudray and coworkers showed that, as well as the
automated detection and classification of tumours, specific
genetic mutations, including those in serine/threonine kinase 11
(STK11), tumour protein p53 (TP53) and epidermal growth
factor receptor (EGFR) could be predicted from histology
alone, with AUROC values reaching up to 0.85, which they
validated in an external cohort.26 Another study showed that the
genotype of the oncogene speckle-type BTB/POZ protein (SPOP)
could be predicted from H&E-stained images of prostate cancer,
albeit with a reduced classification performance.36 Similarly, in
melanoma, the NRAS proto-oncogene (NRAS) and B-Raf proto-
oncogene (BRAF) mutational status was predictable directly from
H&E images.37

Predicting the mutational status of these genes is relevant for
targeted therapy. In lung cancer, the genotype of EGFR guides the
use of treatment with multiple tyrosine kinase inhibitors (TKI) of
the mutated EGFR protein, and in melanoma, mutated BRAF is
directly targetable with a serine/threonine kinase inhibitor. Thus,
detecting mutations in these genes directly from routine histology
could have broad implications for clinical workflows. Another
clinically relevant example concerns cancer immunotherapy. MSI,
the genetic correlate of mismatch-repair deficiency (dMMR), is one
of a few FDA-approved genetic biomarkers for the use of immune-
checkpoint inhibition therapy, and the only one applicable to any
type of cancer. MSI causes a strong morphological change in the
tumour and its microenvironment, and can reliably be detected
from histology alone in gastric, colorectal and endometrial
cancer.27 Multiple studies have validated these findings as well
as extending DL-based genotyping to a range of other mutations
and gene expression markers across multiple tumour types
(Table 2 and Fig. 2b). Studies published over the past 1–2 years
have pursued a “pan-cancer pan-mutation” approach to try to
predict any genetic alteration in any type of solid tumour directly
from H&E histology.38–40 However, these studies have been largely
based on one particular dataset, “The Cancer Genome Atlas
(TCGA)”, provided by the National Cancer Institute (NCI), and so
large-scale validation in genomically characterised cohorts beyond
TCGA is needed to gauge the robustness of these methods in pan-
cancer applications.
Currently, detecting any genetic change in tumour tissue in

clinical routine requires wet-lab assays, such as IHC, in situ
hybridisation (ISH), polymerase chain reaction (PCR) or next-
generation sequencing (NGS), performed in parallel with the
routine evaluation of histology samples, such as tumour subtyping
and grading. Although these wet-lab assays vary in terms of
sensitivity and specificity, they share a common set of disadvan-
tages: they tend to be expensive and time-consuming and are not
available at every point of cancer care. By contrast, DL-based
evaluation of scanned routine histology slides does not incur any
significant cost or time and could be deployed even on mobile
hardware.39 Notably, however, in all DL-based studies carried out
so far, the performance (as measured by AUROC) has varied
according to the sample size of the training cohort and the
phenotypic strength of the particular genetic target, but has been
consistently inferior to the gold standard wet-lab tests (Table 1).
Technological advances and training on larger datasets, however,
are expected to boost performance. Furthermore, even imperfect
DL-based tests could be used to prescreen patients for a genetic
alteration of interest, as will be discussed below.
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Survival prediction through DL biomarkers
At almost any branch of the therapeutic decision-making tree in
oncology, the risk of relapse or death must be taken into account.
For example, for patients with stage II or III colorectal cancer (CRC),
a high risk of relapse provides a reason to perform adjuvant
chemotherapy after surgery,41 and for stage IV CRC, a high risk of
death can prompt oncologists and patients to choose a more
aggressive systemic therapy than the one currently recommended
in guidelines.42 Currently, survival is estimated by clinical
parameters such as age, gender, cancer stage, pre-existing
conditions, genetic alterations and histology risk factors. These
histology risk factors, which are abundant, include tumour cell
differentiation, stromal abundance, lymphocyte fraction, lymphatic
vessel invasion, vascular invasion, perineural invasion and necrosis
in almost any type of solid tumour. In addition to these established
risk factors, higher-level features carry prognostic information. For
example, analysis of the spatial arrangement of lymphocytes
showed that a high neutrophil-to-lymphocyte ratio is associated
with unfavourable overall survival,43 or examination of sub-visual
features such as chromatin texture can serve as a prognostic
indicator in different solid tumours.44 DL can potentially integrate
all of these visible and sub-visual features directly from image data
to predict survival, as has been shown in a number of studies
(Fig. 2a). Interestingly, while some studies have used manually
defined prior parameters to train the DL network for survival
predictors,45 other studies have used an unbiased approach and
leave the feature selection entirely to the deep network,46,47 which
means that no prognostic parameters, such as tissue type or
cellular aspects, were manually identified or extracted during the
process. Both approaches are still in need of being independently
and prospectively validated in order to ultimately serve as the basis
for risk-adjustment strategies in a clinical setting.
Several key studies have explored DL-based survival prediction

in a number of cancer types. Bychkov et al. showed that it is
possible to predict 5-year disease-specific survival of patients with
CRC using H&E-stained tissue microarrays alone.48 Similarly,
improvement of survival prediction, compared with state-of-the-
art methods, was demonstrated in patients with CRC by prediction
of OS through tissue classification.45

Courtiol et al. predicted OS in a large cohort of patients with
malignant mesothelioma and visualised histological features
associated with long or short survival identified by the DL
network.46 Concurrently, disease-specific survival was estimated
by DL-based prediction of the development of distant metastatic
recurrence in patients with primary melanoma.49 This is a
prime example showing that it is possible to train DL networks
on clinical endpoints directly from histology. Moreover, this
process could even reveal new morphological biomarkers by
highlighting specific structures and regions. In the future, this
reverse engineering of relevant features might even be helpful in
identifying targets for the development of new therapies.
However, so far, only a small number of publications have
developed and discussed the clinical implications of DL-based
survival prediction from routine histology (Table 2 and Fig. 2b). In
particular, there are still no studies with clinical endpoints that
have incorporated DL survival prediction into clinical workflows,
although large prospective trials have evaluated clinical endpoints
with other prognostic biomarkers such as the use of OncotypeDX
in the TAILORx trial of breast cancer;50 this level of evidence is still
missing from the DL literature.

End-to-end response prediction directly from histology
The number of available options for targeted therapy for different
types of cancer is constantly increasing. However, most of those
therapies are effective in only a subset of patients and yet might still
cause considerable side effects in non-responders. A prime example
is cancer immunotherapy, which, although it has completely
changed the therapeutic landscape for melanoma and lung cancer,

can still leave approximately half of all patients with these tumour
types without a meaningful response. DL might be key to the
detection of structures and transformations in tumour tissue that
could be used as predictive markers of a positive response to
targeted therapies and therefore helps to identify responders while
minimising the negative effects on non-responders.
Two potential ways of applying DL to routine histology images

for the detection/identification of positive predictive markers are
conceivable. First, DL can identify features, mutations, hormone-
receptor status or similar molecular alterations that are already
known to be targets of therapy approaches or proxies for
treatment response. With DL being potentially time- and cost-
saving, this approach could help to assign patients to the optimal
therapy regime faster and more precisely. Alternatively, DL can be
used to predict treatment response directly from a histological
slide without being trained to detect specific predefined
molecular biomarkers. This “end-to-end” workflow requires DL
networks to be trained on large patient cohorts for which the
specific type of treatment response is known. Because such image
data are not easily obtained, few studies have investigated this
(Table 2 and Fig. 2b). Notably, Harder and coworkers classified
melanoma patients as responders and non-responders to
ipilimumab,51 and Madabhushi et al. demonstrated a concept
for the prediction of response to immunotherapy in patients with
NSCLC directly from H&E- stained images.52 However, these
studies only included small patient numbers, and it can be
expected that the potential of DL to predict therapy response is
not yet exhausted. Similarly to survival prediction networks,
treatment response prediction might lead to the detection of new
morphological markers on histology images, resulting in new
therapeutic strategies.

IMPLEMENTATION OF DL BIOMARKERS IN CLINICAL
WORKFLOWS
DL-based mutation prediction for pre-screening or definitive
testing
Clinical workflows for almost every major type of advanced cancer
rely on molecular testing to tailor treatment to the molecular
make-up of the tumour tissue; practical limitations, however,
preclude universal testing. The application of DL-based genotyp-
ing in these workflows is twofold: DL biomarkers could be used to
prescreen patients before genetic testing, or could ultimately
replace current methods for definitive testing, the latter requiring
a much higher test performance than achieved until now. Most
proof-of-concept studies of DL for mutation prediction have
reported AUROC values in the range of 0.70–0.90, which translates
roughly to a specificity of 50% at a sensitivity of 90–95%. Although
this performance is clearly below what is required of a definitive
test, it might be useful for pre-screening patients for rare traits
such as NTRK fusion, for example, narrowing down the population
of potential carriers by 50% would alleviate the load of molecular
testing needed. Considering the development of DL in digital
pathology, technological advances can be expected to boost
performance in the future. Accordingly, more and more DL
biomarkers could exceed the threshold of AUROC 0.90, translating
to specificities and sensitivities that are similar, or even superior, to
those currently expected from molecular assays. In this case, DL
concepts could be considered as definitive testing methods to
detect mutations directly from histology slides.

Moving towards clinical approval: where are we now?
Compared to its application in the field of radiology, applications
of DL in histopathology have been slow to take off, but the
research landscape is quickly moving from technology-driven
towards clinically relevant studies, which focus more and more on
problems and tasks with direct relevance for clinical decision-
making and patient treatment. In parallel, more and more DL
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concepts are receiving approval from regulatory entities and
finding their way into clinical application, for example, to detect
intracranial haemorrhage on brain CT scans or to identify a
pneumothorax or rib fracture on chest CT images.53 In the realm of
histopathology image analysis, current FDA-approved procedures
are limited to basic DL applications such as tumour detection and
grading,54 but advanced image analysis methods could be
expected to gain clinical approval in the next few years. However,
the routine deployment of DL methods is still hampered by
practical limitations: first, the broad implementation of DL
histology into clinical practice would require the widespread
availability of slide scanners and standardisation of file formats,
which is currently far from routine practice in diagnostic
pathology. Also, DL systems will have to be further improved in
terms of performance to become clinically usable tools; when
using DL systems for pre-screening, false- positive predictions can
be mitigated by subsequent molecular testing, but false-negative
predictions cannot be tolerated in a clinical setting.
In addition to being potentially useful tools for routine clinical

practice in oncology, DL systems could be useful in clinical trials in
two ways. By using “mutation prediction DL systems”, large patient
cohorts could be inexpensively screened for a particular genetic
feature. Recruiting a sufficient number of patients with a rare
molecular alteration for a clinical trial is increasingly challenging, so
DL-based analysis of histological H&E images could facilitate
clinical trial recruitment by massively expediting and simplifying
this process. In addition, DL systems could be trained to predict
treatment response directly from H&E histopathology images,
thereby essentially constituting a new class of companion
diagnostics. As a word of caution, however, before the application
of any new type of biomarker in routine clinical practice or clinical
trials, legal and ethical aspects have to be considered in detail
(Box 1). Future studies are needed to address these points
specifically in the context of DL systems in oncology.

Moving towards end-to-end systems
Genetic biomarkers in solid tumours are rarely an end in
themselves, rather, they can be used as a surrogate to predict
the response to a particular treatment. In the best-case scenario,
the surrogate genetic marker is mechanistically related to a
particular treatment and yields a high positive predictive value for
treatment response. For example, mutations in, or overexpression
of, HER2 in breast cancer are predictive of a positive response to
trastuzumab.4 However, the situation for many other molecular
biomarkers is not as clear-cut. For example, the overexpression of
PD-L1 in tumour tissue does not have a perfect positive predictive
value for the response to anti-PD1/PD-L1 treatment in lung
cancer.55 Consequently, end-to-end DL systems have been
proposed as an alternative approach, aiming to predict the
response to treatment directly from images. Response to cancer
treatment is often assessed through the “Response evaluation
criteria in solid tumours” (RECIST), and these criteria have been

used to directly train DL networks. In these cases, RECIST status is
the ground-truth label to be predicted from images. More
generally, prognostic end-to-end DL systems predict survival for
individual patients based on histology images without focusing on
a specific type of treatment. Such end-to-end systems could
theoretically outperform molecular prognostic or predictive
biomarkers, as they would have the potential to predict outcome
directly from a histological image without focussing on a
predefined predictive parameter.
Unfortunately, patient cohorts needed for predictive end-to-end

DL systems are currently unattainable to most researchers.
Collaboration between clinicians, pathologists and DL researchers
is key to the development of such systems in the future.

OUTLOOK
Within less than 2 years of the first publication on DL-based
genetic testing, the application of advanced DL in histopathology
has grown exponentially, promising clinical impact on a broad
range of scenarios. This paper provides an overview and a
quantitative comparison of different applications of this technol-
ogy. Of note, quality standards in clinically applied DL histopathol-
ogy are still evolving. As shown in Tables 1 and 2, there is a
marked discrepancy in terms of external validation and the
reporting of statistical measures between different studies. To
move DL methods to clinical application, external validation
should be a cornerstone of future studies. Also, transparent
reporting of the number of patients, slides and cohorts included in
an analysis as well as disclosure of a range of statistical measures
should become the standard in the field.
Most DL classifiers still require an increase in performance to

achieve the reliability that is needed for application in clinical
workflows as definitive testing tools. Such improvements can be
expected to be brought about by three key drivers: the availability
of larger datasets with clinical annotations23 and improvements in
both hardware and algorithms. This new class of biomarkers has
the potential to change clinical workflows in oncology in the next
few years, but large-scale multicentre trials are needed to verify
whether this approach can live up to these hopes.
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Box 1 Legal and ethical aspects

A deep-learning-based biomarker has to be held to the same standard as any
other biomarker: it has to be developed transparently according to the TRIPOD
guidelines82 (https://www.equator-network.org/reporting-guidelines/tripod-
statement/) and it should be validated in multicentric retrospective and
prospective studies.
To be used in clinical routine, a deep-learning system has to fulfil medical device
standards set by the Food and Drug Administration (FDA), the European
Medicines Agency (EMA) or a similar institution in other regions.
Dynamically evolving biomarkers are a challenge for the current regulatory
system. In principle, a deep-learning system can “learn on the job” and be
iteratively defined. This is different than for any established prognostic or
predictive biomarker, which does not change over time.
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