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Abstract
Trichophyton rubrum is one of the most frequently isolated fungi in patients with dermatophytosis. Despite its 
clinical significance, the molecular mechanisms of drug resistance and pathogenicity of T. rubrum remain to 
be elucidated because of the lack of genetic tools, such as efficient gene targeting systems. In this study, we 
generated a T. rubrum strain that lacks the nonhomologous end-joining-related gene ku80 (Δku80) and then 
developed a highly efficient genetic recombination system with gene targeting efficiency that was 46 times higher 
than that using the wild-type strain. Cyp51A and Cyp51B are 14-α-lanosterol demethylase isozymes in T. rubrum 
that promote ergosterol biosynthesis and are the targets of azole antifungal drugs. The expression of cyp51A mRNA 
was induced by the addition of the azole antifungal drug efinaconazole, whereas no such induction was detected 
for cyp51B, suggesting that Cyp51A functions as an azole-responsive Cyp51 isozyme. To explore the contribution 
of Cyp51A to susceptibility to azole drugs, the neomycin phosphotransferase (nptII) gene cassette was inserted 
into the cyp51A 3′-untranslated region of Δku80 to destabilize the mRNA of cyp51A. In this mutant, the induction 
of cyp51A mRNA expression by efinaconazole was diminished. The minimum inhibitory concentration for several 
azole drugs of this strain was reduced, suggesting that dermatophyte Cyp51A contributes to the tolerance for azole 
drugs. These findings suggest that an efficient gene targeting system using Δku80 in T. rubrum is applicable for 
analyzing genes encoding drug targets.

Key Points
1. A novel gene targeting system using Δku80 strain was established in T. rubrum
2. Cyp51A in T. rubrum responds to the azole antifungal drug efinaconazole
3. Cyp51A contributes to azole drug tolerance in T. rubrum
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Introduction
Dermatophytosis is a superficial fungal infection with 
symptoms such as itching, redness, and nail abnormali-
ties. Tinea pedis (athlete’s foot), a type of dermatophyto-
sis, affects approximately 10% of the world’s population 
(Havlickova et al. 2008). Trichophyton rubrum, the most 
common dermatophyte (Zhan and Liu 2017), is a clini-
cally important organism that reduces the quality of life 
and has a unique life cycle as an anthropophilic derma-
tophyte that specifically inhabits human surface tissues. 
A limited class of antifungals, such as azole antifungals, 
are used in dermatophytosis treatment. Although drug 
resistance issues in T. rubrum have resulted in a need 
to elucidate the detailed molecular mechanisms of its 
drug resistance and to identify and analyze drug targets 
(Yamada et al. 2017; Monod et al. 2019), these issues have 
not been completely clarified because of the underdevel-
opment of genetic methods in T. rubrum.

Homologous recombination (HR), a repair mechanism 
for DNA double-strand, is one of the most commonly 
used genetic engineering methods (Smithies et al. 1985). 
This technique allows not only the precise insertion of 
any DNA fragment into the desired genomic region, 
but also the introduction of mutations, deletions, and 
replacements based on sequence homology. Neverthe-
less, eukaryotes also possess a nonhomologous end-join-
ing (NHEJ) repair mechanism for double-strand breaks, 
which competes with HR-mediated insertion of DNA 
into target regions (Krappmann 2007). To efficiently pro-
mote targeted integration via HR, several fungal species 
have been engineered by disrupting either of the Ku70/
Ku80 complexes involved in NHEJ (Yamada et al. 2009; 
Matsumoto et al. 2021). These strains have demonstrated 
the effectiveness of improving HR efficiency in various 
fungi (Yamada et al. 2009; Matsumoto et al. 2021).

Azole antifungal drugs used for treating dermatophyto-
sis target the lanosterol demethylase Cyp51, which func-
tions in the ergosterol synthesis pathway. XP_003235929 
and XP_003236980 in T. rubrum have been identified as 
Cyp51A and Cyp51B homologs, respectively (Celia-San-
chez et al. 2022). It has been reported that the addition 
of azole antifungal drugs induces fungal Cyp51 expres-
sion (Henry et al. 2000; Roundtree et al. 2020). This result 
suggests that Cyp51A functions as a responsible Cyp51 
isozyme when ergosterol biosynthesis is hindered, such 
as during treatment with azole antifungals. Because the 
cyp51 homolog erg11 is an essential gene in budding 
yeast (Kalb et al. 1987), a deficiency of dermatophyte 
cyp51A could cause strong growth defects. In budding 
yeast, disruption of the natural 3′-untranslated region 
(UTR) by the insertion of an antibiotic-resistant marker 
was found to destabilize the corresponding mRNAs, and 
this strategy has been used to analyze essential genes 
(Schuldiner et al. 2005; Breslow et al. 2008).

In this study, we established a highly efficient HR 
system using a ku80-deficient strain of T. rubrum 
CBS118892 (Martinez et al. 2012), a clinically isolated 
strain from a patient’s nail. This strain has been used for 
whole genome analysis (Martinez et al. 2012) and several 
transcriptome analyses (Persinoti et al. 2014; Mendes 
et al. 2018; Martins et al. 2019; Cao et al. 2022), as well 
as to produce genetically modified strains (Lang et al. 
2020; Ishii et al. 2023, 2024a,b). Therefore, we used this 
strain as a parent strain of ku80 deletion strain. Using this 
established system, we developed a mutant in which the 
neomycin phosphotransferase (nptII) gene was inserted 
into the 3′-UTR of cyp51A, which encodes a target for 
azole antifungals. When the azole antifungal drug efi-
naconazole was added, the magnitude of increase in 
cyp51A expression decreased in this mutant, which also 
exhibited sensitivity to ravuconazole and efinaconazole. 
This study would accelerate the production of genetically 
engineered strains to investigate the pathogenicity and 
drug resistance of T. rubrum and provide novel insights 
into antifungal targets.

Materials and methods
Fungal and bacterial strains and culture conditions
Trichophyton rubrum CBS118892 was cultured on Sab-
ouraud dextrose agar (SDA; 1% Bacto peptone, 4% glu-
cose, 1.5% agar, pH unadjusted) at 28 °C. The conidia of 
T. rubrum were prepared as described previously (Uchida 
et al. 2003). We confirmed the sequence of cyp51A and 
cyp51B as well as their promoters and terminators.

Plasmid construction
To construct a ku80-targeting vector, pAg1-Δku80-
flp, approximately 2.1 and 1.5 kb of the 5′- and 3′-UTR 
fragments, respectively, of the ku80 open reading frame 
(ORF) were amplified from T. rubrum genomic DNA by 
polymerase chain reaction (PCR). The PCR products of 
the 5′- and 3′-UTR fragments were cleaved by SpeI/ApaI 
and BglII/KpnI, respectively. The plasmid backbone 
of pAg1 (Zhang et al. 2003) and the FLP/FRT module 
(Reuß et al. 2004) of pMRV-TmKu80/T2 were cleaved 
by SpeI/KpnI and ApaI/BamHI, respectively (Yamada 
et al. 2014). These fragments were joined using Ligation 
high version 2 (TOYOBO, Osaka, Japan). To construct a 
cyp51A 3′-UTR-targeting vector, pAg1-cyp51A-3′-UTR, 
1.6 kbp of the cyp51A ORF and 1.5 kbp of the 3′-UTR 
fragment of cyp51 ORF were amplified from T. rubrum 
genomic DNA by PCR. The neomycin phosphotrans-
ferase gene cassette, which consists of E. coli neomycin 
phosphotransferase gene (nptII), Aspergillus nidulans 
trpC promoter (PtrpC), and Aspergillus fumigatus cgrA 
terminator (TcgrA), was cleaved from pMRV-TmKu80/
T2 using ApaI and ClaI. These fragments were joined 
using an In-Fusion HD Cloning Kit (TaKaRa Bio, Shiga, 
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Japan). The primers used in this study are shown in 
Table 1.

Transformation of T. rubrum
Trichophyton rubrum was transformed using the poly-
ethylene glycol (PEG) method as described previously 
(Yamada et al. 2008). The desired transformants and 
purified genomic DNA were analyzed by PCR. The ku80 
ORF was replaced with a cassette with the nptII and 
the flippase gene (flp) flanked by flippase recognition 
sequences (Fig.  1a). As flp was inserted downstream of 
the copper ion-responsive promoter Pctr4, nptII and flp 
were removed from the ku80-deficient genome by adding 
the copper ion chelator bathocuproinedisulfonic acid to 
induce FLP recombinase expression (Fig. 1a). Total DNA 
was extracted using the Quick-DNA Fungal/Bacterial 
Miniprep Kit (Zymo Research, Irvine, USA). Fungal cells 
were disrupted by μT-01 (TAITEC, Saitama, Japan) using 
5-mm stainless beads.

Antifungal susceptibility assay
Conidia (2 × 103) were incubated with two-fold 
serial dilutions of antifungal agents in 200  μl 

3-Morpholinopropanesulfonic acid (MOPS)-buffered 
Roswell Park Memorial Institute (RPMI)1640 medium 
(pH 7.0) at 28 °C for 7 days, and the minimum inhibitory 
concentration MIC100 (minimal concentration required 
to inhibit growth by 100%) was determined. Efinacon-
azole was purchased from BLD Pharmatech Ltd, Shang-
hai, China, and ravuconazole was purchased from Merck, 
Darmstadt, Germany.

Quantitative reverse transcription-PCR (qRT-PCR)
Total RNAs were purified using NucleoSpin RNA (Mach-
erey–Nagel, Düren, Germany) and reverse-transcribed 
into cDNAs using ReverTra Ace (Toyobo, Osaka, Japan) 
according to the manufacturers’ instructions. qRT-
PCR was performed using TB Green Premix Ex Taq 
II (TaKaRa Bio, Shiga, Japan) on a StepOne Real-time 
PCR (Thermo Fisher Scientific, Waltham, USA). The 
relative mRNA expression level was determined using 
the 2−∆∆Ctcsh1) as an endogenous control to normalize 
the samples (Jacob et al. 2012). The primers used in this 
study are listed in Table 1.

Statistical analysis
Mean values of three or more groups with two variables 
were compared using two-way ANOVA with Šidák cor-
rection and Tukey’s post hoc test, according to the rec-
ommendation of Prism 10 (GraphPad, Boston, USA). The 
difference in the efficiency of HR in wild-type (WT) and 
Δku80 strains was analyzed by two-sided Fisher’s exact 
test using Prism 10 (GraphPad, Boston, USA). Differ-
ences were considered significant at P < 0.05.

Results
To increase gene targeting efficiency, we attempted to 
delete the gene encoding Ku80. WT strain was trans-
formed using the disruption cassette and 14 of the 261 
transformants obtained (5.4%) were found to be deficient 
in ku80 gene. The cloned fungi were cultivated under 
conditions in which bathocuproinedisulfonic acid was 
incorporated into the medium to induce FLP recom-
binase and facilitate the removal of the nptII gene cas-
sette. Subsequent cloning was performed to obtain the 
deficient strain candidates. To confirm that the ku80-
deficient strain (Δku80) was generated as designed, PCR 
was performed using genomic DNA purified from WT 
and Δku80 strains (Fig. 1a, top and bottom, respectively) 
as templates. PCR performed using WT genomic DNA 
and primers designed for the 5′- and 3′-UTR of ku80 
(Primers 1 and 2 in Fig.  1a, respectively) amplified the 
PCR products with the expected size (6.6 kbp; Fig. 1b, left 
lane). The size of PCR products in Δku80 was reduced as 
expected (3.8 kbp; Fig.  1b, right lane). In contrast, PCR 
performed using primers designed against sequences in 
the 5′-UTR (Primer 3 in Fig.  1a) and the ORF of ku80 

Table 1  Primers used in this study
Primer name Sequences
ku80-5′-F-SpeI 5′-CGC ACT AGT CCA CTG GAG ATC CCC AAC 

AG-3′
ku80-5′-R-ApaI 5′-CGC GGG CCC TCG GGT CAA ACA GCC 

ACA AT-3′
ku80-3′-F-BglII 5′-CGC AGA TCT GCT GCT GGT GGG TAT GTA 

GG-3′
ku80-3′-R-KpnI 5′-CGC GGT ACC TTC GTT TGA GCC GAG AGA 

CC-3′
cyp51A-F-SpeI 5′-ACT AGT ATG GCC GTG CTC ACA GTG-3′
cyp51A-R-ApaI 5′-GGG CCC TAA CGT GAA TTA GAA CGT CGT 

TC-3′
cyp51A-3′-F-ClaI 5′-CGA TCG ATA CTC ACA GTT ATT GAA CAG 

TTT CTG TA-3′
cyp51A-3′-R-KpnI 5′-GCG GGT ACC AGC TCG GAA ATG CCT TGA 

CA-3′
Primer 1 5′-TGA GGA AGG CCA GGG GAA CTT AT-3′
Primer 2 5′-CCT TCC TGC TCT TTG CTT TCC CT-3′
Primer 3 5′-AGC TGG TCT CGG AAA GTT GG-3′
Primer 4 5′-AAG CCA CCA AAG CTC TCT CC-3′
Primer 5 5′-AGC TCC TTC AAT TGA CCC GG-3′
Primer 6 5′-AGA TGA TTC ATG ACG TAT ATT CAC CG-3′
Primer 7 5′-GAT GGA TTG CAC GCA GGT TC-3′
Primer 8 5′-CAC TGT TTT CTG GAC CTA TGA AAC C-3′
Primer 9 5′-GCG AAT ACA GCA GAG AGA AAA TTG A-3′
chs1-RT-F 5′-GGC CAC AAC GAA GCC TAT GA-3′
chs1-RT-R 5′-GCT GGG AGG TAC TGT TTG ATC AA-3′
cyp51A-RT-F 5′-CAA TCG GCC TGG GAG ATG-3′
cyp51A-RT-R 5′-TTG GAC TTA GCT CCT TCG CG-3′
cyp51B-RT-F 5′-GAA CAA CGT TGG TGT CAC CG-3′
cyp51B-RT-R 5′-ACA TCT GTG TCT GCC TGA GC-3′
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(Primers 4 and 5 in Fig. 1a) yielded PCR products of the 
expected size for WT (Fig.  1c, d, left lanes) but not for 
Δku80 (Fig. 1c, d, right lanes) strain. The deletion of nptII 
from the genome of Δku80 + nptII strain (Fig. 1a, middle) 
was confirmed by PCR using primers designed against 
the sequences in the promoter and terminator of nptII 
(Primers 6 and 7 in Fig.  1a, respectively, Fig.  1e). The 
deletion of Δku80 was also confirmed by Southern blot 

analysis of genomic DNA from WT and Δku80 strains 
(Fig. 1f ). These data indicated that the Δku80 strain was 
successfully generated with no reduction in the number 
of available drug markers. To ascertain the extent of the 
impact of Ku80 protein on growth, we compared mycelial 
growth between WT and Δku80 strains, which revealed 
comparable mycelial growth (Fig. 1g).

Fig. 1  ku80 locus targeting and nptII marker excision. a Schematic representation of the ku80 locus before and after excision of the copper ion-responsive 
promoter Pctr4, nptII and flp in T. rubrum. Site-specific recombination between the flanking FRT sequences (black box) was performed by the conditional 
expression of flp. b–e PCR analysis of total DNA samples from transformants. WT was used as a control. b Fragments were amplified with primer pairs 
(Primers 1 and 2). c Fragments were amplified with primer pairs (Primers 3 and 4). d Internal fragments of the ku80 ORF were amplified with primer pairs 
(Primers 5 and 4). e Internal fragments of nptII were amplified with primer pairs (Primers 6 and 7). The nptII-harboring strain (Δcla4) was used as a positive 
control. f Southern blot analysis of genome DNA samples from wild-type and Δku80 strains. g Mycelial growth of WT and Δku80 strains on SDA at 28 °C 
for 16 days
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The mRNA expression of cyp51A in T. rubrum was 
upregulated by the addition of the azole antifungal drug 
efinaconazole, but that of cyp51B was not upregulated 
(Fig.  2a). We attempted to insert the nptII cassette into 
the downstream of cyp51A ORF of T. rubrum, as demon-
strated in budding yeast studies (Schuldiner et al. 2005; 
Breslow et al. 2008). Using the obtained Δku80 strain, we 
inserted the nptII cassette into cyp51A 3′-UTR (herein-
after termed the insertional mutant; Fig. 2b, c). Homol-
ogous recombinant strains were obtained in 12 of 26 
strains (46.2%; Table 2) in which the insertion of the drug 
resistance gene within target region was confirmed by 
PCR using primers designed within the ORF and 3′-UTR 
of cyp51A (Primers 8 and 9, respectively; Fig. 2b, c). The 
HR efficiency of the Δku80 strain was 46 times higher 
than that of the WT strain (1/98; 1.0%; Table  2). These 
data demonstrated that a highly efficient HR method had 
been established in T. rubrum.

Under efinaconazole-free conditions, the mRNA level 
of cyp51A in the two independently isolated insertional 
mutants, which were derived from the Δku80 strain, were 
comparable to that in the parent strain Δku80 (Fig. 2d). 
Nevertheless, efinaconazole-induced elevation of cyp51A 
mRNA level decreased in the insertional mutants 
(Fig. 2d). These findings suggest that the insertion of the 
nptII gene cassette into the 3′-UTR of cyp51A causes 
mRNA perturbation at least under the condition of 
cyp51A induction in T. rubrum. The insertional mutants 
exhibited similar mycelial growth as that of the parent 
strain Δku80 (Fig. 2e), but it showed increased sensitivity 
to the azole antifungals efinaconazole and ravuconazole 
(Table 3). However, the MICs of itraconazole and lulicon-
azole remained unchanged in the insertional mutants. 
These findings suggest that Cyp51A functions as a factor 
for azole antifungal tolerance in T. rubrum.

Discussion
Trichophyton rubrum is an anthropophilic dermatophyte 
specialized for human parasitism, whereas several other 
dermatophytes are zoophilic or geophilic (Reiss Errol et 
al. 2011). The nature of this fungus is of great interest 
from not only a medical but also biological point of view. 
In recent years, transcriptomic, proteomic, and immu-
nological studies of this fungus have been conducted 
extensively (Xu et al. 2018, 2022; Burstein et al. 2020; 
Peres et al. 2022; Galvão-Rocha et al. 2023). Nevertheless, 
molecular and cellular biological studies of T. rubrum 
have been limited partially due to a lack of genetic tools 
for this organism. In this study, we generated a ku80-
deficient strain of this fungus and demonstrated that 
this strain can be applied in efficient HR methods, simi-
lar to a system established in a zoophilic dermatophyte, 
Trichophyton mentagrophytes (formerly Arthroderma 
vanbreuseghemii) (Yamada et al. 2009). The method 

established in this study might serve as a fundamental 
technique to promote research that will advance the find-
ings of previous comprehensive analyses and immuno-
logical analyses observed on the host side.

The insertional mutant, in which the expression induc-
tion of cyp51A by efinaconazole was attenuated, exhibited 
increased sensitivity to efinaconazole and ravuconazole. 
Considering that cyp51A expression was upregulated 
in response to efinaconazole addition, we speculated 
that T. rubrum Cyp51A is an inducible Cyp51 isozyme 
crucial for tolerance to azole antifungals. Indeed, it has 
been reported that itraconazole treatment also induces 
an increase in cyp51A expression (Diao et al. 2009). In 
A. fumigatus, loss or suppression of cyp51A expression 
enhances sensitivity to the azole antifungal fluconazole 
(Hu et al. 2007). Conversely, cyp51B deficiency does 
not significantly alter fluconazole sensitivity (Hu et al. 
2007). This difference may be partially explained by the 
lower binding affinity of Cyp51A for fluconazole than for 
Cyp51B (Andrew et al. 2010). Nevertheless, a difference 
in the induction of the expression of each cyp51 gene in 
response to azoles may also contribute to this disparity in 
sensitivity. Regarding T. rubrum, no studies have investi-
gated the contribution of Cyp51A and Cyp51B isozymes 
to the resistance to azole antifungal drugs. It has been 
reported that strains of T. mentagrophytes with a defi-
ciency in Cyp51B exhibit a 2–3-fold reduction in MICs 
and enhanced susceptibility to itraconazole and voricon-
azole (Yamada et al. 2022). This observation highlights 
the necessity for further investigation into the suscepti-
bility of the Cyp51 isozymes in dermatophytes to azole 
drugs. In the future, it is important to generate T. rubrum 
strains that are deficient in cyp51A and cyp51B, followed 
by analyzing their involvement in growth and resistance 
to azole antifungal drugs.

The induction of Cyp51 expression has been exten-
sively studied in Aspergillus species. It is known that in 
response to ergosterol depletion by azole treatment, the 
membrane-bound transcription factor SrbA is cleaved by 
proteases and activated (Dhingra et al. 2016; Bat-Ochir 
et al. 2016), translocating into the nucleus and upregu-
lating the expression of enzymes involved in the ergos-
terol synthesis pathway, including Cyp51A (Zhang et 
al. 2021). A deficiency in SrbA in A. fumigatus has been 
demonstrated to markedly enhance the azole suscepti-
bility of the azole-sensitive and -resistant fungi (Willger 
et al. 2008; Hagiwara et al. 2016). Moreover, the SrbA-
binding region located upstream of the cyp51A gene has 
been shown to contribute to drug resistance by form-
ing tandem repeats (Gsaller et al. 2016; Kühbacher et 
al. 2022). As the regulatory mechanism of cyp51 expres-
sion in T. rubrum is anticipated to represent a novel 
drug target for azole drug susceptibility and a corner-
stone of research for elucidating the mechanism of azole 
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Fig. 2  Production and characterization of the cyp51A 3′-UTR insertional mutants of T. rubrum. a The mRNA expression of cyp51A and cyp51B with or 
without 1 ng/ml efinaconazole in WT. Data are expressed as mean ± SD. The dots on the graph represent biological replicates (n = 4). n.s., not significant. 
****, P < 0.0001. Two variables were compared using two-way ANOVA with Šidák correction. b Schematic representation of the cyp51A locus of WT and 
insertional mutant. c PCR analysis of total DNA samples from the independently isolated insertional mutant #1 and #2. The fragments were amplified 
with primer pairs (Primer 8 and 9). Δku80 was used as a control. d The mRNA expression of cyp51A in Δku80 and insertional mutant #1 and #2 with or 
without 1 ng/ml efinaconazole. The bars represent the standard deviation of the data obtained from three independent experiments. Data are expressed 
as mean ± SD. The dots on the graph represent biological replicates (n = 4–10). n.s., not significant. ****, P < 0.0001. Two variables were compared using 
two-way ANOVA with Tukey’s post hoc test. (e) Mycelial growth of Δku80 and insertional mutant #1 and #2 on SDA at 28℃ for 13 days
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resistance. Consequently, it is of great interest to eluci-
date the detailed molecular mechanism of the regulation 
of cyp51A expression by utilizing genetic tools, such as 
Δku80, which can be employed to elucidate the molec-
ular mechanisms underlying the regulation of cyp51A 
expression in T. rubrum.
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