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Abstract: Streptococcus suis is a swine pathogen that is capable of causing severe outbreaks of disease
in the nursery. Demographic parameters such as host recruitment rates can have profound effects on
the transmission dynamics of infectious diseases and, thus, are critically important in high-turnover
populations such as farmed swine. However, knowledge concerning the implications that such
parameters have on S. suis disease control remains unknown. A stochastic mathematical model
incorporating sub-clinically infected pigs was developed to capture the effects of changes in host
recruitment rate on disease incidence. Compared to our base model scenario, our results show that
monthly introduction of pigs into the nursery (instead of weekly introduction) reduced cumulative
cases of S. suis by up to 59%, while increasing disease-removal rates alone averted up to 64% of cases.
Sensitivity analysis demonstrated that the course of infection in sub-clinically infected pigs was highly
influential and generated significant variability in the model outcomes. Our model findings suggest
that modifications to host recruitment rates could be leveraged as a tool for S. suis disease control,
however improving our understanding of additional factors that influence the risk of transmission
would improve the precision of the model estimates.

Keywords: Streptococcus suis; swine; batch management systems; mathematical modeling;
epidemiology; recruitment rate; transmission dynamics

1. Introduction

Streptococcus suis is a production disease of swine and one of the most common causes of piglet
morbidity and mortality after weaning [1]. Disease resulting from infection with S. suis usually
occurs in piglets up to 10 weeks in age, although pigs of any age can be affected [1]. Cases may
present as severe systemic infections such as meningitis, septicemia, arthritis, pneumonia, and sudden
death [2]. The bacterium commonly resides in the upper respiratory tract of pigs and is highly diverse,
with 35 serotypes known to date [3]. Among the 35 serotypes, serotype 2 is often associated with
disease in pigs and is most frequently isolated from diseased cases [3]; however, not all strains are
pathogenic, while varied virulence can exist among pathogenic strains [4]. Pigs harboring S. suis may
present as various manifestations including sub-clinical infection, clinical-infection, or a carrier state
upon recovery of infection [1]. Piglets can become exposed to S. suis from vaginal secretions during or
after parturition, while carriers (both sub-clinical and clinical) represent a possible source of infection
for their pen mates after they are mixed with other piglets in the nursery [1,5].

Horizontal transmission of S. suis primarily occurs through the oro-nasal route and colonizes the
tonsils of both clinically ill and healthy pigs [6,7]. Moreover, increasing evidence of aerosol exposure
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suggests that airborne transmission is an important route for S. suis spread across short distances [8–12].
Outbreaks of S. suis in the nursery are frequently credited to the introduction of a sub-clinically infected
pig into the herd [13,14]. However, the association between carrier rates and disease occurrence in
the nursery remains unknown despite their importance in S. suis epidemiology [5,14,15]. Strategies
for effective disease control for S. suis remains challenging due to the low reported success rates of
conventional disease control programmes. For instance, antibiotic prophylaxis has been shown to
be effective in eradicating other endemic swine pathogens such as Actinobacillus pleuropneumoniae,
Mycoplasma hyopneumoniae, and Lawsonia intracellularis in swine herds [16–18]. However, eradication
efforts have been unsuccessful in eliminating the carrier state of S. suis, since pigs are colonized
very early after birth [19,20]. S. suis vaccine use on farms remains uncommon. A 2006 report from
the National Animal Health Monitoring System reports that <7% of herds in the U.S. use a S. suis
vaccine [21]. Vaccination efficacy is often hampered by the inability to eliminate local tissue invasion
and carrier states in pigs as well as the inability to offer cross-serovar protection [22–25]. Thus,
alternative approaches for effective disease control in the nursery would be beneficial.

Strategies for optimal disease control require a comprehensive understanding of the mechanisms
by which pathogens can invade and propagate. The extent to which a pathogen can be maintained
within a population depends on two key components: (i) the transmissibility of the pathogen and (ii)
the availability of susceptible hosts [26]. The transmission potential of a pathogen (also known as
the basic reproductive number, R0) consists of three key factors that influence the spread of disease:
the rate of contact between susceptible and infectious individuals (c), the probability of transmission
given a suitable contact (p), and the duration of infectiousness (D) [27]. Attempts to influence these
factors to disrupt pathogen transmission have been previously investigated for S. suis. For example,
the application of early segregated weaning techniques failed to eliminate the carrier state of S. suis
since the bacterium is an early colonizer of pigs [19]. Similarly, Dekker et al. [9] demonstrated that
spatial separation of pigs (at the pen-level) would not be sufficient in preventing the spread of the S. suis
in either directly or indirectly exposed pigs due to the rapid colonization of the bacterium. However,
the authors suggested that spatial separation at the herd-level may reduce the risk of transmission [9].

In the absence of effective methods to control this disease, infectious disease theory suggests that
efforts could be focused on limiting the availability of susceptible hosts by modifying host population
demographics. The influence of host recruitment rates (number and time of entry of susceptible
hosts into the population) in disease spread has been well-established in human infectious disease
epidemiology. For example, a comparative analysis of the persistence of measles in cities and on
islands found that large and growing populations in dense cities supported the continued propagation
of the virus, whereas “breaks” in the continuity of measles transmission were found in smaller island
communities, which helped limit the transmission of the disease [28]. This study and others [29,30]
have suggested that increased breaks in a system without continuous supply of susceptible individuals
may reduce infectious numbers or increase the chance of stochastic fade-out and subsequent elimination
of the infection.

In the context of swine production systems, management practices often dictate both the supply
of susceptible hosts into the system and the contact patterns between them. For example, the timing of
new births in the population are often tightly controlled events that determine the influx of susceptible
pigs downstream in production; while herd management will affect the relative contact of animals
between different groups (i.e., continuous flow, all-in/all-out systems). For swine diseases such as
S. suis, understanding the underlying mechanisms for disease transmission can be critically important
for implementing and optimizing disease control strategies. Changes in host recruitment rates can
be modified with the use of batch management systems (BMS), which is a practice that allows for
modifications in the farrowing interval (fixed breeding and farrowing) and the delivery of batches of
pigs segregated by time [31]. These systems allow for “breaks” in the timing of the introduction of
new susceptible pigs into the nursery and the ability to clean and disinfect rooms between batches
of pigs. BMS have been previously shown to be effective in reducing the incidence of other swine
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diseases [32], however the implications that BMS may have on S. suis disease control have not been
previously examined.

Mathematical models are useful tools for understanding disease dynamics because they allow us to
test explicit assumptions about the hypothesized mechanisms leading to the spread of pathogens and to
explore scenarios in silico (via computer simulation) [26]. The goal of the study was to use mathematical
modeling to simulate disease control strategies that swine producers may practically employ to reduce
the spread of S. suis in the nursery. Based on a nursery barn that experienced a 6-month outbreak of
S. suis as a case study, we developed a stochastic mathematical model to describe S. suis transmission
within the nursery for a farrow-to-finish swine farm in Ontario, Canada. The objective of this study
was to examine whether modifications to the number and timing of susceptible hosts (i.e., newly
weaned piglets) entering into the nursery could be used as a management tool for controlling S. suis
disease outbreaks in the nursery.

2. Results

2.1. Model Fit

The goal of maximum likelihood estimation is to find model parameter values that describe the
distribution that maximizes the probability of observing the empirical data. After fitting our model
to the observed outbreak data, our best-fit estimates for D, σ, and p were 1.43 weeks, 4.8 weeks, and
0.22, respectively. The model graphically appears to have good agreement with the observed monthly
incidence and cumulative case data (Figure 1).
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Figure 1. Average model fit (dashed line) with a 95% confidence interval (gold bands) to monthly
incident case data (A) and average model fit to monthly cumulative case data with a 95% confidence
interval (gold bands) (B) after 1000 model simulations.

2.2. Intervention Scenarios

Model simulations of the impact of different management strategies (interventions) are presented.
The results are presented graphically with each intervention compared against the base model scenario
based on 1000 model simulations per scenario. Figure 2 depicts the transition to a BMS with the disease
removal parameter held constant (i.e., d2 = 2.00 days) and cumulative cases reduced from the base
model scenario. Similarly, Figure 3 presents the combined effect of a BMS and more rapid removal of
clinically ill pigs (i.e., d2 = 0.50-day). The potential impact of increased clinical monitoring and removal
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of clinically ill pigs is shown in Figure 4, with scenarios 2 to 4 under a Weekly farrowing (WF) system.
Model outputs of predicted incident and cumulative cases of S. suis for each scenario are compared in
Table 1.
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infected pigs (blue) compared to the base model scenario (blue).
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Figure 4. Scenario 2 to 4: Predicted cumulative cases of S. suis in the nursery using a weekly-farrowing
(WF) system with disease-removal rate (d2) of 2.00 days as the base model scenario compared to
scenarios 2 to 4 with varying disease-removal rates (d2).

Table 1. Model simulations of evaluated intervention scenarios with mean monthly incidence,
mean cumulative cases counts, and percent change in cumulative cases (%) compared to the base
model scenario.

Scenario System 1 Disease-removal Rate,
d2 (days)2

Mean Monthly
Incidence, Range

Mean Cumulative
Incidence ± SD3

∆ cumulative
cases (%)

Base model WF 2.00 49 (7–78) 345 ± 67 –

1 BMS 2.00 24 (21–26) 141 ± 47 −59

2 WF 0.25 18 (1–37) 125 ± 57 -64

3 WF 0.50 30 (2–57) 212 ± 73 −39

4 WF 1.00 42 (4–71) 295 ± 70 −14

5 BMS 0.50 8 (7–11) 54 ± 31 −84
1 WF: Weekly farrowing system, BMS: Batch management system; 2 d2: disease-removal rate of clinically infected
pigs; 3 SD: standard deviation. The base model scenario is shaded in grey and serves as the reference scenario for
comparison to the intervention scenarios (1–5).

2.3. Projected Maximum Cumulative Case Numbers

Under the base model scenario, the results of 1000 simulation replicates showed that 24%
of the model simulations resulted in subsequent transmission of the disease (clinically-infected
cases > 1). We found that the largest observed outbreak out of 1000 simulations was an outbreak with
476 clinically-infected cases, which is equivalent to 23.8% (476/2000) of the herd infected under the base
model scenario (Figure 5). The transition to a BMS (scenario 1) showed an increased probability of
subsequent transmission (relative to the base model) in the population with 58% of model simulations
that resulted in clinically-infected cases. Moreover, the largest reported outbreak size based on 1000
simulation replicates was 158 clinically-infected cases, or 7.9% (158/2000) of the herd infected (Figure 5).
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Figure 5. Histogram of proportion of simulation runs (n = 1000) resulting in a range of S. suis cumulative
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2.4. Sensitivity Analysis

Model outputs were the most sensitive to the probability of a sub-clinically infected pig developing
clinical signs (p), while the transmission coefficient (β) and latent period (σ) were moderately sensitive,
as shown in Figure 6. Changes in the initial conditions for E0 in the WF model did not appear to
dramatically change the maximum outbreak size, with cases increasing accordingly with higher E0
values (Figure 7A). Under a BMS, model projections estimated that low initial values of E0 (under
80 pigs) appeared to be effective in reducing cumulative case counts compared to the WF base model
scenario (i.e. S0 = 100, E0 = 1, I0 = 0). However, initial E0 values ≥ 80 in a BMS resulted in similar
behavior to that observed in the WF system, with higher values of E0 associated with a larger final
outbreak size (Figure 7B).
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sub-clinical pigs becoming clinically infected (p), and the transmission coefficient (β) on cumulative
cases as the model output. Changes in the cumulative cases of S. suis are compared against the base
model scenario (vertical black line), with increases in cumulative cases depicted in yellow and decreases
depicted in blue, with the case range reported.
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3. Discussion

Our results have important implications for the control of S. suis and highlight important areas
of uncertainty where more research is required. Given that there is no consistently effective vaccine
against S. suis and treatment options are increasingly limited [33], identifying biosecurity practices that
may limit the spread of this economically important disease is of great value.

Our model findings showed that changes in the host recruitment rate, particularly in populations
with high turnover of animals, can have substantial effects on S. suis disease dynamics and the
resulting transmission between pigs. Designed to mimic the management practices on this specific
case-study farm, the base model scenario showed overall good agreement with the observed case data.
This suggests that the rapid replenishment of susceptible pigs into the nursery may be an important
factor in driving outbreaks of disease. Under a BMS scenario, the increased timing between entry
of pigs into the nursery appeared to consistently decrease the number of cumulative cases of S. suis.
This may be explained by the exhaustion of susceptible hosts in a population to a level where disease
transmission is reduced or can no longer be maintained. These findings are consistent with a number of
other mathematical modelling studies in various host-pathogen systems that have previously examined
the relationship between host recruitment rates (i.e., influx of new susceptible hosts into the population)
and peaks in disease outbreaks [34,35].

The monthly BMS scenario showed that segregation between batches of pigs was an effective
practice for reducing the cumulative number of S. suis cases in this nursery. However, it is important
to note that transition to a BMS did not appear to reduce the number of S. suis incident cases in the
nursery, which might suggest that low levels of disease may persist under a BMS relative to a WF
system (Figures 2A and 3B). While we did not have previous incidence estimates of observed S. suis
cases prior to this documented outbreak for this farm, we interpret these as baseline levels of expected
S. suis cases that did not result in an outbreak. Given the endemic nature of this bacterium on swine
farms worldwide [36], it would be unrealistic to assume that eradication of S. suis is currently possible.
Moreover, since transmission can still occur between pigs within the same batch, it is unsurprising that
cases would still arise in a BMS. Further analysis of model simulations showed that while the BMS
scenario (scenario 1) yielded a higher probability of an outbreak occurring, cumulative counts of S. suis
were often smaller relative to the WF base model scenario (Figure 5). Thus, our results demonstrate that
while transition to a BMS cannot prevent within-herd transmission of S. suis, a significant reduction in
clinical cases observed may be possible with batch-level separation.
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Our model also highlighted the importance of an additional management-influenced parameter
(i.e., d2, disease-removal rate of clinically infected pigs). Under coupled interventions (scenario 5),
the model projected an 84% reduction in cumulative cases compared to the base model scenario
(Figure 3B). When different disease-removal rates were assessed in a WF system, the model showed that
this practice alone could contribute to a substantial decrease in cumulative cases of S. suis (Figure 4).
Recognizing that transition to a BMS can be complex, time-consuming, or simply incompatible with
the design of the production facility/farm, our model suggests that early removal rates of clinically
infected pigs may be a viable option for reducing further cases of disease in the event that a BMS
cannot be implemented. Here, we defined early removal to include the development of protocols
that help with identification of sick pigs in acute or chronic stages of S. suis infection, followed by
appropriate removal or segregation of diseased pigs placed in a hospital pen, where no contact with
the rest of the herd can be achieved.

While the BMS appeared to be effective in reducing the overall prevalence of S. suis cases, it is
important to highlight that the results reported here are dependent on several model assumptions that
are important to consider for future investigation. We simplified the model to consider the clinical
course of S. suis infection; yet we understand that sub-clinical pigs likely contribute a sizable fraction
of infection [1]. Previous studies conducted have been unable to correlate the rates of sub-clinical
carriage in a herd and the observed diseased cases [13,14]. As a result, there is limited knowledge of
their relative contribution to S. suis transmission. Moreover, identification of sub-clinically infected
pigs is challenging since these pigs do not display obvious signs of infection, which therefore requires
making some simplifying assumptions given the knowledge gap. As a result, our model may under-
or over-estimate the model outcomes depending on the role that sub-clinical pigs play in transmission.

Variability in the model was assessed using a sensitivity analysis to examine changes in our model
outputs under different ranges of key parameter values and also using different assumptions regarding
the initial model conditions. The highest variability in model outputs was observed in the probabilistic
parameter p (the probability of developing clinical signs) (Figure 6). While we can expect that higher
probabilities are associated with more cases of clinical disease, the true value of p is likely influenced
by several factors related to the host, pathogen, and environment. For instance, external factors that
induce stress in piglets (e.g., weaning, mixing with other litters, overcrowding, and poor housing
conditions) have been shown to correlate with increased clinical infections in the nursery [1,37,38].
Additionally, host-specific factors related to genetics, age, and immune status can also play a role in
disease onset [39]. At the pathogen-level, variation in p may also be attributed to the varied virulence
in pathogenic strains of S. suis. Serotype 2 is the most commonly associated with disease in pigs,
however not all strains of serotype 2 are pathogenic, and virulence can vary among strains within the
serotype [4]. However, the extent of these relationships is complex and warrants increased attention to
the continued collection of empirical data to improve the model assumptions in this area.

Results from the sensitivity analysis of the initial model conditions showed that under a WF
system, the ranges assessed for values of E0 did not dramatically change the model outputs with the
final outbreak size increasing when E0 was increased (Figure 7A). However, under a BMS, low values
of E0 resulted in lower cumulative cases compared to the WF system. Interestingly, when values of E0
were increased in the BMS scenario, the system behaved similar to the WF observations (Figure 7B).
If the true value of E0 is high in most settings, a BMS intervention would likely not be any more
effective in reducing cases compared to the WF system; however, if E0 is low, then a BMS may be a
practice worth considering to reduce disease burden in the nursery. While the true value of E0 is not
known for this system, this additional analysis emphasizes the need for additional data in this area to
provide more precise estimates and recommendations.

Inherent to these types of models, our study has limitations that are important to consider for
future work. First, while S. suis may be introduced into the herd through multiple routes, our model
only considered the introduction of S. suis into the herd via sub-clinical infected pigs. Previous
studies have detected S. suis serotype 2 in both specific pathogen free (SPF) and hysterectomy-derived
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herds [40,41]. The authors suggest that these infections were likely introduced through contamination
of the environment, personnel, or equipment. Mechanical vectors including mice and houseflies have
also been implicated as vehicles of S. suis transmission; while feces, contaminated feed, water, work
boots, and needles have also been shown to transmit the bacterium [1,42]. Breeding rooms may also
serve as a potential source of transmission, similar to Salmonella infections in pigs [43]. While such
introductions can occur, S. suis is endemic on most swine farms worldwide and the detection of S. suis
on farms is likely not a good predictor for strains of clinical relevance. As such, our model focused on
the introduction of a sub-clinical infected pig, which has been reported to play an important role in
outbreaks of S. suis [13,14,40].

As described above, sub-clinically infected pigs are an important component in S. suis epidemiology
and may serve as a potential reservoir of infection for susceptible pigs [13]. However, the relative
contribution of these pigs to the incidence of S. suis cases remains unknown since the carrier state
is not a good indicator of clinical disease in a herd. A study conducted by Clifton-Hadley et al. [40]
reported herds with nearly 100% carrier rates of S. suis, but reported that less than 5% of the herds
were observed to have apparent disease. In the absence of sufficient data, we simplified the model to
only consider the clinical course of S. suis infection (i.e., only clinically infected pigs are infectious).
However, given their importance, we attempted to represent the relationship as a probability in the
model, such that each new sub-clinical infected pig has the probability of developing clinical signs and
is infectious (p) or remains sub-clinically infected (1 – p); this parameter (p) was determined by model
fitting, which was deemed appropriate since S. suis carriage is reported to vary across herds [1,5].

We did not include batch-to-batch carryover of S. suis in the BMS model. While the working
environment on farms may serve as a potential infection source for pigs [1,42], we were limited by
available data to incorporate this potential route of transmission. In reality, cleaning and disinfection
are performed between batches of pigs, with S. suis generally being susceptible to most disinfectants
and readily inactivated using hot water and exogeneous heat sources >55 ◦C [42]. To simplify our
model, we assumed that disinfection and cleaning performed between batches of pigs is effective
in reducing the microbial load in the environment to sufficiently low levels, such that transmission
via this route was considered negligible. While bacterial carry-over from a previous batch may be
possible in sustaining S. suis transmission, further research is required to determine the number of
viable bacteria in the environment, which could be used to inform initial conditions and parameter
values using an environmental compartment.

We have ignored the potential impact of herd structure on transmission in both WF and BMS
models. This is principally a consequence of the limited availability of data on how pigs were managed
within this study during the time of the outbreak. Under a WF system, we assumed homogeneous
mixing of pigs (i.e., pigs in the same room or in different rooms have the same probability of contact
with a clinically infected pig), which does not account for heterogeneity in host contacts. Transmission
experiments have shown that spread of S. suis serotype 9 within- and between-pens does occur,
with transmission rates lower for between-pen transmission [9]. In addition to transmission through
direct and indirect contact between pens, there would be other means of transmission between groups
of pigs some distance apart, for example through fomites [42] or airborne spread [8,12]. However,
estimating the transmission rate for each route using mortality data is not possible. Similarly, the
decision to treat the BMS model as a fully closed system (no mixing between batches) was necessary
in order to maintain model parsimony and avoid making additional assumptions in the absence of
sufficient data. Consequently, it is difficult to assess what impact neglecting a more complex herd
structure would have on our model outputs. Previous studies have examined disease dynamics in
smaller structured populations using a metapopulation approach [44]. Alternatively, models could
also be stratified by age or level of risk to capture heterogeneity in host contacts. These types of model
structures may be necessary for future modelling studies to fully understand the impact of these
mixing assumptions.
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4. Materials and Methods

4.1. Case Study Data

Retrospective mortality data from a 250-sow farrow-to-finish swine farm (Ontario, Canada) that
experienced a S. suis outbreak in the nursery over a 6-month time period were used for this study.
Descriptive details of this dataset have been previously described [45]. Briefly, the outbreak occurred
from October 6, 2011 to March 30, 2012 and involved 20 cohorts of weaned pigs. Mortality data
during this period included all-cause mortality; however, we assumed that the majority of cases were
due to S. suis based on clinical signs of acute meningitis. Laboratory confirmation and post-mortem
examination confirmed 12 clinical cases of meningitis due to S. suis serotype 2. At the time of the
original outbreak, the herd was managed according to a weekly farrowing (WF) system, with a total
of 20 sow groups, each group farrowing on a weekly basis. On average, 100 new susceptible pigs
entered the nursery each week (up to 20 weeks) and were housed all-in/all-out (AIAO) by room. From
the dataset, we extracted case-based records over a 28-week period (duration of the outbreak) and
generated a weekly-time series of case counts (incident cases) and cumulative cases for our study
analyses (Figure 8).
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4.2. Model Structure

All model development and analyses were performed in the statistical programming language R
version 3.5.2 [46]. A stochastic compartmental model was constructed to represent the management
of the study farm population using a susceptible, exposed, infectious (SEI) framework. We opted
to use a stochastic model, rather than a deterministic model to account for biological variability
in small population sizes and in the clinical course of S. suis infections. The model simulates the
infection process as a series of random events with respect to time. Model events were implemented
stochastically, with each event independent of the previous event. Pigs in the model could be classified
as being in one of three possible infection states (which were mutually exclusive):

• S: represents animals that are able to acquire infection from an infectious pig (via direct contact
and/or airborne transmission).

• E: represents animals that are sub-clinically infected (non-infectious carriers).
• I: represents animals that are clinically-infected with disease signs (infectious to others).
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4.3. Model Transitions and Initial Conditions

The movement of susceptible pigs (S) to the Exposed (E) class is governed by the transmission
coefficient (β). After a latent period (σ−1), exposed pigs can transition to a state of infectiousness
(I), with probability (p), or remain sub-clinically infected with a probability of (1 – p). Population
demographics are included in the model, where susceptible pigs initially enter the population at a
constant recruitment rate (b). The recruitment rate was modelled as a constant, based on the operational
logistics of a WF system on this farm during the time of the outbreak. Susceptible and sub-clinical
infected pigs were removed from the population at a constant rate based on the average time spent in
the nursery on this farm, (d1); while clinically infected pigs were removed from the population by the
disease-removal rate (d2). The dynamics of the system described are presented in Figure 9 and are
captured by a series of differential equations:

dS/dt = b - βSI - d1S, (1)

dE/dt = βSI + (1 - p)σE - p(σE) - d1E, (2)

dI/dt = p(σE) - d2I. (3)

Transitions between different infection states occurred in a probabilistic manner according to a
Poisson process. The corresponding events and transitions are shown in Table 2, while parameter
inputs are displayed in Table 3.
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Figure 9. Susceptible-exposed-infectious (SEI) compartment diagram describing Streptococcus suis
transmission within a nursery pig population driven by the influx of susceptible pigs (b) and the
presence of sub-clinically infected pigs (E) with the probability of becoming clinically-infected (p) and
transitioning to an infectious state (I) or remaining sub-clinically infected with probability (1–p).

Table 2. SEI model transitions, events, and rates.

Transition Event Transition Rate

(S, E, I)→ (S+1, E, I) Recruitment of susceptible pigs b
(S, E, I)→ (S-1, E+1, I) Infection of a susceptible pig β*S*I
(S, E, I)→ (S, E-1, I+1) Sub-clinically infected pig develops clinical signs (p)σ*E
(S, E, I)→ (S, E+1, I) Sub-clinically infected pig remains sub-clinical (1 – p)σ*E
(S, E, I)→ (S-1, E, I) Production removal of susceptible pig d1*S
(S, E, I)→ (S, E-1, I) Production removal of sub-clinically infected pig d1*E
(S, E, I)→ (S, E, I-1) Disease-removal of clinically infected pigs d2*I

To start the initial infection process, we populated the nursery with susceptible pigs (S0 = 100)
and assumed that S. suis is introduced into the population by a sub-clinically infected pig (E0 = 1).
This was deemed reasonable, since these pigs do not display clinical signs and are not likely to be
identified as “infected” and thus, remain in the nursery [5]. In contrast, clinically infected pigs who
display disease signs are less likely to go unnoticed prior to entry into the nursery, therefore (I0 = 0).
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To model the WF system, we allowed for 100 new susceptible piglets to enter the nursery each week
(up to 20 weeks), which was seeded with a single sub-clinically infected pig each week. In the WF
system, we assumed that there is homogeneous mixing of pigs within and between rooms (i.e., each
pig has the same probability of being infected by a clinically infected pig regardless of room separation).
Transmission via infectious aerosols across short distances has been documented in both field and
experimental studies of S. suis in pigs [8–12] and subsequently justified our mixing assumptions. To
capture this, we allowed for contact between infectious pigs of one group and susceptible pigs in the
next group that entered the nursery (open system).

Table 3. Parameter definitions and values used to describe the SEI model events.

Parameter Definition Value References

β Transmission coefficient for I 1.08 Calculated
R0 Basic reproductive number 1.4 [47]
D Duration of infectiousness 1.8 weeks Fitted
σ Duration of latent period 4.8 weeks Fitted
p Probability of becoming clinically infected 0.22 Fitted

1 – p Probability of remaining sub-clinically infected 0.78 Fitted
b Recruitment rate of susceptible pigs 100 pigs/week [45]
d1 Production removal rates for S and E 6 weeks [45]
d2 Disease-removal rates for I 2.00 days Assumed

4.4. Model Assumptions

The model assumes that all pigs entering the nursery are susceptible to infection with a pathogenic
strain of S. suis. The model also assumed that S. suis is introduced into the herd by a single sub-clinically
infected pig. While other transmission routes are possible (e.g., contaminated equipment, flow of works,
pest/rodent etc.), they were not considered in our model due to limited data availability. We assumed
that only clinically infected pigs can infect susceptible pigs. Given the limited understanding of the
effects of sub-clinically infected pigs on S. suis disease occurrence, we only considered the clinical
course of infection in the absence of sufficient data. Further, S. suis infections are known to be
multi-factorial, where factors related to the host, pathogen, and system can impact the occurrence and
severity of disease or morbidity in pigs [37]. As a result, there are limited empirical data on parameters
that determine the natural course of this disease, therefore these parameters were estimated using
model fitting.

4.5. Model Fitting

The model was fit to the monthly cumulative cases using an iterative procedure to estimate
the unknown parameters (D, σ, and p). This was done using maximum likelihood estimation using
the log-likelihood function in R [46], where we examined a range of plausible parameter values to
determine best fit values that maximized the likelihood of the model and the data. Using our previously
estimated R0 value (1.4) for this outbreak [47], we determined the transmission coefficient (β) based on
the mathematically known relationship for micro-parasitic infections [27] and our best-fit value for the
infectious period (D):

β = R0/D. (4)

We assessed the fit of the model output to the observed monthly incident and cumulative case
counts using maximum likelihood and confirmed this by visual inspection.

4.6. Base Model and Intervention Scenarios

The model using our best-fit parameters served as the base model scenario (described in Section 4.2
to Section 4.3) for comparison to our model interventions. To examine the influence of modifications in
management practices in the nursery, we explored five intervention scenarios using the maximum
cumulative case number as the outcome measure against the base model scenario. A description
of all scenarios can be found in Table 4. In scenario 1, we simulated the effect of a monthly BMS,
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such that 400 new susceptible piglets entered the nursery every 4 weeks (up to 20 weeks) and were
seeded with a single sub-clinically infected pig. Assuming that the facility is required to produce
an equivalent number of pigs and has the facility space to accommodate a larger group of animals,
we increased the batch size proportional to the average number of pigs that entered on a weekly basis.
In the BMS scenarios, we assumed homogeneous mixing of pigs within the same batch but did not
allow for mixing of pigs in different batches. In practice, a BMS would typically allow for cleaning
and disinfection between batches of pigs [31], therefore we ignored the potential for between-batch
carryover, where each batch is treated as a closed system. In scenarios 2 to 4, we evaluated the influence
of changes in the early disease removal rate (d2) by examining a range of reasonable removal times for
clinically infected pigs (0.25 day, 0.50 day, 1.00 day), assuming that the facility can increase monitoring
for clinical signs in the nursery. Lastly, scenario 5 examined the influence of coupled interventions (i.e.,
BMS and early disease removal rates, d2 = 0.50 day).

Table 4. Evaluated intervention scenarios with corresponding batch size, disease removal rate (d2), and
frequency of entry into the nursery.

Scenario Farrowing System 1 Batch Size
(no. of pigs)

Disease-Removal Rate,
d2 (days)2 Entry into Nursery

Base model WF 100 2.00 Weekly

1 BMS 400 2.00 Monthly

2 WF 100 0.25 Weekly

3 WF 100 0.50 Weekly

4 WF 100 1.00 Weekly

5 BMS 400 0.50 Monthly
1: WF: Weekly farrowing and BMS: Batch management system; 2: d2: disease removal rate of clinically infected pigs.
The base model scenario is shaded in grey and serves as the reference scenario for comparison to the intervention
scenarios (1–5).

For both our base model and intervention scenarios, the events were implemented stochastically
using the “ssa.exact.function” as part of the adaptivetau package in R [46,48]. This function implements
Gillespie’s direct method [49] and assumes that events are independent. For each simulation, a total
of 1000 model simulations were performed using a random seed and the model simulation ran for
28 weeks (the duration of the original outbreak). Model simulations that did not result in an outbreak
(no subsequent disease transmission) were filtered out to provide comparable model projections
against our empirical outbreak data. For simulation runs that resulted in outbreaks (e.g., at least
1 case), the model simulation outcomes (weekly and cumulative incidence) were averaged and we
derived the 95% confidence interval around the average number of incident and cumulative cases and
standard deviation to account for stochastic variation in our model outcomes. The model outputs were
aggregated by month to allow for comparison of our base model and intervention scenarios.

4.7. Simulations of Maximum Cumulative Case Numbers

For the base model scenario and BMS scenario (scenario 2), 1000 model simulations were examined.
For each scenario, we derived the proportion of all model simulations that resulted in i) no subsequent
transmission (i.e., no outbreak), and ii) subsequent transmission resulting in an outbreak (i.e., secondary
transmission after introduction). Histograms were plotted to examine the overall probability of an
outbreak occurring and the distribution of cumulative case sizes expected.

4.8. Sensitivity Analysis

4.8.1. Parameter Estimates

Due to the limited data for important parameters related to the natural history of S. suis (β, σ,
and p), we conducted a univariable sensitivity analysis to examine how variation in these parameters
influenced our model outcomes. The peer-reviewed literature did not provide meaningful ranges
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for these parameters. Therefore, we tested equal increases and decreases for the parameter estimates.
For our transmission coefficient (β), we examined a range of 0.25–1.91, 3.6–6.00 weeks for the latent
period (σ) and 0.01–0.43 for the probability of developing clinical signs (p). From our analyses, we
obtained the range of the maximum cumulative cases and recorded the change in cases compared to
our base model scenario.

4.8.2. Initial Conditions

The model assumes that the start of the infection process is initiated with the introduction of a
single sub-clinically infected pig (E0 = 1). While most pigs can become colonized with S. suis during
or shortly after birth via the sow, the impact of vertical transmission on herd health remains unclear,
since it is not known whether the same pathotypes involved in clinical S. suis cases had also been the
early colonizers of the vaginal tract [50]. For this reason, the model does not assume that all pigs are
sub-clinically infected with a pathogenic strain of S. suis at the start of the infection process. However,
several studies have reported that the number of S. suis sub-clinical pigs are known to vary across
farms [1], therefore we conducted an additional sensitivity analysis by varying the initial conditions
for E0 while balancing the number of pigs entering into the system in both WF and BMS.

5. Conclusions

Models that evaluate management practices while incorporating the biological and epidemiological
aspects of this disease are critically lacking in the S. suis literature. While our model showed that
batch-level separation may have the potential to be effective in reducing S. suis prevalence in the
nursery, our study depends on assumptions that could be strengthened by additional research in
this area, specifically using both experimental and field studies. Given that modifications in swine
management practices can be complex, the objective of our study was to develop a model that could
be used to demonstrate that further investigation into the adoption of such systems and practices may
be warranted during a time where effective long-term strategies for disease control are limited.
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