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Human herpes encephalitis (HSE) is the most devastating consequence of Herpes simplex 

virus type 1 (HSV-1) infection of the central nervous system (CNS). The mortality rate of 

untreated HSE is approximately 70%1,2. With the advent of acyclovir (ACV), a highly 

effective antiviral against lytic HSV-1 infections, the mortality rate has decreased to 

approximately 20%3. However, the majority of encephalitis survivors suffer from permanent 

sequelae such as severe neurologic deficits and impairment of anterograde and retrograde 

memory, executive functioning and language4.

Besides HSE, an increasing array of evidence suggests the involvement of HSV-1 in the 

etiology of Alzheimer’s disease (AD)5. In vitro studies show that ACV treatment can reduce 

the accumulation of β-amyloid and phosphorylated tau proteins described in AD pathology, 

indicating that antiviral treatments may reduce the progression of the disease6. Despite the 

tremendous impact of ACV on the prophylaxis and treatment of herpes infections, HSV-1 

resistance to ACV and its derivatives is being documented increasingly, particularly among 

immunocompromised individuals7,8,9,10. Furthermore, neurotoxicity has been repeatedly 

described as a side effect of ACV treatment in patients with renal failure11,12. Hence, the 

development of a new generation of potent, well tolerated anti-herpetic drugs with a 

mechanism of action different from ACV is indicated.

The identification of promising lead compounds in drug discovery is largely influenced by 

the cellular platforms13. Besides the choices of cell types to employ in a drug screening 

campaign, an additional inquiry has become increasingly relevant over the last few years: 

‘2D or not 2D’? In other words, are two-dimensional cell culture systems sufficient for drug 

screening platforms? This Shakespearian paraphrase highlights new challenges that the field 

of drug discovery are facing regarding the generation of cellular platforms with higher 

predictive values of the drugs’ activity in vivo. Drug screening campaigns aim to make the 

workflow easy, fast and cost effective. These objectives are not particularly challenging 
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when the test platforms in drug screening employ monolayer two-dimensional (2D) cell 

cultures. However, these practical and economical demands overshadow the most important 

prerequisites for a potentially successful drug screening campaign; i.e., a physiologically 

relevant culture system composed of disease-relevant cell types. Are 2D cultures a good 

proxy for a tissue environment?

Approximately 85% drugs fail during early clinical trials14. A portion of the inefficiency can 

be attributed to the inadequate representation of human tissue environments in 2D 

cultures15. Indeed, cellular responses in 2D monolayer cultures differ from their in vivo 
analogs. There is accumulating evidence showing that the drug response may differ 

significantly when cells are cultured as a monolayer or as a three-dimensional (3D) 

format16,17. Another important reason for drugs failing before moving to clinical trials 

(besides the species-specificity, organ-specificity and tissue specificity of the drug’s 

toxicity15,18,19) is the fact that cell phenotypes in cell-based toxicity assays measured in 2D 

monolayer cultures are not equivalent to their counterparts’ in vivo-tissue. Similar 

differences are even evident when comparing the drug response of cells cultured as 2D 

monolayer or 3D cellular aggregates. The latter is a better predictor of drug response in 
vivo16,20. Ongoing research in infectious diseases suggests that evaluating cellular functions 

in 3D culture systems may bridge the gap between in vitro and in vivo models of pathogen-

host interactions21.

Different strategies have been developed to generate 3D cultures. Some of these approaches 

involve the use of scaffolds made from synthetic or natural materials, whilst others are based 

on the ability of specific cell types to self-aggregate and generate multi cellular 3D 

structures. The scalability, degree of effort, and costs of materials and reagents make these 

technologies difficult to adapt to high-throughput drug screening. An additional layer of 

difficulty comes with the high content imaging of 3D cell cultures.

The article “Generation of three-dimensional human neuronal cultures: application to 

modeling CNS viral infections”22 describes a prototype of scaffold-free adherent 3D (A-3D) 

cultures of central nervous system (CNS) cells in 96-well plate generated from human 

induced pluripotent stem cells (hiPSCs). hiPSC-derived neuronal cells can mimic the 

functionality of human CNS neurons, and can be generated in quantities compatible with 

drug screening workflows. The A-3D cultures consist of multilayered cell aggregates, whose 

thickness ranges from approximately 25 μm to 60 μm. These A-3D cultures show 

comparable size, as well as an acceptable well-to-well variability, which are important 

prerequisites for drug screening. Immunohistochemistry analysis showed features of a 

developing cortex in A-3D cultures. Importantly, these A-3D cultures are sustained by the 

extracellular matrix (ECM) generated by the differentiating cells. Considering the influence 

of the ECM composition on drug response and its unique composition in the brain23–25, the 

abundant secretion of ECM by the CNS cells represents another important advantage of the 

A-3D culture system.

A major problem related to the high content screening (HCS) of 3D culture platforms for 

drug screening is the rapid acquisition of z-stacks from multicellular structures. Historically, 

this has been conducted utilizing manual confocal imaging methods. More recently, there 
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has been significant advancements in HCS methods that involve laser powered confocal 

instrumentation amendable to high throughput assays. The Cellinsight CX7 LZR instrument 

from Thermo Fisher Scientific is a 7-laser Nipkow Spinning Disc platform that has been 

optimized using fluorescent dyes conducive for spheroid phenotypic evaluations. The 

multiple pinhole Nipkow spinning disk confocal technology integrated into the optical path 

provides high-resolution imaging of thick samples. To ensure high throughput processing 

capabilities, the CX7 LZR features solid state laser-based illumination and is configured for 

fluorescent imaging in the UV through near-IR range.

To investigate the suitability of the A-3D culture system for high-throughput screening, we 

tested the inhibitory activity of increasing concentration of ACV, from 0.1 μM to 50 μM, on 

cells infected with a HSV-1 construct carrying EGFP and RFP reporter genes under the 

control of the viral promoters ICP0 and glycoprotein C (gC), respectively26. Uninfected and 

infected cells from two sets of experiments were analyzed using flow cytometry (FC) and 

the CX7 LZR High-Content Screening (HCS) platform. The half maximal inhibitory 

concentration (IC50) of acyclovir estimated by FC and HCS were comparable (3.144 μM 

and 3.121 μM, respectively), indicating the accuracy of the CX7 HCS platform for high-

content measurements of 3D culture systems. The CX7 LZR was able to conduct the plate 

analysis including confocal Z-stacking in under 1 hour, whereas the FC method required 

approximately 4 hours to complete. Furthermore, use of the CX7 HCS platform overcomes 

the problem of cell damage caused by the proteolytic enzymes during the cells dissociation 

required for the FC.

In summary, the A-3D culture system paired with CX7 HCS technology paves the way for 

robust, rapid, and accurate high-throughput drug screening for inhibitors of neurotropic 

viruses that invade the human CNS.
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