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This paper presents a method for constructing symmetric and transitive algorithms for registration of image sequences from image
registration algorithms that do not have these two properties. The method is applicable to both rigid and nonrigid registration
and it can be used with linear or periodic image sequences. The symmetry and transitivity properties are satisfied exactly (up to
the machine precision), that is, they always hold regardless of the image type, quality, and the registration algorithm as long as
the computed transformations are invertable. These two properties are especially important in motion tracking applications since
physically incorrect deformations might be obtained if the registration algorithm is not symmetric and transitive. The method was
tested on two sequences of cardiac magnetic resonance images using two different nonrigid image registration algorithms. It was
demonstrated that the transitivity and symmetry errors of the symmetric and transitive modification of the algorithms could be
made arbitrary small when the computed transformations are invertable, whereas the corresponding errors for the nonmodified
algorithms were on the order of the pixel size. Furthermore, the symmetric and transitive modification of the algorithms had
higher registration accuracy than the nonmodified algorithms for both image sequences.
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1. INTRODUCTION

The process of aligning images so that the corresponding
features can be related is called image registration [1]. Image
registration methods have been discussed and classified in
books [1–4] and surveys [5–10]. Most registration methods
are ad hoc with assumptions often violated in practical
applications. This results in a behavior that is often not
predictable. A way to reduce the ad hoc nature of registration
methods is to require them to satisfy certain properties.
Researchers have realized the importance of symmetry and
transitivity of registration methods [11–20]. In [11], Ash-
burner et al. proposed an approximately symmetric image
registration method that uses symmetric priors. In [12],
Christensen and Johnson proposed a registration algorithm
that approximately satisfies the symmetry property. (Chris-
tensen and Johnson used the term “inverse consistency” for
what we refer to as “symmetry.”) Their idea is to estimate
the forward and reverse transformation simultaneously by
minimizing an objective function composed of terms that
measure the similarity between the two images and the
consistency of the forward and reverse transformations.

This approach requires maintaining two transformations,
computing their inverses and it has a tradeoff among the
terms in the objective function. In [13], Rogelj and Kovačič
proposed a registration method that uses symmetrically
designed forces that deform the two images. The method is
approximately symmetric, it requires maintaining forward
and backward transformation, but it does not use their
inverses. In [14], Škrinjar and Tagare proposed an exactly
symmetric registration method that is based on a symmet-
rically designed objective function, but it requires the com-
putation of the inverse transformation. In [15], Lorenzen
et al. proposed an exactly symmetric registration method
that is based on a symmetrically designed fluid model.
The method uses two transformations whose compositions
define the forward and backward transformations in such
a way that they are inverses of each other. Beg and Khan
in [18] and Avants et al. in [19] used an exactly symmetric
registration method that maintains two functions, which
when composed appropriately give forward and backward
transformations that are exact inverses of each other. In
[16], Cachier and Rey analyzed the reasons behind the
asymmetry in registration, proposed symmetrized similarity
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Figure 1: If two points (A1 and A2) in two images (I1 and I2)
correspond, as sketched in (a), then the registration algorithm
should associate the two points regardless of the order of images.
This is the symmetry property. Let I1, I2, and I3 represent images
of the same deforming object taken at three-time points, and let
A1, A2, and A3 represent the location of the same physical point in
the three images, as sketched in (b). If the registration algorithm,
when applied to images I1 and I2, associates points A1 and A2, and,
when applied to images I2 and I3, associates points A2 and A3, then
it should, when applied to images I1 and I3, associate points A1 and
A3. This is the transitivity property.

and smoothing energies, but their implementation of the
method was not exactly symmetric. In [17], Tagare et al.
proposed an exactly symmetric registration method that
does not require to maintain both forward and reverse trans-
formations and compute their inverses. Instead, the objective
function, which can be based on intensity differences (e.g.,
mean squared difference, normalized cross-correlation) or
distributions (e.g., mutual information, normalized mutual
information) is modified such that the method is symmetric
and only the forward transformation is needed. Conse-
quently, the objective function has only one term, which
avoids the problem of tradeoff among multiple terms. Their
implementation is symmetric up to the machine precision.
In [20], Christensen and Johnson realized the importance of
transitivity of image registration but did not provide a way
to satisfy it.

The above methods are either approximately or exactly
symmetric but none of them is transitive. In this paper, we
propose a method to modify any image registration algo-
rithm such that it is provably symmetric and transitive on
an image sequence. Symmetry and transitivity are especially
important in motion tracking applications; they insure that
a physical point is tracked in the same way regardless of
the order in which the images are registered. If there are
topological changes present in the image sequence, the two
properties can hold only over corresponding regions.

Registration of image sequences has a wide applicability
in medical imaging problems. Motion within the body is
present at the system level, organ level, tissue level, cellular
level, subcellular level, and molecular level. In addition to
the normal motion, pathology-induced motion or changes
can occur (e.g., osteoporosis, multiple sclerosis, and tumor
growth). In both normal and pathology-induced motion or
changes, it is often useful to compute the motion, that is, to

register image sequences. Such information can improve our
understanding of the normal function and diseases as well
as help develop better treatments. The presented approach
is illustrated on sequences of cardiac MR images, which if
accurately registered can provide clinically useful myocardial
displacement and strain information. However, the same or
similar approach can be used for the registration of any other
image sequence.

2. METHODS

2.1. Notation

Let R denote a set of real numbers and S an N-dimensional
metric space [21]. An N-dimensional intensity image is a
function I : S �→ R. Intensity images will be referred to as
just images. Without loss of generality, it is assumed that all
the images have the same domain. The set of all images is
denoted as I. An N-dimensional geometric transformation
is a function T : S �→ S. Geometric transformations
will be referred to as just transformations. The set of all
transformations is denoted as T . Let Tid denote the identity
transformation, that is, Tid(r) = r, ∀r ∈ S. Let ◦ denote the
composition of transformations.

2.2. Image registration operator and its properties

An image registration operator is a function Γ : I2 �→
T . Ideally, any image registration operator should have the
following three properties∀I , J ,K ∈ I.

(i) Identity. An image registration operator, when
applied to two identical images should generate the
identity transformation. Formally,

Γ(I , I) = Tid. (1)

(ii) Symmetry. The result of the registration should not
depend on the order of images, that is, when an image
registration operator is applied to two images, the
obtained transformation should be the inverse of the
transformation obtained when the order of images is
reversed. Formally,

Γ(J , I) ◦ Γ(I , J) = Tid. (2)

This is illustrated in Figure 1(a).

(iii) Transitivity. For any three images, the generated
transformation from the second to the third image
composed with the generated transformation from
the first to the second image should be equal to the
generated transformation from the first to the third
image. Formally,

Γ(J ,K) ◦ Γ(I , J) = Γ(I ,K). (3)

This is illustrated in Figure 1(b).
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Table 1: Parameters of the anatomical and tagged MR scans.

Parameter
Scan 1 Scan 2

Anatomical Tagged Anatomical Tagged

In-plane resolution [mm] 1.41 1.24 1.44 1.44

Number of slices 12 15 17 17

Slice thickness [mm] 10 10 8 8

Temporal resolution [ms] 38 30 35 30

2.3. Reference-based registration

The proposed approach is simple; select a reference image
and then perform the registration of any two images from the
sequence of images through the reference. The reference can
be an image from the sequence of images or an image similar
to the images in the sequence. Let the reference be denoted as
R and let Γ represent an image registration operator that does
not necessarily have any of the properties from Section 2.2. A
new image registration operator Ψ is defined as

Ψ(I , J) = [Γ(J ,R)
]−1 ◦ Γ(I ,R), (4)

where I and J are any two images from the sequence. It
is assumed that the transformations generated by Γ from
images in the sequence to the reference image are invertable,
that is, that [Γ(J ,R)]−1 always exists.

Theorem 1. Ψ satisfies Identity, Symmetry, and Transitivity.

Proof. Identity holds since

Ψ(I , I) = [Γ(I ,R)
]−1 ◦ Γ(I ,R) by (4)

= Tid.
(5)

Symmetry holds since

Ψ(J , I) ◦Ψ(I , J) = [Γ(I ,R)
]−1 ◦ Γ(J ,R) ◦ [Γ(J ,R)

]−1

◦ Γ(I ,R) by (4)

= [Γ(I ,R)
]−1 ◦ Γ(I ,R)

= Tid by (4).

(6)

Transitivity holds since

Ψ(J ,K) ◦Ψ(I , J) = [Γ(K ,R)
]−1 ◦ Γ(J ,R) ◦ [Γ(J ,R)

]−1

◦ Γ(I ,R) by (4)

= [Γ(K ,R)
]−1 ◦ Γ(I ,R)

= Ψ(I ,K) by (4).

(7)

It should be noted that the only requirement for the
above result to hold is that [Γ(J ,R)]−1 exists. This means
that the obtained transformations and their inverses do not
need to be differentiable. However, a number of registration
methods involve regularization terms that use transforma-
tion derivatives, in which case the registration operator needs
to generate diffeomorphic transformations.

If the Jacobian of the transformation Γ(J ,R) is positive
then the inverse transformation [Γ(J ,R)]−1 exists. If the
Jacobian of the transformation Γ(J ,R) is zero or negative,
the inverse transformation does not exist and the reference-
based registration operator given by (4) cannot be used or
it can be used only over the part of the domain where the
Jacobian is positive. Many registration methods control the
Jacobian either directly [22–26] or indirectly [12, 27–30] by
using a smoothness term that penalizes extreme warps to
prevent singularities (zero Jacobian) or folding of the space
(negative Jacobian), in which case the inverse transformation
exists and the reference-based registration can be used.

3. RESULTS

While the result of the previous section holds for any
registration operator that generates invertable transforma-
tions, here we illustrate the approach on two sequences of
cardiac magnetic resonance images using two nonrigid image
registration algorithms.

3.1. MR protocols

We acquired a 3D anatomical cine MRI scan together with
a 3D tagged cine MRI scan of a healthy volunteer and then
repeated the acquisitions four months later. The volunteer
was a 27-year-old male subject with no history of heart
disease. The purpose of the tagged scan was to validate the
myocardial deformation recovered from the anatomical scan.
The scans were acquired using steady-state free-precession
short axis cine imaging (flip angle = 65◦, TR = 3.4 ms,
TE = 1.7 ms) covering the entire heart on a 1.5 T clinical
MRI scanner (Intera, Philips Medical Systems, Best, The
Netherlands). All the scans had contiguous short-axis slices
with similar field of view and phases covering the entire
cardiac cycle and their parameters are given in Table 1. The
tags were applied immediately after the detection of the R-
wave from the EKG signal and the first frame was acquired at
a delay of 15 milliseconds after the R-wave. Two orthogonal
sets of parallel planar tags with about 9 mm plane separation
were oriented orthogonal to the image planes.

For both scans, for each acquired slice the scanner
recorded the rigid body transformation from the scanner
coordinate system to the slice. This allowed us to map all
the slices to a common coordinate system, that is, to spatially
align the anatomical and tagged scans. Similarly, the scanner
recorded the start time for each phase (frame) relative to the
peak of the R wave, which allowed us to temporally align
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Figure 2: The recovered myocardial deformation for a normal subject over the cardiac cycle (first row: end diastole; third row: end systole)
is shown by means of the endocardial and endocardial surface model contours overlaid over a midventricular short-axis MRI slice. The
myocardium was segmented in the first frame (shown in the first row), a surface model was generated around the segmented myocardium
and the recovered deformation for the rest of the sequence was applied to the surface model. The two red contours represent a cross-section
through the surface model. The four columns correspond to (a) sequential recovery by Γ1, (b) sequential recovery by Γ2, (c) reference-
based recovery by Γ1, and (d) reference-based recovery by Γ2. The registration algorithms Γ1 and Γ2 and the difference between sequential
and reference-based recovery are explained in Section 3.2. Note that the best deformation recovery, that is, the best agreement of the red
contours and the edges of the left ventricular wall, was achieved for the reference-based recovery by Γ1, shown in column (c).

the anatomical and tagged scans. Since the heart rate, that
is, the duration of the cardiac cycle, was not the same for
the anatomical and tagged scans, we used relative time (as a
percentage of the cardiac cycle) for the temporal alignment.

3.2. Myocardial deformation recovery

To recover the myocardial deformation, we use thin
plate splines (TPS) [31] to represent the transformation
between any two frames and then maximize the normalized
mutual information [32] to determine the transformation
parameters (TPS node positions). We use normalized mutual
information since it was shown to outperform several other
images similarity measures [33]. Since myocardium is nearly
incompressible and its volume does not change by more than

4% over the cardiac cycle [26], we constrain the optimization
of the TPS node positions such that the Jacobian of the
transformation never deviates from 1 (which corresponds
to exact incompressibility) by more than 4%. The details of
the method are given in [26]. (The purpose of this section
is to illustrate the approach of Section 2.3 (construction
of symmetric and transitive registration algorithms from
nonsymmetric and nontransitive registration algorithms),
and instead of the method given in [26] we could have
used any other registration method. For this reason we
did not present here all the details of the used registration
method and the interested reader is referred to [26].) This
registration algorithm we denote as Γ1, while Γ2 represents
its unconstrained version. Given that near incompressibility
is a physical property of the myocardium, Γ1 is expected
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to be more accurate than Γ2. Each of the two operators
was used to recover myocardial deformation from the two
cardiac MR image sequences in two ways: sequential and
reference-based. In the sequential approach, the deformation
was recovered from the first to the second frame, then from
the second to the third frame, and so on. In the reference-
based approach, the deformation was recovered directly
from the reference frame to any given frame. Figure 2 shows
a short-axis section through the 3D image and 3D LV
wall model surface for the sequential and referenced-based
recoveries using the two registration operators.

To quantitatively evaluate the deformation recovery
accuracy we compared the cardiac deformation recovered
from the anatomical cine MRI against the corresponding
information from the tagged cine MRI. We developed a
tool for interactive positioning of virtual tag planes in
tagged MRI scans. The tag planes are modeled as splines
that the user can position and deform by moving control
points. This allows the user to fit the virtual tag planes
to the tagged image as well as to compute tag plane
intersections. Once the cardiac deformation is recovered
from the anatomical cine MRI using the proposed method, it
is applied to the virtual tag planes at ED and then compared
to the interactively positioned tag planes in other frames.
In each image slice, we compute the distances between the
corresponding intersections of orthogonal virtual tag lines
(in-slice cross-sections of the virtual tag planes) generated
interactively and by the model. This allows for in-plane
(short-axis) deformation recovery validation. The out-of-
plane (long-axis) deformation is not evaluated with this
procedure since the tag planes, being perpendicular to the
short-axis image slices, do not contain information about
the out-of-plane motion. Virtual tag lines for the sequential
and referenced-based recoveries for the two operators are
shown in Figure 3. Table 2 contains the distances between
corresponding intersections of virtual and real tag lines at
end systole, which is the most deformed state relative to end
diastole.

3.3. Identity, symmetry, and transitivity errors

Let Ψ1 and Ψ2 represent the symmetric and transitive
modifications of Γ1 and Γ2, respectively. Operators Ψ1 and
Ψ2 are defined by (4) (the end diastole frame is used for R),
which involves transformation inversion. Since we use TPS
for transformation representation and the inverse of a TPS
transformation cannot be obtained analytically, we invert
the transformation numerically using the Newton-Raphson
method for solving nonlinear systems of equations [34]. The
numerical error of the computation of the inverse transform
is denoted as ε. If the Jacobian of the transformation is
positive then the inverse transformation exists and ε can be
specified to be an arbitrary small positive number, that is, the
inverse transformation can be computed with an arbitrary
small error. While ε can be set to an arbitrary small positive
value, in practical applications little is gained if ε is set to a
value smaller than two orders of magnitude smaller than the
pixel size. The reason for that is that the registration error
is on the order of the pixel size, and by setting ε to one

hundredth the pixel size the error of the computation of the
inverse transformation is already negligible compared to the
registration error, and further reducing ε does not improve
the registration accuracy.

For a given image registration operator Γ, we define the
following three errors.

(i) Identity error of image I is

Eiden = max
r∈S

∥
∥Γ(I , I)(r)− r

∥
∥. (8)

(ii) Symmetry error of images I and J is

Esym = max
r∈S

∥
∥Γ(J , I)(Γ(I , J)(r))− r

∥
∥. (9)

(iii) Transitivity error of images I , J , and K is

Etran = max
r∈S

∥
∥Γ(J ,K)

(
Γ(I , J)(r)

)− Γ(I ,K)(r)
∥
∥. (10)

Identity, symmetry and transitivity errors for Γ1, Γ2, Ψ1,
and Ψ2 are given in Tables 3, 4, and 5, respectively. The
errors for Ψ1 and Ψ2 in the three tables were computed using
ε = 0.001 mm. The dependence of Eiden, Esym, and Etran on ε
is depicted in Figure 4 for Ψ1.

4. DISCUSSION

Theorem 1 says that reference-based modification of any
registration operator satisfies identity, symmetry, and transi-
tivity on an image sequence. While the theorem always holds
and the modified registration operator satisfies the three
properties exactly, Section 3 demonstrates a practical appli-
cation of the reference-based registration using a relatively
accurate registration algorithm (Γ1) and its less accurate
version (Γ2). The method was applied to two cardiac cine
MRI scans, which are periodic image sequences, but the same
conclusions hold in the case of linear image sequences.

As expected, the constrained registration (Γ1) outper-
formed its unconstrained version (Γ2), which can be seen
in Figures 2 and 3 and in Table 2 for both sequential and
reference-based approaches. The two figures and the table
also show that in this case the reference-based registration
was more accurate than the sequential registration. The
advantage of the sequential registration is that the difference
between any two consecutive frames is relatively small, while
the reference-based registration deals with larger deforma-
tions (e.g., from end diastole to end systole). However, the
disadvantage of the sequential registration is that there is
accumulation of error from frame to frame, which seems to
overweigh the advantage of small frame-to-frame difference.
There is no accumulation of error for reference-based reg-
istration. The reference-based constrained registration (col-
umn (c) in Figures 2 and 3) was more accurate than the other
three algorithms (Table 2). The difference in accuracy of the
four algorithms is most pronounced at end systole, and it can
be seen as the different level of agreement between the model
contours and the underlying image in Figure 2 and between
the virtual tag lines and the underlying image in Figure 3.
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Figure 3: The virtual tag lines and the corresponding short-axis slices of the tagged MRI scan are shown over the cardiac cycle (first row: end
diastole; third row: end systole) for (a) sequential recovery by Γ1, (b) sequential recovery by Γ2, (c) reference-based recovery by Γ1, and (d)
reference-based recovery by Γ2. The registration algorithms Γ1 and Γ2 and the difference between sequential and reference-based recovery
are explained in Section 3.2. The virtual tag lines were manually positioned over the tagged MR image in the first frame (shown in the first
row), and then the deformation recovered from the anatomical image sequence was applied to the virtual tag lines and they were overlaid
over the tagged MR images in the corresponding frames.

Table 2: The mean (±std) distance [mm] between corresponding intersections of virtual and real tag lines at end systole for the four
algorithms for both scans.

Sequential Γ1 Sequential Γ2 Reference-based Γ1 Reference-based Γ2

Scan 1 2.3 ± 0.5 2.6 ± 0.6 1.9 ± 0.3 2.2 ± 0.4

Scan 2 2.2 ± 0.4 2.4 ± 0.4 1.7 ± 0.2 2.1 ± 0.3

Table 3: Identity errors [mm] for Γ1, Γ2, Ψ1, and Ψ2 are given for random frames (F) of the two cardiac cine MRI scans.

Scan 1 Scan 2

F Γ1 Γ2 Ψ1 Ψ2 Γ1 Γ2 Ψ1 Ψ2

3 0 0 0.0012 0.0014 0 0 0.0011 0.0014

7 0 0 0.0013 0.0011 0 0 0.0012 0.0011

12 0 0 0.0012 0.0012 0 0 0.0014 0.0013

14 0 0 0.0011 0.0013 0 0 0.0013 0.0011

19 0 0 0.0014 0.0011 0 0 0.0011 0.0012
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Table 4: Symmetry errors [mm] for Γ1, Γ2, Ψ1, and Ψ2 are given for random frames (F1 and F2) of the two cardiac cine MRI scans.

Scan 1 Scan 2

F1 F2 Γ1 Γ2 Ψ1 Ψ2 Γ1 Γ2 Ψ1 Ψ2

4 12 1.1 1.3 0.0023 0.0018 1.1 0.9 0.0017 0.0021

7 9 0.6 0.8 0.0019 0.0022 0.6 0.7 0.0020 0.0019

14 19 0.8 0.9 0.0021 0.0020 0.8 1.1 0.0015 0.0023

18 6 1.1 1.5 0.0016 0.0015 1.2 1.5 0.0017 0.0016

2 5 0.6 0.5 0.0022 0.0026 0.7 0.8 0.0019 0.0025

Table 5: Transitivity errors [mm] for Γ1, Γ2, Ψ1, and Ψ2 are given for random frames (F1, F2, and F3) of the two cardiac cine MRI scans.

Scan 1 Scan 2

F1 F2 F3 Γ1 Γ2 Ψ1 Ψ2 Γ1 Γ2 Ψ1 Ψ2

1 3 7 1.6 1.8 0.0026 0.0019 2.2 2.5 0.0022 0.0015

4 9 15 1.7 2.2 0.0022 0.0021 1.8 1.7 0.0018 0.0023

6 12 18 2.2 1.9 0.0016 0.0023 2.5 2.6 0.0023 0.0020

8 2 14 2.2 2.3 0.0017 0.0020 1.9 2.3 0.0017 0.0016

5 6 17 1.9 2.1 0.0019 0.0022 2.5 2.7 0.0021 0.0022

Since Γ1 and Γ2 use Tid as the initial transformation
in searching for the transformation that maximizes the
normalized mutual information, both operators satisfy (1)
exactly and consequently have Eiden = 0 for any image,
as it can be seen in Table 3. Operators Ψ1 and Ψ2 involve
transformation inversion as defined in (4), which is done
numerically with an accuracy of ε. This is why the identity
errors for Ψ1 and Ψ2 in Table 3 are approximately equal to ε.

The symmetry errors (Table 4) for Γ1 and Γ2 are approx-
imately 1 mm, while for Ψ1 and Ψ2 they are approximately
2ε. The reason for this is that the evaluation of (9)
involves a composition of the operators, each contributing
approximately ε to Esym due to the numerical inversion of
transformation in (4).

Similarly, the transitivity errors (Table 5) for Γ1 and Γ2

are approximately 2 mm, while for Ψ1 and Ψ2 they are
approximately 2ε. The reason for this is that the evaluation
of (10) involves a composition of the operators, each
contributing approximately ε to Etran due to the numerical
inversion of transformation in (4).

It should be noted that Ψ1 and Ψ2 have similar values
for Eiden, Esym, and Etran. The reason for this is that the
three errors depend only on the accuracy of the computation
of the inverse transformation, and not on the registration
accuracy (Ψ1 is more accurate than Ψ2). In fact, if the inverse
transformation could be computed exactly, the three errors
would be zero regardless of the registration operator. The
three errors scale with ε, as shown in Figure 4, and they
can be made as small as the machine precision. Figure 4
also shows that Eiden ≈ ε, Esym ≈ 2ε, and Etran ≈ 2ε.
Thus, the reference-based registration slightly worsens the
identity error and it significantly improves the symmetry and
transitivity errors over the sequential registration.

For the two tested image sequences, the symmetric and
transitive registration methods Ψ1 and Ψ2 had smaller reg-
istration errors than their nonsymmetric and nontransitive
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Figure 4: The dependence of Eiden (dotted), Esym (solid), and
Etran (dashed) on ε for Ψ1 is shown in the log-log axes for a
representative image, image pair, and image triple, respectively. The
three curves represent interpolations of the errors corresponding to
ε of 0.000001 mm, 0.00001 mm, 0.0001 mm, 0.001 mm, 0.01 mm,
0.1 mm, and 1.0 mm. The squared correlation coefficient between
Eiden and ε is .9998, between Esym and ε is .99997, and between Etran

and ε is .9998, indicating a strong dependence of the three errors
on ε.

counterparts Γ1 and Γ2, respectively (Table 2). While all four
registration methods had either zero or nearly zero identity
errors (Table 3),Ψ1 andΨ2 had very small (nearly zero) sym-
metry and transitivity errors and Γ1 and Γ2 had these errors
on the order of the pixel size or even larger (Tables 4 and 5).
Thus, in this limited study, very small (nearly zero) symmetry
and transitivity errors were accompanied by reduced regis-
tration errors. However, to determine if this is always the case
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one would need to prove it mathematically or at least repeat
the experiment on a large number of image sequences.

To simplify the notation, it was assumed that all the
images had the same domain, but the same conclusions hold
when the domains are different. Furthermore, the method
involves the transformation inversion, which is done only
once (after both images are registered to the reference), as
opposed to the methods proposed in [12, 14–16] that require
computing the inverse transformation in each iteration of the
optimization.

We used the normalized mutual information as the image
similarity measure for the registration algorithms Γ1 and
Γ2. We repeated all the experiments by using the mutual
information, mean square difference, and normalized cross-
correlation as alternative image similarity measures and the
obtained results were nearly identical to those reported
in Section 3 and for this reason they are not included in
the paper. These repeated experiments confirm that the
conclusions of the paper are not specific to the normalized
mutual information.

5. CONCLUSION

The reference-based registration of image sequences is
provably symmetric and transitive. This conclusion is inde-
pendent of the images and registration algorithm used.
Furthermore, a limited study showed that the reference-
based registration was more accurate than the sequential
registration, although this cannot be guaranteed to always
hold.
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