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Abstract

Inferring gene regulatory networks from expression data is difficult, but it is common and often useful. Most network
problems are under-determined–there are more parameters than data points–and therefore data or parameter set
reduction is often necessary. Correlation between variables in the model also contributes to confound network coefficient
inference. In this paper, we present an algorithm that uses integrated, probabilistic clustering to ease the problems of
under-determination and correlated variables within a fully Bayesian framework. Specifically, ours is a dynamic Bayesian
network with integrated Gaussian mixture clustering, which we fit using variational Bayesian methods. We show, using
public, simulated time-course data sets from the DREAM4 Challenge, that our algorithm outperforms non-clustering
methods in many cases (7 out of 25) with fewer samples, rarely underperforming (1 out of 25), and often selects a non-
clustering model if it better describes the data. Source code (GNU Octave) for BAyesian Clustering Over Networks (BACON)
and sample data are available at: http://code.google.com/p/bacon-for-genetic-networks.
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Introduction

Inferring gene regulatory networks from high-throughput gene

expression data is a difficult task, in particular because of the high

number of genes relative to the number of data points, and also

because of the random noise that is present in measurement. Over

the last several years, many new methods have been developed to

address this problem; a nice review of these can be found in [1].

This review directly compares several different types of approaches

by summarizing the correctness of the genetic networks inferred

from synthetic (in silico) data generated from a known network. Of

particular interest are the results of each of the algorithms when

applied to the DREAM4 In Silico Network Challenge data sets, which

includes data types such as ‘‘knock-out’’, ‘‘knock-down’’, and time-

series data among the sub-challenges. See [2] for more details on

the DREAM challenges.

Though [3] have had success combining methods in order to

infer genetic networks from different types of data simultaneously,

here we focus on time-series data and the corresponding methods

for network inference. In the review of [7], two types of algorithms

seem to outperform the others when applied to time-series data:

dynamic Bayesian networks and causal structure identification

(CSI) in non-linear dynamical systems (NDSs).

Dynamic Bayesian networks (DBNs) are typically some varia-

tion of the basic linear model

xtz1~AxtzE1 ð1Þ

yt~xtzE2 ð2Þ

where in the context of gene regulatory networks, xt is the vector

of ‘‘true’’ gene expression levels at time t, yt is a vector of

observations of these expression levels, A is a matrix of interaction

coefficients, and E1 and E2 are random (Gaussian) noise. More

information on DBNs and their application to gene regulatory

networks can be found in [4] and [5].

The algorithms considered in [1] include a model very similar to

that of the basic DBN formulation above, but which exploits

conditional [first-order] dependence within nodes of the network,

as well as an assumption of relative sparseness, to efficiently infer

network structure. This model, from [6] is referred to as G1DBN

and is available as an R package from CRAN [7]. The second DBN

considered by [1] is that of [8], which adapts a state-space model

with inputs to include hidden states, the quantity and values of

which are inferred through variational Bayesian learning. This

algorithm is referred to as VBSSM, as in the review. Causal

structure identification (CSI) in non-linear dynamical systems

(NDSs) avoids the restriction of linearity when determining

network structure, and in the case of [3], which is also considered

in the review, latent interaction parameters of a discrete Gaussian

process model are inferred using a Bayesian framework. According

to [1], both the G1DBN and VBSSM algorithms performed well on

the DREAM4 data sets, as did the CSI algorithm of [9]. Both

DBNs and CSI outperformed ordinary differential equations

(ODEs) and models using Granger causality.
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Though these results are convincing, there is still room for

improvement, and the discussion of optimal methods is still open;

in fact, the body of research in the area of gene expression time-

series analysis continues to grow quickly. A recent review, [10],

outlines the state of the art in gene expression time-series analysis,

including much information on clustering methods and software.

We can see that, when compared to a similar, earlier review, [11],

a considerable amount of work has been done. However, we feel

that there is still a branch of time-series data analysis that is under-

utilized in gene regulatory network inference. Despite the vast

amount of work that has been done on the clustering of gene

expression data, much of which deals specifically with time-series,

relatively little work has been done on inferring time-dependent

interactions between gene clusters or between a gene cluster and

an individual gene. Let us briefly discuss clustering methods for

time-series data before continuing on to its potential use in

inferring gene regulatory networks.

In order to successfully cluster time-series data, we need to

utilize the stronger dependencies between data in consecutive time

points relative to more distant time points. Quite often, researchers

are interested in expression patterns across time; [12] cluster short

time-series data around specific pre-determined profiles that may

have meaning within the particular experiment. [13] perform a

similar cluster analysis of time-series, but instead of using pre-

determined expression patterns, they use a hidden Markov model

(HMM) to infer dynamics of a limited number of clusters between

a small number of states (e.g. nine discrete expression levels). [14]

take a slightly different approach by clustering genes to inferred

profiles, focusing mainly on impulse models in experiments where

one might expect peaks in the expression values.

In each of the above papers, it was shown that gene clustering

can infer biological meaning, whether co-expression, co-regula-

tion, involvement in particular biological processes, or some other

effect. Such information may also be valuable in inferring genetic

regulatory networks. [15] and [16] have done work in this

direction, combining state-space models and clustering heuristics

for simultaneous, integrated inference. However, both of these are

demonstrated on data containing hundreds of genes which are

clustered or grouped into a low (fewer than 20) number of

clusters/modules and subsequently the large cluster size prevents

any meaningful conclusions about regulatory interactions between

specific genes.

In this paper, we describe a fully Bayesian model of gene cluster

interaction, and we demonstrate that probabilistic gene clustering

in conjunction with a dynamic Bayesian network can aid in the

inference of gene regulatory networks, even in the DREAM4 data

sets, where no clusters were explicitly included. It achieves this by

potentially reducing–in a fully Bayesian manner–the parameter

space and helping solve the problem of solution identifiability in

under-defined, noisy data models such as are common in gene

expression analysis. The algorithm presented here is a variational

Bayesian hybrid of a DBN and a Gaussian mixture clustering

algorithm, both of which have been shown to infer meaningful

solutions to their respective problems [8,17], and which we show

can work even better in tandem. We call this algorithm BAyesian

Clustering Over Networks (BACON). BACON is built specifically to

simultaneously consider multiple data sets based on the same

network, such that for each data set, expression states are inferred

independently, but that cluster membership and regulatory

dynamics are assumed to be constant for all data from the given

network, regardless of the particular data set. This gives more

accurate results than a heuristic combination of interaction

rankings based on the various time-series for each of the DREAM4

networks.

Methods

In this paper we introduce an algorithm called BACON, which is

a variational Bayesian algorithm that combines a Gaussian

mixture clustering model with a DBN. However, before we give

the specific formulation of our model, it may be helpful first to look

at a simple case where integrated clustering can help infer gene

regulatory networks, even if no ‘‘true’’ clusters are present.

A simple example
Assume, as an illustration, that we have a three genes, X, Y, and

Z and that we have time-series expression data for each of them,

such that the observed expression levels of these at time t are given

by xt, yt, and zt, respectively, for time points t[f1, . . . ,Tg. Let us,

for simplicity’s sake, assume that we are concerned only with

potenial regulators of gene Z, and that X and Y are the only two

candidates. Furthermore, we assume a simple linear model of

dynamics, in which ztz1 is assumed to be a noisy observation of

the dot/inner product of the vector of two interaction coefficients

ax and ay with the vector of xt and yt, namely:

ztz1~(ax,ay)(xt,yt)’zE ð3Þ

Note that this is a simple linear model on three variables, where

all interaction coefficients except ax and ay are set to zero. It is a

special case of the standard linear model, given in equation 1,

where for this example we treat the observations as the true

expression values, we attempt only to infer ax and ay, and for

illustration purposes we ignore all other possible interaction

coefficients. When attempting to infer ax and ay under a Bayesian

framework, we make the following assumptions:

ztz1*N ((ax,ay)(xt,yt)’,l) ð4Þ

(ax,ay)*N (m,L) ð5Þ

where l is a precision parameter (inverse of variance), m is the

prior mean of the multivariate normal distribution, and L is a

2|2 precision matrix (inverse of the covariance matrix).

Given these assumptions, the data xt, yt, and zt, and the

precision parameter l (fixed), the estimated posterior distribution

for (ax,ay) under a variational Bayesian framework (see [?] and [?]

for a detailed explanation) is multivariate normal, with mean m̂m

and precision L̂L, such that

L̂L~Lz
XT{1

t~1

l
x2

t xtyt

xtyt y2
t

" #
ð6Þ

m̂m~(mz
XT{1

t~1

l
xt yt
� �

)L̂L{1 ð7Þ

Under some conditions, such inference works quite well, but if

the expression profiles for X and Y are highly correlated (or

negatively correlated), then the determinant of L̂L approaches zero,

and the diagonal elements of L̂L{1 (the estimated variances of ax

and ay ) approach infinity. Such a problem can be overcome with

a strong prior for ax and ay, but this is usually not desireable since
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typically m is set to zero (as in [?]), and a high prior precision L
merely pulls the estimate m̂m towards zero, and potentially decreases

the statistical significance of the inferred interaction parameters.

Thus, we are faced with a decision between strong priors or very

high variances of posterior parameter estimates.

If the xt and yt are highly correlated, and if they are likewise

correlated with ztz1, then we might be able to say with near

certainty that either X or Y regulates Z, but we could not say

which one. This may be acceptable on a small scale, but would be

difficult in a gene expression time-series experiment with hundreds

of genes and thousands of putative interaction coefficients and

covariances. It could be interesting to optimize the choice of a set

of, for example, ten gene interactions, with respect to the

probability of at least one of them being verifiable in an

independent evaluation. But, this would be difficult for experi-

ments with large numbers of genes, and so typically only the

individual variances are considered when calculating the statistical

significance of the estimated interaction parameter values.

Estimating, potentially, thousands of interaction parameters is

very difficult in dynamic gene expression time-series analysis

because, for example in the basic linear model given in equation 1,

there are generally many possible values for the transition matrix,

each of which could produce the data. In other words, a given

gene expression time-series could be reproduced by many different

linear combinations of other [lagged] time-series. A particular case

of this is when two potentially regulating genes have highly

correlated expression profiles, which, as we have shown above, can

cause some difficulty in inference.

Here, we propose that clustering genes and inferring the

dynamics of the clusters can help avoid the case in which highly

correlated gene profiles inhibit interaction inference. In our

example, if genes X and Y have highly correlated expression

profiles, then for weak priors the precision estimate in equation 6 is

nearly singular, and thus by treating X and Y as two contributors

to the same dynamic quantity, we avoid this particular singularity

problem altogether. Then, a standard method (DBN or similar)

could more easily infer that both X and Y (as one cluster) are likely

regulators of Z. If, when creating a list of the most likely individual

gene-gene interactions, we simply assign all the inferred interac-

tion coefficients for a cluster to each of its members, we can obtain

a ranking of interaction pairs that is comparable to the ranking

obtained from a standard DBN.

It may seem, at first, that passing along inferred interaction

coefficients to all cluster members would create many false

positives. However, if clusters include–by definition–highly corre-

lated expression profiles, then if a cluster appears to be a good

potential regulator of a gene, all of the cluster’s members must also

have profiles that generally indicate potential regulation, and in

the absence of clustering, it would be difficult to identify the best

interaction parameters. This is true whether or not any or all of the

concerned genes are actually verifiable regulators, and thus

clustering together correlated expression profiles–regardless of

the biological meaning of the clustered genes–could improve

inference. For instance, in our example, the presence of gene Y (if

highly correlated with X) adversely affects the identification of X

as a regulator of Z, a problem that can be avoided if X and Y are

treated as members of the same cluster. In a data set with

hundreds of genes, the chance of having at least one pair of highly

correlated expression profiles is rather large. Of course, we must

be careful in our construction of clusters and their dynamics, but

as we show, Bayesian inference provides the means to select a

number of clusters, to assign cluster membership, and to estimate

cluster interaction parameters in an optimal way. We describe this

below.

Model
Given K clusters and G genes, we assume that the cluster

expressions Ft for time points t[f1,:::,Tg follow the standard

linear dynamics

Ftz1~SFtzSczE ð8Þ

where Ft is a vector of length K , S is a K|K transition matrix, Sc

is a column vector of length K , and E is vector of Gaussian noise.

The kth element of Ft, fkt, is the expression of cluster k at time t.

The vector Sc represents linear trends in cluster expression levels

over the time points, and its inclusion in the model prevents such

trends from being confused for interactions in similarly trending

clusters.

The expression of gene g at time t is given by mgt, and the

membership of gene g to cluster k is given by the kth element of

the indicator vector jg. Each gene g belongs to exactly one cluster

k, and so jg contains a single 1 in in the kth element and zeros

elsewhere. The nth observation/replicate of mgt is xgtn. The

corresponding prior distributions are:

xgtn*N (mgt,l) ð9Þ

Table 1. Algorithm results comparison for the DREAM4 networks.

Algorithm Data set 1 Data set 2 Data set 3 Data set 4 Data set 5

AUROC ACON 0.82 0.67 0.72 0.81 0.88

BACON (no clustering) 0.82 0.67 0.72 0.81 0.88

G1DBN 0.73 0.64 0.68 0.85 0.92

VBSSM 0.73 0.66 0.77 0.80 0.84

AUPR BACON 0.42 0.36 0.51 0.49 0.57

BACON (no clustering) 0.42 0.36 0.51 0.49 0.57

G1DBN 0.37 0.34 0.45 0.69 0.77

VBSSM 0.38 0.41 0.49 0.46 0.64

The area under the receiver operating characteristic (AUROC) curve and area under precision-recall (AUPR) curve for each of the five data sets. Here, we included BACON
without clustering in order to establish that the plain DBN algorithm is generally as good as the other two DBN algorithms. The scores for G1DBN and VBSSM were taken
from [7]. The best score for each data set is shown in bold.
doi:10.1371/journal.pone.0068358.t001

BACON: BAyesian Clustering over Networks
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mgt*N (jFt
0,jgct

0) ð10Þ

Ft*N (SFt{1zSc,S) ð11Þ

where the l is a technical precision (inverse of variance)

representing the measurement errors, assumed to be independent,

ct is a vector of precisions of length K , and S is a K|K precision

matrix which we require to be diagonal, as in [8], so that in the

posterior distribution estimates, the rows of S are independent. We

also formulate our other prior distributions as in [8]: for the

elements of F1, S, and Sc, we use zero-mean normal distribution

priors whose precisions we iteratively update to maximize the

marginal likelihood estimate (discussed below). Likewise, for the

hyper-parameters of the gamma distribution priors we assume for

the elements of the precisions l, ct, and S. For jg, we use a

uniform prior distribution over the K possible clusters.

For multiple time-course data sets from the same gene

regulatory network, as we have in the DREAM4 Challenge data

sets we use in this paper, we infer all of the parameters separately

for each of the series, except for the dynamics parameters S and Sc

and the membership indicator vectors jg, which are shared and

inferred simultaneously for all time-series from the given network.

Inference
To estimate the parameters of our model, we use a variational

Bayesian algorithm analagous to those described in [18] and [19],

which has been previously used to fit a DBN to gene expression

time-series in [8], as well as a Gaussian mixture model for gene

clustering in [17].

In short, the algorithm used in this paper estimates the posterior

parameter distribution P(hDD) given the data D using a factorable

distribution Q(h)~Q(h1)Q(h2) . . . Q(hn) whose factors can be

iteratively updated so that with each update, Q(h) becomes a

better approximation for P(hDD), as measured by the Kullback-

Leibler divergence between the two. We have chosen conjugate

prior distributions for each of the parameters we estimate, and

therefore the posterior distribution estimate Q(hi) for each

parameter is of the same form as its prior, and the parameters

of these distributions are updated iteratively according to

variational Bayesian inference, as in equations 6 and 7.

We fit the model using 10 starts with randomized initial

parameter values, and with a range of cluster numbers less than or

equal to the number of genes in the data set (in the case of the

DREAM4 data, k[f5,6, . . . ,10g) and then accept the model that

has the highest estimated marginal likelihood. Accepting the

model with the maximum marginal likelihood is simpler than

combining all models based on their likelihoods, when in fact it is

rare for a second, different model to have a likelihood close

enough (i.e. a log likelihood within 3 or 4) to the best model for it

to make a significant impact on the interaction rankings.

We are concerned primarily with the transition matrix S and

the membership indicators jg; using posterior estimates for these,

we can rank directed gene-gene interactions by their statistical

strength. Specifically, for each directed cluster pair interaction i?j
(i=j), we calculate the posterior mean estimate for element (i,j) of

S divided by its posterior standard deviation, assign this value to all

possible directed pairs within the two clusters, and we rank by

largest absolute value.

The Octave code implementing this algorithm–available at:

http://code.google.com/p/bacon-for-genetic-networks-takes ap-

proximately 40 minutes on a single core of a 1.2 GHz processor

for a single random start and a given number of clusters. Multiple

starts and different numbers of clusters can be run in parallel; see

the code for more details.

Data
We used the DREAM4 In Silico Network Challenge data sets to

evaluate the performance of our model. See [2,20–22] for more

details on the DREAM challenges. We utilized only the 10-gene

time-series data, which consists of five simulated networks. For

each of the networks, there are five time-series experiments, each

with 20 time points. No simulated technical replicates were

included, but random noise was added. The list of actual, ‘‘gold

standard’’, interactions was provided after the official challenges

ended.

Results

For each of the five data sets, each corresponding to a single

gene regulatory network, we inferred the network using all

Table 2. Results of BACON on individual DREAM4 time series.

Time-series Data set 1 Data set 2 Data set 3 Data set 4 Data set 5

AUROC 1 0.68 (0.71) 0.61 (0.61) 0.64 (0.64) 0.62 (0.62) 0.57 (0.57

2 0.75 (0.66) 0.70 (0.70) 0.68 (0.66) 0.77 (0.77) 0.64 (0.64)

3 0.67 (0.61) 0.62 (0.62) 0.65 (0.60) 0.60 (0.58) 0.65 (0.65)

4 0.61 (0.53) 0.66 (0.66) 0.59 (0.59) 0.60 (0.60) 0.74 (0.66)

5 0.66 (0.63) 0.64 (0.64) 0.59 (0.59) 0.76 (0.76) 0.78 (0.78)

AUPR 1 0.24 (0.39) 0.24 (0.24) 0.32 (0.32) 0.19 (0.19) 0.23 (0.23)

2 0.42 (0.27) 0.34 (0.34) 0.28 (0.30) 0.26 (0.26) 0.32 (0.32)

3 0.30 (0.19) 0.21 (0.21) 0.24 (0.19) 0.15 (0.16) 0.24 (0.24)

4 0.24 (0.16) 0.38 (0.38) 0.21 (0.21) 0.24 (0.18) 0.27 (0.23)

5 0.22 (0.19) 0.20 (0.20) 0.17 (0.17) 0.34 (0.34) 0.33 (0.33)

For each of five individual time-series in each of the five data sets, the area under the receiver operating characteristic (AUROC) curve and area under precision-recall
(AUPR) curve. For each time series, we give two of each score, one for BACON with clustering and one for BACON without clustering (in parentheses). The higher of the
two scores appears in bold. If the two scores are identical, neither is in bold.
doi:10.1371/journal.pone.0068358.t002

BACON: BAyesian Clustering over Networks
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available time-series (five each) and used the inferred interactions

and the known gold standard to calculate the area under the

receiver operating characteristic (AUROC) curve and the area

under precision-recall (AUPR) curve, as in [1]. Table 1 gives the

AUROC and AUPR for BACON both with and without clustering,

as well as the corresponding scores from the G1DBN and VBSSM

models, as reported in [1]. BACON gives an AUROC score better

than both G1DBN and VBSSM in two out of five data sets– likewise

for the AUPR scores–and is comparable to the other two

algorithms in the remaining data sets. Given that BACON without

clustering compares favorably with other algorithms, and that

BACON with clustering gives the exact same results as BACON

without clustering (the inferred number of clusters in each case was

10, the number of genes), we conclude that both versions of

BACON give satisfactory results for these data sets.

However, the DREAM4 time-series data are not typical; a single

time-series with 20 time points is somewhat uncommon in practice

(most experiments have 10 or fewer time points), and five

independent time-series for the same gene network would be

extremely rare. Thus, we subsequently consider each of the time-

series individually, in order to see if an even more under-

determined problem (only 20 data points for each of the 10 genes

instead of 100) favors the model version with clsutering. We show

in Table 2 the AUROC and AUPR of the 25 individual time-

series (five from each of five data sets) for the BACON model both

with and without clustering.

In many cases, the with-clustering and without-clustering scores

were identical–i.e. 10 clusters is optimal–but in several other cases,

fewer clusters gave a higher marginal likelihood score, and the

corresponding AUROC and AUPR were indeed better, more

often than not. Specifically, for 15 of the 25 time-series, BACON

with clustering performed identically to the version without, but in

seven cases, the version with clustering gave higher scores for both

AUROC and AUPR. In only one case, the without-clustering

version outperformed the with-clustering version in both AUROC

and AUPR. These tallies are summarized in Table 3. Clearly, for

smaller data sets such as a single time series, there is some benefit

to be had from clustering the genes, when compared to non-

clustering DBNs.

Discussion

Inferring gene regulatory networks from expression data is not

usually easy, but it is common and often useful. Because of the

under-determined nature of the problem–there are more param-

eters than data points–some reduction of the parameter set is often

necessary in order to reach any meaningful conclusion at all.

Sometimes, we can accomplish this through heuristic methods and

decisions about which data are more important prior to the main

statistical analysis. Other times, this is not desirable. In this paper,

we present a probabilistic model of time-series gene expression

with an integrated, theoretically sound method of parameter space

reduction. We have described its implemetation and use, including

a simple analytically-tractable example in which clustering is

advantageous to network inference even if no ‘‘true’’ cluster exists,

and if we are not at all concerned with cluster membership.

Many of the expectations we had for the Bayesian model turned

out to be true. In particular, we expected the model to favor

clustering mainly in data sets with few samples; in fact, the model

preferred (via the likelihood function) not to cluster when we

included all data for each network (100 samples, 20 from each of

five time-series), but elected to cluster for 10 of the 25 separate

time series (20 samples each). Likewise, because of the under-

determined nature of network inference, we also expected the

clustering model to perform better than a model without clustering

if there are fewer samples. This also proved true; of the 10 time-

series for which the model’s marginal likelihood was highest for

less than 10 clusters, seven were indeed better than without

clustering (when comparing both AUROC and AUPR scores),

and only one proved worse.

We believe that probabilistic clustering could be very useful in

gene network inference, though there are disadvantages. For one,

the computational time is generally much higher when clustering.

This is due to the need to do model fits for a range of possible

cluster numbers. For the purposes of this paper, in addition to

doing the 10 random starts for the non-clustering model version,

we do 10 random starts for the cluster quantities we wish to

consider. Of course, the algorithm is much faster for smaller

cluster numbers, as the size of the parameter of primary interest,

the interaction/transition matrix, varies with the square of the

number of clusters. It would likely be beneficial, in the case of very

large data sets, to use a sequential or iterative search over the

number of clusters, rather than use the exhaustive search method

as we have here, but we leave that for a future publication.

In summary, we have shown that there are benefits to be had by

clustering genes as part of a network inference algorithm. The

potential for significant correlation among genes is high in typical

time-series data sets, particularly those with few samples. The

algorithm we have presented here, which we call BAyesian Clustering

Over Networks (BACON), can help avoid the negative consequences

of inter-gene correlation for the purposes of network inference. In

our tests, the algorithm outperformed its non-clustering version in

7 out of 25 time-series from the DREAM4 Challenge, under-

performing only once, and most often electing to disregard clusters

when the data did not support it. Therefore, we feel that there are

significant benefits of using probabilistic clustering to aid in the

inference of gene regulatory networks.

Source code (GNU Octave), more information about the software

for BAyesian Clustering Over Networks, (BACON) and sample

data can be found at: http://code.google.com/p/bacon-for-

genetic-networks.
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Table 3. Results comparison: with vs without clustering.

Higher AUPR

with
clustering equal without

with clustering 7 0 2

Higher
AUROC

equal 0 15 0

without 0 0 1

Among the five individual time-series in each of the five data sets (25 total time
series), here we give a tally of how many times BACON with clustering
outperformed BACON without clustering, or vice versa, or if the AUROC and
AUPR scores are equal.
doi:10.1371/journal.pone.0068358.t003
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6. Lèbre S (2009) Inferring Dynamic Genetic Networks with Low Order

Independencies. Statistical Applications in Genetics and Molecular Biology 8:

1–38.

7. R Development Core Team (2009) R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

8. Beal MJ, Falciani F, Ghahramani Z, Rangel C, Wild DL (2005) A Bayesian

approach to recon-structing genetic regulatory networks with hidden factors.

Bioinformatics 21: 349–356.

9. Klemm SL (2008) Causal Structure Identi_cation in Nonlinear Dynamical

Systems. Master’s thesis, Department of Engineering, University of Cambridge,

Cambridge, UK.

10. Bar-Joseph Z, Gitter A, Simon I (2012) Studying and modelling dynamic

biological processes using time-series gene expression data. Nat Rev Genet 13:

552–564.

11. Bar-Joseph Z (2004) Analyzing time series gene expression data. Bioinformatics

20.

12. Ernst J, Nau GJ, Bar-Joseph Z (2005) Clustering short time series gene

expression data. Bioinfor-matics (Oxford, England) 21 Suppl 1: i159–168.
13. Schliep A, Schonhuth A, Steinhoff C (2003) Using hidden Markov models to

analyze gene expression time course data. Bioinformatics 19: i255–i263.
14. Sivriver J, Habib N, Friedman N (2011) An integrative clustering and modeling

algorithm for dynamical gene expression data. Bioinformatics 27: i392–i400.

15. Hirose O, Yoshida R, Imoto S, Yamaguchi R, Higuchi T, et al. (2008) Statistical
inference of transcriptional module-based gene networks from time course gene

expression profiles by using state space models. Bioinformatics 24: 932–942.
16. Shiraishi Y, Kimura S, Okada M (2010) Inferring cluster-based networks from

differently stimulated multiple time-course gene expression data. Bioinformatics

26: 1073–1081.
17. Teschendorff AE, Wang Y, Barbosa-Morais NL, Brenton JD, Caldas C (2005) A

variational Bayesian mixture modelling framework for cluster analysis of gene-
expression data. Bioinformatics 21: 3025–3033.

18. Beal MJ (2003) Variational algorithms for approximate Bayesian inference.
Ph.D. thesis, Gatsby Computational Neuroscience Unit, University College

London. Available: http://www.cse.buffalo.edu/faculty/mbeal/thesis/. Univer-

sity at Buffalo website. Accessed 2013 May.
19. Winn JM (2003) Variational Message Passing and its Applications. Ph.D. thesis,

St Johns College, Cambridge, Cambridge, England.
20. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, et al.

(2010) Towards a Rig-orous Assessment of Systems Biology Models: The

DREAM3 Challenges. PLoS ONE 5: e9202+.
21. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, et al. (2010)

Revealing strengths and weaknesses of methods for gene network inference.
PNAS 107: 6286–6291.

22. Marbach D, Schaffter T, Mattiussi C, Floreano D (2009) Generating Realistic In
Silico Gene Net-works for Performance Assessment of Reverse Engineering

Methods. Journal of Computational Biology 16: 229–239.

BACON: BAyesian Clustering over Networks
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