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In situ tumor ablation techniques, like radiotherapy, cryo- and heat-based thermal ablation
are successfully applied in oncology for local destruction of tumor masses. Although
diverse in technology and mechanism of inducing cell death, ablative techniques share
one key feature: they generate tumor debris which remains in situ. This tumor debris
functions as an unbiased source of tumor antigens available to the immune system and
has led to the concept of in situ cancer vaccination. Most studies, however, report
generally modest tumor-directed immune responses following local tumor ablation as
stand-alone treatment. Tumors have evolved mechanisms to create an
immunosuppressive tumor microenvironment (TME), parts of which may admix with the
antigen depot. Provision of immune stimuli, as well as approaches that counteract the
immunosuppressive TME, have shown to be key to boost ablation-induced anti-tumor
immunity. Recent advances in protein engineering have yielded novel multifunctional
antibody formats. These multifunctional antibodies can provide a combination of distinct
effector functions or allow for delivery of immunomodulators specifically to the relevant
locations, thereby mitigating potential toxic side effects. This review provides an update on
immune activation strategies that have been tested to act in concert with tumor debris to
achieve in situ cancer vaccination. We further provide a rationale for multifunctional
antibody formats to be applied together with in situ ablation to boost anti-tumor
immunity for local and systemic tumor control.

Keywords: tumorablation, immuneactivation, in situcancer vaccination,multifunctional antibodies, combination therapy
INTRODUCTION

Vaccines have been extremely successful in preventing infectious diseases by training the immune
system to recognize and destroy pathogens. Conventional vaccines comprise of antigen(s) often
supplemented with immune adjuvants to support the induction of an effective immune response.
Besides, adjuvants can function as a slow release system, ensuring prolonged and continuous
org April 2021 | Volume 12 | Article 6173651
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presentation and stimulation of the immune system (1). The
application of vaccines to cancer is an obvious extension of their
utility, and many diverse vaccination strategies are under
development. An interesting novel approach is the in vivo
loading and activation of dendritic cells (DCs) with tumor
antigens released following in situ tumor ablation.

Tumor ablation techniques are successfully applied for the
treatment of different malignancies. Although diverse in
technology and mechanism of action, all ablative techniques
lead to in situ availability of ablated tumor material (Figure 1A).
The tumor debris released upon ablation functions as an antigen
depot representing the tumors’ antigenic repertoire. Together
with the simultaneous release of bioactive molecules, such as
damage-associated molecular patterns (DAMPs), this has led to
the concept of in situ cancer vaccination. Indeed, tumor antigens
were observed in DCs residing in draining lymph nodes (dLNs)
following ablation (2). Immune responses induced by ablation as
stand-alone treatment are documented, however, tend to be
Frontiers in Immunology | www.frontiersin.org 2
incapable of evoking robust sustainable anti-tumor immunity.
This is further evidenced by the scarce reports of spontaneous
regression of untreated distant metastatic sites following
ablation, the so-called ‘abscopal effect’ (3, 4). Therefore, it has
been proposed by us and others to initiate and boost ablation-
induced anti-tumor immunity by combining ablation with
immune activation strategies (5–7). An outstanding question in
the field remains which immune activation strategies effectively
combine with in situ tumor ablation.

Examples of immune activation strategies that are mostly
applied together with tumor ablation include stimulation with
pattern recognition receptor (PRR) agonists, adjuvants and
agonistic antibodies. However, tumors have evolved
mechanisms to create an immunosuppressive tumor
microenvironment (TME), parts of which may admix with the
antigen depot upon ablation. Development of a successful in situ
cancer vaccine thus requires immune activation strategies to
boost immunity and approaches that counteract the
A

B

FIGURE 1 | Immune activation strategies plus tumor ablation to create in situ cancer vaccines. (A) Tumor ablation results in the release of tumor antigens available
for uptake by antigen-presenting cells (APC), such as DCs. These antigens are (cross-)presented on MHC molecules to T cells in the dLN, resulting in T cell priming
and activation. Activated T cells subsequently migrate to the destructed tumor, as well as distant metastases, where they kill remaining tumor cells. (B) Immune
response induction is boosted by exogenous administration of immune stimulating compounds like 1. adjuvants (e.g. CpG) or 2. agonistic antibodies (e.g. anti-CD40
mAb, crosslinking by Fc-receptor expressing cells) that can work synergistically with tumor ablation in creating effective, mature DCs. Furthermore, several
approaches can be exploited to counteract the immunosuppressive TME, such as 3. scavenging of inhibitory cytokines (e.g. anti-TGFb mAb or TGFb trap) or 4.
immune checkpoint blockade (ICB, e.g. anti-PD-1 mAb), both to enhance the anti-tumor immune response.
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immunosuppressive TME like monoclonal antibodies (mAbs)
against inhibitory immune checkpoints, inhibition of
immunosuppressive cells like regulatory T cells (Treg) or
myeloid derived suppressor cells (MDSC) or by scavenging
anti-inflammatory cytokines, such as transforming growth
factor beta (TGFb).

Delivery of these immunomodulators to the relevant
locations, i.e. the tumor and tumor dLNs, is often essential for
enhancing anti-tumor specific immune responses following
ablation. Targeting also mitigates potential toxic side-effects.
Antibodies can exhibit tumor targeting abilities, either through
their specificity for tumor antigens or ablation-associated factors,
such as extracellular DNA and histones. Recent advances in
antibody engineering enabled the creation of novel antibody
formats with multiple functions, such as bispecific antibodies
and protein-linked antibodies (8). Multifunctional antibodies
create new opportunities to enhance anti-tumor immunity
following in situ tumor ablation techniques.

Here, we review immune activation strategies and approaches
that counteract the immunosuppressive TME that have been
combined with in situ tumor ablation. Furthermore, we postulate
new combination strategies involving multifunctional antibody
formats to be applied together with in situ ablation to boost the
anti-tumor immunity for local and systemic tumor control.
IN SITU TUMOR ABLATION

During the last decades, there has been widespread interest in the
development and refinement of ablation techniques for local
treatment of cancers. The primary goal of tumor ablation is to
destroy malignant cells within a designated volume through the
local deposition of energy via different approaches, e.g. ionizing
radiation or extreme temperatures. Radiotherapy (RT) has been a
strong pillar in cancer therapy and the majority of cancer patients
undergo RT at one point during treatment (9). The anti-tumor
efficacy of RT has been attributed to its capacity to induce DNA
damage, as well as through increased recognition of tumor cells by
the immune system. Stereotactic ablative body radiotherapy
(SABRT) allows for the delivery of ablative radiation doses. An
exciting development in radiation oncology is the magnetic
resonance linear accelerator (MR-Linac) which enables high
precision ablative RT under real-time MR-guidance, providing
better target control while sparing the surrounding healthy tissues
including LNs (10). MR-guided RT is a promising tool to answer
key questions in the field of immuno-radiobiology, and will help to
understand how to bring dose and fractionation schedules into an
immunologically active range.

Different from RT, most other tumor ablation techniques rely
on extreme temperatures for cellular destruction. Cryoablation
applies extremely cold temperatures, whereas heat-based thermal
ablation modalities, including radiofrequency ablation (RFA),
microwave ablation (MWA), laser ablation and thermal high-
intensity focused ultrasound (HIFU) employ different sources of
energy to heat the target region (7, 11). Cells in the core of the
ablation zone are subjected to lethal temperatures; up to -180°C
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for cryoablation inducing hypothermic necrosis and >60°C for
thermal ablation resulting in protein denaturation and
coagulative necrosis. Cells in the periphery of the ablation
zones are exposed to sublethal temperatures and either
undergo apoptotic cell death or are able to recover from
reversible injury (12). In contrast to thermal HIFU ablation,
HIFU can be used to generate mechanical damage as a result of
acoustic cavitation, with minimal thermal damage, also known as
(boiling) histotripsy or mechanical HIFU (12–14).

Besides their ability to kill tumor cells, ablation modalities
unveil an array of tumor antigens. Several studies have emphasized
the importance of neoantigens arising due to tumor-specific DNA
mutations in the recognition of tumor cells by the immune system
(15, 16). Each ablation technique results in a unique tumor
antigenic fingerprint. Heat-based thermal ablation results in
protein denaturation and coagulative necrosis, possibly reducing
the availability of intact tumor antigens for the immune system.
Furthermore, the coagulative necrosis destroys the structure and
vasculature of tumors, thereby affecting the ability of immune cells
to reach and interact with the antigen depot (17). Mechanical
HIFU, on the other hand, will result in complete liquification of
the tissue, which is effectively removed via drainage or absorbed as
part of the physiologic healing response (18, 19). For cryoablation
it has been reported that many native antigen structures are
preserved (20). Furthermore, cryoablation has shown to induce
polyclonality and intra-tumoral T cell repertoire remodeling (21).
How each ablation technique affects handling and processing of
antigenic materials by antigen-presenting cells (APCs) and which
ablation technique results in the most effective release of
immunogenic (neo)antigens remains to be investigated.

During efforts of the body to clear this tumor debris, there is a
time frame in which the immune system can be triggered towards
antigens from the antigen depot (Figure 1A). In fact, the presence
of the antigen depot is a prerequisite for the development of an
anti-tumor immune response, as protective immunity failed to
develop upon surgical removal of cryoablated tumors (2).
Cytokines and endogenous danger signals, such as DAMPs, are
readily released from the ablated tumor, which may contribute to
immune activation. On the other hand, ablation will also lead to a
physiological wound healing response that regulates and
maintains immunological tolerance toward the damaged tissue.
In practice, ablation induced immunomodulation alone appears
(often) insufficient to generate consistent protective anti-tumor
immunity. Therefore, interest has shifted towards exploring the
potential synergy between ablative techniques and immune
activation strategies. Strong systemic immunity will be critical
for controlling residual disease at the site of ablation and for
eradicating distant metastases.
ANTIGEN PRESENTING CELLS AND
IMMUNE ACTIVATING STRATEGIES

DCs, the most potent APCs of the immune system, have the
unique ability to initiate and direct immune responses. DCs in
the vicinity of or recruited to the local ablation site acquire and
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process tumor antigens, and subsequently present them to naïve
T cells (22). Alternatively, tumor antigens may passively enter
the circulation or lymphatics and can be transported to LNs
where they can be taken up by LN-resident DCs. DCs can cross-
present peptides derived from such extracellular antigens to
MHC I restricted CD8+ T cells. In addition to the initial
interaction between the TCR and MHC-molecules on DCs, co-
stimulation (signal 2) and cytokines (signal 3) are important for
initiation of antigen-specific T cells. Thus, proper DCmaturation
is essential for efficient immune response induction. The ability
to load and mature DCs directly in situ by tumor ablation plus
immune activation is thus an appealing strategy to develop a
cancer vaccine.

Adjuvants
Adjuvants can boost the magnitude and duration of the adaptive
immune response. One of the ways through which adjuvants act
is by serving as, or inducing, DAMPs and/or pathogen-
associated molecular patterns (PAMPs) that trigger PRRs on
immune cells resulting in their activation. Alternatively,
adjuvants can function as slow release system. Although
numerous different adjuvants exist, we will focus on nucleic
acid-sensing PRR agonists, as well as the potential of saponin-
based adjuvants (SBAs) applied in combination with in situ
tumor ablation.

Toll-Like Receptor (TLR) Agonists
TLR triggering is one of the most potent inducers of DC
maturation in vivo as evidenced by their capacity to upregulate
co-stimulatory molecules and enhanced production of pro-
inflammatory cytokines needed for DC-mediated T cell
priming. The nucleic acid-sensing TLRs include TLR9, TLR3
and TLR7/8. CpG oligodeoxynucleotides (CpG) are short
unmethylated single stranded-synthetic DNA molecules, which
were one of the first adjuvants to be combined with in situ tumor
ablation (2). Pioneering work combining CpG with cryoablation
in a B16OVA melanoma model showed the induction of long-
term immune memory, evidenced by a 50% survival of mice
subjected to a re-challenge. The survival benefit was absent in the
single treatment groups. Additional studies showed the anti-
tumor effect is dependent on plasmacytoid DCs (pDCs), which
stimulate the ability of conventional type 1 DCs (cDC1s) to
prime naïve CD8+ T cells (23, 24). A prerequisite for the synergy
between cryoablation and CpG is the co-localization of the
antigen and CpG within a DC. Therefore, the timing and
location of CpG administration relative to the release of tumor
antigens by tumor ablation is of importance for protective anti-
tumor immunity (25, 26). The beneficial effects of CpG with
cryoablation have also been observed in a mammary
adenocarcinoma model (27). CpG combinations with other
ablative therapies, such as RT and HIFU, have also proven
successful (28–30). Interestingly, the combination of thermal
HIFU ablation of mammary adenocarcinoma tumors with CpG
plus anti-PD-1 increased the number of unique CDR3
rearrangements in the T cell repertoire at distal tumors,
indicating the generation of T cells specific for a broad range
of different tumor antigens (30).
Frontiers in Immunology | www.frontiersin.org 4
The synthetic dsRNA analog polyinosinic-polycytidylic acid
(Poly-IC) is a ligand for TLR3 and has shown promising
preclinical results in combination with a minimal 9 Gy single
dose RT. The combination treatment greatly reduced tumor
growth at primary and abscopal sites and enhanced survival in
different mouse models (31–33). The Poly-IC plus RT
combination treatment of A20 lymphoma tumors plus intra-
tumoral (i.t.) FLT3L injections further increased DC recruitment
and synergistically induced adaptive anti-tumor immunity (33).
Mechanistic studies revealed that RT increased serum levels of
high mobility group box 1 (HMGB1), a known DAMP in vivo.
HMGB1 potentiated the Poly-IC induced DC maturation,
demonstrating the potential of DAMP plus TLR adjuvant
combination strategies (33).

TLR7/8 agonists gained fame through Imiquimod, an
adjuvant formulation topically applied in the treatment of skin
cancers (34). Topical Imiquimod application, as well as systemic
administration (encapsulated in nanoparticles (NP)), in
combination with cryoablation or RT, resulted in improved
tumor control at primary and distant sites in numerous
murine cancer models (35–38). As with CpG, TLR7 agonists
are believed to act primarily through activation of pDCs (39).
The results of a phase I/II clinical trial investigating the efficacy of
topical imiquimod application to breast cancers skin metastases
in conjunction with RT are currently on their way
(NCT01421017). Altogether, TLR agonists can be employed as
powerful adjuvants along with ablation to generate effective anti-
tumor immunity.

STING Agonists
DNA normally resides in the nucleus and mitochondria; hence,
its presence in the cytoplasm serves as a danger signal. This
aberrant localization of DNA is sensed by the DNA binding
enzyme cyclic GMP-AMP synthase (cGAS). Upon recognition,
cGAS dimerizes and stimulates the production of cyclic-GMP-
AMP (cGAMP) which can directly bind stimulator of interferon
genes (STING) resulting in type I interferon (IFN) production
(40). Cytoplasmic DNA sensing through the cGAS-STING
pathway plays a pivotal role in APC activation following
phagocytosis (41).

Synthetic analogues of 2’3’-cGAMP, a stable variant of the
second messenger produced by cGAS are used as STING-
activating agents. Combinations of such analogues with
ablative therapy are scarce and limited to one study by Deng et
al. which showed i.t. injection of 2’3’-cGAMP in combination
with a single 20 Gy RT dose greatly reduced tumor growth
compared to either treatment alone and resulted in complete
tumor rejection in 70% of the mice (42). Besides cGAMP
analogues, an interesting discovery are the STING activating
properties of PC7A nanovaccine, which consist of E7 peptide or
OVA peptide-loaded micelle NPs binding to STING (43). Half of
the mice treated with the combination of PC7A and 20 Gy RT
were tumor free 60 days after tumor inoculation, compared to
none of the mice from the single treatment groups. Treatment
efficacy showed to be depended on STING signaling and
increased tumor reactive CD8+ T cells were observed (43). RT
induces cytoplasmic DNA and micronuclei formation which can
April 2021 | Volume 12 | Article 617365
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activate the cGAS/STING pathway. It has been shown that
cGAS/STING dependent DNA sensing in DCs is essential in
triggering adaptive immunity following RT (42). Other studies,
however, report that also cancer cell intrinsic cGAS activation
can be important in the induction of an adaptive immune
response following RT. cGAMP produced by cancer cells was
shown to be transported to DCs via gap junctions, resulting in
STING activation in these DCs and subsequent type I IFN
production (44). One explanation for the beneficial effect of
exogenous STING ligand administration on top of RT induced
activation could be the numerous regulatory mechanisms that
control cGAS-STING pathway activation. TREX1 is a RT
inducible dsDNA exonuclease that attenuates the STING
signaling cascade (45). More recently, BAF and C9orf72 have
been implicated in the regulation of myeloid STING activation
(46, 47). It would therefore be interesting to determine if these
regulatory mechanisms are upregulated following tumor ablation
and whether stimulation of the cGAS/STING pathway upon
ablation would be beneficial to achieve an in situ cancer vaccine.

However, some degree of caution should be taken as tumor
cell intrinsic cGAS/STING activation has been linked to
metastases formation (48). This highlights that an appropriate
balance and possibly myeloid cell specific STING pathway
activation may be required for optimal anti-tumor immunity.

Saponin-Based Adjuvants
Antigen cross-presentation by DCs is crucial for CD8+ T cell
mediated anti-tumor immunity. Although most conventional
adjuvants are unable to boost CD8+ T cell responses, SBAs are
known to be superior in inducing antigen cross-presentation by
DCs (1). Cryoablation with co-injection of SBAs, leads to an
extremely potent systemic anti-tumor response. These effects are
dependent on the ability of SBAs to induce cross-presentation,
specifically in CD11b+ DCs (49). Additional administration of
CpG with SBAs following cryoablation created a highly effective in
situ cancer vaccine and resulted in the generation of
multifunctional T cells able to produce high amounts of pro-
inflammatory cytokines (50). The exact mechanism through
which SBAs induce cross-presentation remains elusive, although
lipid bodies are found to play a crucial role (49). Interestingly,
monocyte-derived CD11b+ DCs have been implicated to be better
in the activation and induction of memory CD8+ T cells as
compared to cDC1 (51, 52). Therefore, SBAs might be
specifically potent in inducing long term immune memory.
Besides cryoablation also other ablation therapies, such as RT
and HIFU, are of interest for their potential synergy with SBAs.

Altogether, adjuvants are suitable candidates to be applied
with tumor ablation to generate an in situ cancer vaccine (Figure
1B1). More detailed knowledge about effective adjuvant-ablation
strategies, such as correct timing and the involved immune
subsets, is required to efficiently prime and boost anti-
tumor immunity.

Agonistic Antibodies
DCs can further be activated by cell-cell contact and subsequent
signaling via members of the immunoglobulin domain-
Frontiers in Immunology | www.frontiersin.org 5
containing receptor family, especially the tumor necrosis
factor (TNF) receptor family, such as CD40/CD40 ligand
(CD40L) and CD27/CD70. CD40 engagement on DCs by
CD40L expressed by CD4+ T helper cells or agonistic CD40
mAbs trigger DC activation to provide signals for the licensing
and expansion of CD8+ cytotoxic T cells (53, 54). CD40
agonistic mAbs have shown synergistic effects in combination
with RT. Addition of agonistic anti-CD40 mAb to 10 Gy RT
increased survival of mice inoculated with EG7 tumors to 80%
as compared to 40% (anti-CD40) and 20% (RT) for the
monotherapy regimens (55). All surviving mice treated with
the combination therapy were resistant to a subsequent re-
challenge, indicative for immune memory. Similar results have
been achieved using a Panc02 tumor model where combination
therapy not only limited primary tumor growth, but also
growth of an untreated contralateral tumor (56). In the latter
model, agonistic CD40 therapy worked best when combined
with a hypo-fractionated RT regimen (5 Gy single dose).
Moreover, timing of anti-CD40 mAb administration relative
to RT treatment was crucial for its efficacy as administration
prior to RT did not show beneficial effects (57). TLR agonists,
such as CpG and Poly-IC, are known to upregulate the
expression of CD40 on human pDCs as well as myeloid DCs
(58, 59). Poly-IC is especially interesting as in combination with
anti-CD40 mAb it induced the highest percentage of OVA-
specific T cells relative to other TLR agonists (60). This can
possibly be explained by the upregulation of CD70, the ligand
for the T cell co-stimulatory receptor CD27, following
stimulation with Poly-IC and anti-CD40 mAb (61). It would
therefore be interesting to investigate the efficacy of the triple
combination of agonistic mAbs plus adjuvants and
ablative therapies.

Besides DCs, also T cells express multiple co-stimulatory
receptors, including CD27, OX40 and CD137 (4-1BB).
Ligation of these receptors delivers co-stimulatory signals
necessary for full T cell activation (62–65). RT induces
upregulation of OX40 expression on CD4+ and CD8+ T cells
as well as CD137 on CD8+ tumor infiltrating T cells and thus
works in concert with agonistic OX40 or CD137 therapy (66–
68). CD137 expressing CD8+ T cells are also highly positive for
PD-1, and RT plus agonistic CD137 therapy benefits from
additional anti-PD-1 mAbs to block negative feedback by PD-
L1 (69). Combining multiple different immune activation
strategies which complement each other is an appealing
approach to further stimulate the immune response.
Noteworthy, combinations of CpG plus RT, agonistic OX40
mAbs plus RT as well as CpG plus agonistic OX40 mAbs have
shown synergistic effects in their ability to limit tumor growth,
making the combination of CpG, agonistic OX40 with RT or
other ablative therapies an interesting approach to explore (29,
70, 71).

To date, all agonistic antibodies investigated have shown
promising results in combination with RT and the addition of
adjuvants might further improve their function (Figure 1B2).
Whether these agonistic antibodies also synergize with other
ablative modalities remains to be determined.
April 2021 | Volume 12 | Article 617365
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COUNTERACTING THE
IMMUNOSUPPRESSIVE TME

Tumors have evolved several mechanisms to instigate an
immunosuppressive TME, parts of which may admix with the
antigen depot upon ablation. Successful in situ cancer vaccines
may, in addition to immune activation strategies, also require
approaches that counteract the immunosuppressive
microenvironment. Immune suppression networks consist of
immune suppressive cells including Tregs and MDSCs,
immunosuppressive cytokines like TGFb and IL-10, as well as
enhancement of co-inhibitory molecules such as CTLA-4 or PD-
1 on T cells. Targeting immunosuppressive cells has emerged as
important approach to counteract the immunosuppressive TME,
which is discussed in detail elsewhere (72–74). In the next
sections, we will discuss strategies to counteract the
immunosuppressive molecules, with a focus on cytokine and
immune checkpoint blockade, applied together with in situ
tumor ablation.

Immunosuppressive Cytokines
Immune suppressive cytokines, such as TGFb and IL-10, are a
major obstacle in generating effective anti-tumor immunity.
They are often produced by tumor cells and immune
suppressive cell subsets, such as Tregs and MDSC (75). RT is
known to increase the amount of active TGFb. TGFb is initially
produced in its latent form containing a pro-domain,
dissociation of this domain makes the protein become active.
Oxygen radicals produced following RT promote this
dissociation resulting in more active TGFb (76, 77). Thermal
ablation at temperatures above 65 °C can lead to denaturation of
proteins, potentially including part of immune suppressive
cytokines, such as TGFb or IL-10. Strategies that block
inhibitory signaling through antagonistic antibodies, as well as
scavenging of inhibitory cytokines themselves are ways to
alleviate their inhibitory function (Figure 1B3).

Scavenging of TGFb using antibodies limits growth of treated
and untreated tumors following 5 x 6 Gy RT (78). This
combination therapy increased DC maturation evidenced by
an increase in CD40+CD70+ DCs. Furthermore, the
combination increased the production of IFNg by dLN-derived
CD8+ T cells following ex vivo tumor antigen stimulation. Lastly,
the percentage of PD-1+ and PD-L1/2+ cells in the tumor
increased upon combination therapy, highlighting the
induction of additional immune escape mechanisms. Inclusion
of anti-PD-1 mAbs indeed further improved tumor control.
Other successful TGFb neutralizing approaches include
recombinant TGFb receptor (TGFbR) fused to an Fc-tail (79).
The mechanism behind the anti-tumor effect of TGFb
scavenging is not solely immune mediated as TGFb has
pleiotropic functions, such as in wound healing and DNA
repair, which could play a role with the anti-tumor effect (80, 81).

The cytokine IL-10 inhibits macrophage pro-inflammatory
cytokine production, limits DC antigen presentation, and
dampens T and NK cells effector function (82). Interestingly,
some studies, however, report an increase in intra-tumoral
Frontiers in Immunology | www.frontiersin.org 6
cytotoxic CD8+ T cells upon IL-10 delivery to the tumor (83).
This can be explained by the ability of IL-10 to limit IFN-g
production by DCs, which is crucial for activation induced T cell
apoptosis (84). All in all, efficacy of scavenging or blockade of
anti-inflammatory factors will probably dependent on the choice
of ablative therapy and state of the immune response
when applied.

Immune Checkpoints
To shift the balance of the TME away from immunosuppression,
mAbs can be applied to block inhibitory immune checkpoint
receptors or their ligands (85). Relieving immunosuppression
of adaptive immune cells has been extensively studied, and
mAbs targeting CTLA-4 or PD-1/PD-L1 can enhance T cell
immunity generated by ablation (Figure 1B4). CTLA-4
blockade allows CD80 and CD86 co-stimulatory molecules to
be available for CD28, lowering the threshold for T cell
activation (86). Anti-CTLA-4 mAbs also cause intra-tumoral
Treg depletion or modulation of their suppressive functions
(87, 88). CTLA-4 blockade synergized with different forms of
thermal tumor ablation, resulting in significant amounts of
active tumor-specific T cells and the ability to reject secondary
or re-challenged tumors (89–91). Data from a pilot study
conducted in breast cancer patients that received cryoablation
and anti-CTLA-4 mAb showed good tolerability and promising
efficacy (92). In the line of relieving immunosuppression, Treg
depletion using anti-CD25 mAb enhances the anti-tumor
response after RT, RFA and cryoablation, indicated by the
increased presence of IFNy producing T cells after
combination therapy in case of the latter two (89, 93, 94).
Currently various clinical trials are ongoing testing the
potential of in situ ablation and checkpoint blockade in
different solid malignancies.

PD-L1 is often highly expressed on tumor cells and tumor
associated myeloid cells. PD-L1 can be induced by pro-
inflammatory cytokines and is frequently upregulated in
response to in situ tumor ablation (95, 96). Engagement of
PD-1+ T cells with its ligands leads to suppression of T cell
effector mechanisms and mAbs that block the PD-1/PD-L1 axis
are aimed at reinvigorating these exhausted T cells. RFA treatment
of a localized tumor increased T cell infiltration in a distant tumor
in both tumor-bearing mice as well as human patients (97).
However, these tumors quickly overcame T cell cytotoxicity by
inhibiting infiltrating T cells via upregulation of PD-L1 expression.
In the murine setting, combining RFA with anti-PD-1 mAbs
increased the tumor antigen-specific T cell response, and
synergistically inhibited growth of distant tumors (97).
Strikingly, incomplete RFA tumor ablation limited the efficacy of
anti-PD-1 immunotherapy (98). The authors demonstrated that
incomplete ablation induced local inflammation and resulted in
accumulation of immunosuppressive myeloid cells in the residual
tumor, which inhibited T cell functionality. Targeting the CCL2/
CCR2 pathway, responsible for the recruitment of these
immunosuppressive myeloid cells, enhanced anti-tumor
immunity in the residual tumor, and thereby overcame the
resistance to anti-PD-1 therapy.
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Synergy between adaptive immune checkpoint blockade and
RT has been demonstrated in multiple different preclinical tumor
models (95, 99–102). However, RT dose and fractionation
regimens as well as the timing of checkpoint blockade
administration in conjunction with RT that would result in the
most optimal anti-tumor immune response differ and warrant
further study (103). Several other promising novel adaptive
immune checkpoint molecules are actively being investigated,
including TIM-3, LAG-3, TIGIT and VISTA (104), which could
also be potential targets.

Recent studies have indicated that tumor cells exploit
sialoglycan–Siglec interactions to modulate cytotoxic T cell as well
as myeloid cell function, contributing to an immunosuppressive
TME (105). Interference with the sialoglycan-Siglec axis by
inhibiting the sialic acid synthesis pathway resulted in enhanced
anti-tumor immunity and limited tumor outgrowth (106). Next to
Siglec receptors, studies have highlighted innate immune
checkpoints as interesting therapeutic targets. One of these
checkpoints is the signal-regulatory protein a (SIRPa)-CD47 axis.
CD47 is often overexpressed on tumor cells and interacts with
SIRPa on myeloid cells to trigger a ‘don’t eat me’ signal (107).
Blocking SIRPa-CD47 interactions alleviates inhibitory signaling
resulting in improved tumor cell clearance. Besides, murine models
suggest that adaptive immunity contributes to tumor control upon
targeting the SIRPa-CD47 pathway (108–110). This can be a direct
effect of the SIRPa-CD47 pathway on T cell function or an indirect
mechanism by which SIRPa-CD47 pathway blockade affects the
capacity of myeloid cells to activate T cells. Interestingly, efficacy of
CD47 blockade was shown to largely depend on DNA sensing,
specifically in DCs (41). Interference with sialoglycan–Siglec
interactions as well as innate immune checkpoints should be
further explored in the context of in situ tumor destruction.
FUTURE PERSPECTIVE:
MULTIFUNCTIONAL ANTIBODY
DEVELOPMENT AND IN SITU
TUMOR ABLATION

The tumor exists in a dynamic microenvironment that co-
influences anti-tumor immune responses. Strategies that
simultaneously modulate multiple key processes in the anti-tumor
immune response will likely work synergistically. Recent advances
in antibody engineering have resulted in new antibody formats that
can exert distinct effector functions (111). Besides, multifunctional
antibodies can be used to direct immunomodulators specifically to
the relevant locations, limiting systemic exposure and increasing
tumor specificity. Multifunctional antibodies come in various
molecular varieties, ranging from linked Fab fragments to full
antibodies with an Fc-tail to preserve native antibody functions,
such as antibody-dependent cellular cytotoxicity (ADCC)/
phagocytosis, complement-mediated lysis and improved
circulation half-life (111). Multifunctionality can be achieved by
combining different antibody variable domains, recognizing
different epitopes, e.g. bispecific antibodies. Alternatively,
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receptors or immuno-modulatory molecules can be attached to
antibodies via protein-linkers, acquiring multiple specificity in a
different manner. Most of these multifunctional antibody formats
are in (pre)clinical development and not yet applied in context with
tumor ablation. We will here review antibody formats that could be
beneficial in combination with tumor ablation to create an in situ
cancer vaccine (Figure 2).

Bispecific antibodies come in various flavors and can target
different antigens either on the same cell or on two different cell
types. Most known bispecific antibodies in preclinical and clinical
development are engaging T cells, binding CD3 and a relevant
tumor antigen, to induce tumor cell killing (111). Alternatively,
bispecific antibodies harboring an agonistic arm and a tumor
targeting arm are developed (112, 113). These bispecific agonistic
antibodies ensure tumor localization and allow cross-linking
without the need for Fc-receptors to exert its agonistic function
(Figure 2.1). Instead they rely on a tumor antigen for cross-
linking, making activation fully tumor cell dependent. For
example, the bispecific antibody LB-1, which is specific for the
tumor antigen MSLN and mouse CD40 showed preferential DC
activation in vitro only when cultured with MSLN expressing
tumor cells. In vivo application limited tumor growth of an MSLN
expressing tumor to a similar extent as a conventional agonistic
anti-CD40 mAb. The bifunctional molecule, however, showed less
systemic activation and toxicity as compared to anti-CD40 therapy
(112, 113). In addition to these there are also bispecific agonistic
antibody constructs targeting two co-stimulatory receptors at
once, CD137 and OX40, or a co-stimulatory receptor (OX40)
and immune checkpoint (CTLA-4) (114, 115).

The success of immune checkpoint mAbs prompted the
development of bispecific immune checkpoint formats, such as
the PD-L1xErbB2 antibody (Figure 2.2). This bispecific antibody
reduced tumor growth and increased tumor rejection rate
compared to the combination of anti-PD-L1 and anti-ErbB2
mAb therapy, which was dependent on CD8+ T cells and IFNg
(116). The bispecific antibody was constructed with a mIgG2a Fc
backbone and the authors describe that ADCC and complement
action could be potential mechanisms (116). Alternatively,
bispecific antibodies binding two distinct immune checkpoints,
such as PD-1/PD-L1, CTLA-4, LAG-3 or TIM-3 are also
interesting options to explore (117, 118). Besides, innate
immune checkpoints are explored in bispecific antibody
formats. Bispecific mAbs consisting of a low-affinity anti-CD47
arm combined with a high-affinity tumor antigen arm ensure
that blockade of CD47 only occurs on tumor cells, which co-
express both antigens, resulting in improved phagocytosis of
target cells and leaving healthy CD47 expressing cells unharmed
(119). Bispecific antibodies show potent anti-tumor activity and
warrant further study in combination with ablation. As Siglec
receptors are regarded as novel immune checkpoints, it would be
interesting to explore Siglec targeting antibodies in bi- or
multispecific formats.

Alternatively, multispecificity can be achieved through the
linking of recombinant receptors/ligands or immunomodulatory
molecules to antibodies. To this end, endogenous SIRPa domains
are engrafted to a tumor antigen specific antibody (120, 121).
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Binding of the antibody to tumor antigen specific cells allows
binding of the SIRPa domain to CD47 on these same cells.
Thereby, the interaction of CD47 with endogenous SIRPa
expressed on myeloid cells is prevented, restoring the
phagocytic capacity of myeloid cells (120, 121). In the context
sialoglycan–Siglec axis, a recently developed multifunctional
antibody consisting of a sialic acid-cleaving enzyme (sialidase)
fused to an anti-HER2 antibody, aims to degrade sialoglycans in
a tumor-specific manner (Figure 2.3) (122). In a syngeneic
orthotopic HER2+ breast cancer model, anti-HER2 antibody-
sialidase conjugates delayed tumor growth and enhanced
immune infiltration, leading to prolonged survival of mice.
Using the HER2+ B16D5 melanoma tumor model and
Siglec-E-/- mice, the authors showed that the effect was
dependent on functional Siglec-E, a receptor highly expressed
on tumor-infiltrating myeloid cells (122). These studies
indicate that multifunctional antibodies aimed at reversing the
immunosuppressive TME are potentially effective. Also, immune
activation strategies, such as adjuvants can be incorporated into
mAb conjugates (Figure 2.4). One such antibody is chTNT3-
CpG, which is specific for extracellular DNA/histones (123),
often present following ablative therapy. Systemic intraperitoneal
(i.p.) administration of chTNT3-CpG resulted in delayed tumor
development in both the Colon 26 adenocarcinoma and B16
tumor model, whereas i.p. administration of the chTNT3
antibody or CpG alone failed to show efficacy, again showing
Frontiers in Immunology | www.frontiersin.org 8
the added value of tumor targeting capacities of multifunctional
mAbs (123).

Trafficking of APCs to the ablation site where they can
capture and process antigens for (cross-) presentation is
of importance for an in situ cancer vaccine. To this end,
antibodies conjugated with DC growth factors, such as GM-
CSF or FLT3L, are of interest to expand and redirect DC subsets
to the ablation site (124, 125). In fact, preclinical data showed
that FLT3L in combination with RT in a mammary carcinoma
model can help boost the abscopal effect (126). GM-CSF has
been coupled to anti-HER2/neu and demonstrated anti-tumor
activity in a HER2/neu expressing colon adenocarcinoma model
(127). Several other cytokines including interleukin 2 (IL-2), IL-
12 and type I IFN have been fused to antibodies (Figure 2.5). The
use of antibody-cytokine fusions has to potential to concentrate
the cytokines at the tumor site, reducing side effects that
are observed with systemic pro-inflammatory cytokine
administration. IL-2, an important cytokine in the regulation
of adaptive T cell responses, has been fused to diverse antibodies
targeting relevant tumor proteins, such as hu14.18-IL2 targeting
disialoganglioside GD2, huKS-IL2 targeting EpCAM, L19-IL2
targeting fibronectin and NHS-IL2 targeting histone/DNA
complexes. IL-2 fusion antibodies were shown to improve
responses to in situ tumor ablation, resulting in marked tumor
reduction (128–130) and curative abscopal effects (131),
mediated by CD8+ T cells.
FIGURE 2 | Multifunctional antibody formats for combination with in situ tumor ablation. Administration of 1. bispecific agonistic antibodies (e.g. anti-MSLN-CD40) or
4. antibody-adjuvant fusions (e.g. chTNT3-CpG) will lead to local APC activation. Interventions such as 2. bispecific ICB (e.g. PD-L1xErbB2 antibody) may further
stimulate myeloid as well as T cell immunity specifically within the TME; 3. antibody-enzyme fusions allow tumor specific sialoglycan degradation (e.g. anti-HER2
mAb-sialidase); 5. antibody-cytokine fusions (e.g. anti-GD2-IL2) will result in targeted cytokine delivery ensuring local immune cell activation, all are aimed at relieving
local immunosuppression.
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Preclinical research demonstrated that combination of 12 Gy
RT together with five i.t. injections of hu14.18-IL2 on days 6 to 10
after RT eradicates constitutively GD2 expressing B78 melanoma
tumors (132). In the ~70% of mice that were rendered disease-free
upon combination therapy, 90% rejected a re-challenge with
GD2high B78 melanoma cells. This response of RT and hu14.18-
IL2 in melanoma could be augmented by addition of anti-CTLA-4
mAb (133). A recent study further pursued the combination of
hu14.18-IL2 and RT as in situ cancer vaccination strategy. Voeller
et al. demonstrated that neither RT plus hu14.18-IL2 therapy nor
the addition of anti-CTLA-4 mAb to the combined therapy
regimen caused significant growth inhibition in a GD2high non-
immunogenic 9464D neuroblastoma model (134). These
observations suggest that the antibody-cytokine mediated
therapeutic effect is tumor type dependent. Addition of the
adjuvant CpG and anti-CD40 co-stimulatory agonist to the RT,
½ dose hu14.18-IL2 (due to concern for significant toxicities) and
anti-CTLA-4 mAb, improved tumor control and 80% achieved
complete tumor regression. A clinical phase II study recently
demonstrated that hu14.18-IL2 given in combination with GM-
CSF and the differentiation inducing agent isotretinoin is safe and
tolerable, and showed anti-tumor activity in patients with relapsed/
refractory neuroblastoma (135). Several other IL2-antibody fusions
have advanced to clinical trials, including huKS-IL2 (136), NHS-
IL2 (128) and L19-IL2 (137). The combination of RT (5 x 4 Gy)
followed by NHS-IL2 after first-line chemotherapy in metastatic
non-small cell lung cancer (NSCLC) patients was well tolerated
(128). A phase II trial will investigate the combination of SABRT
and L19-IL2 therapy in metastatic NSCLC patients (137).

IL-12, an important CD8+ T cell and NK cell cytokine, has
been fused to the anti-NHS antibody recognizing histone/DNA
complexes. Enhanced tumor uptake of radiolabeled NHS-hIL12
was observed upon RT ablation in rhabdomyosarcoma
xenografts (138). Fallon et al. showed that 0.36 Gy RT
combined with subcutaneous NHS conjugated with murine IL-
12 resulted in superior tumor growth inhibition compared to
either treatment alone in a murine LLC lung and MC38
colorectal cancer model (139). Studies combining other
ablation types with NHS antibody cytokine fusions are not
reported, however would be worthwhile to explore.

Besides interleukins, other pro-inflammatory cytokines, such as
type I IFNs, have been coupled to various antibodies. IFNb fused to
anti-EGFR mAb limited growth of mouse EGFR-expressing B16
tumors which were unresponsive to anti-EGFRmAb therapy (140).
Furthermore, multifunctional antibodies that simultaneously aim at
activating the immune system and counteracting the
immunosuppressive TME are promising for future cancer vaccine
developments. To this end, anti-PD-L1 was armed with IFNa to
simultaneously target both PD-L1 and the IFN-receptor. In different
models, anti-PD-L1-IFNa could control advanced tumors as
opposed to IFNa-Fc or anti-PD-L1 monotherapy (141). In
addition, multifunctional antibodies aimed at blockade of different
immunosuppressive pathways are developed, such as the fusion
protein M7824, comprising the extracellular domain of human
TGFbRII (TGFb scavenging/trap) linked to the human anti-PD-
L1 heavy chain. Combination therapywithM7824 (intravenous, day
Frontiers in Immunology | www.frontiersin.org 9
2) and RT (3.6 Gy per day, days 0-3) reduced primary as well as
untreated secondary tumor growth relative to either treatment
alone, indicating the induction of an abscopal effect (142). A
phase I trial of M7824 showed a manageable safety profile in
patients with heavily pretreated advanced solid tumors and
encouraging treatment efficacy (143). Overall, multifunctional
antibodies can be created by linking different immunomodulatory
molecules with tumor or immune targetingmAbs. Proof-of-concept
preclinical studies suggest therapeutic potential of different
multifunctional antibody formats and clinical trials showed
tolerability and safety. We anticipate that these multifunctional
antibodies can work in concert with in situ tumor ablation and
highlight them as a promising therapeutic strategy to explore.
CONCLUSION

In situ tumor ablation techniques allow for (neo)antigen loading of
DCs without prior knowledge of tumor antigens or epitopes as in
conventional DC vaccination. The induction of an efficient
immune responses following ablation, however, requires
addition of immune stimuli to eradicate local tumors and
metastases and to provide long-term protection. Numerous
immune activating strategies have shown to be suitable to act in
concert with ablation generated tumor debris to achieve in situ
cancer vaccination. More detailed knowledge about how effective
immune activation strategies can work in concert with tumor
ablation, such as timing and dose, is required to guide rationale
ablation combination strategies. Although in situ ablation plus
immune activating strategies ensure that the immune system is
well instructed and initiated, the immunosuppressive environment
that immune cells encounter upon arrival at the TME is still a
potential bottleneck. Therefore, additional removal of inhibitory
influences provides the possibility to further boost anti-tumor
immune responses and enhance in situ ablation efficacy.

Multifunctional antibodies stimulating immune activation as
well as counteracting immunosuppression can simultaneously
affect multiple key processes in the anti-tumor immune response.
They hold great promise for targeted cancer treatment with
limited systemic toxicities and deserve further exploration as
potential strategy to achieve a successful in situ cancer vaccine.
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