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The role of single-cell sequencing in studying tumour evolution

1 Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and 
Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK

Abstract

Tumour evolution is a complex interplay between the acquisition of somatic (epi)genomic changes in tumour cells and the 
phenotypic consequences they cause, all in the context of a changing microenvironment. Single-cell sequencing offers a window 
into this dynamic process at the ultimate resolution of individual cells. In this review, we discuss the transformative insight offered 
by single-cell sequencing technologies for understanding tumour evolution.

Keywords 

single cell sequencing, tumour evolution, scRNA-Seq, scDNA-Seq

Peer Review

The peer reviewers who approve this article are:

1. James Hicks, Michelson Center for Convergent Biosciences, Dornsife College, University of Southern California, Los 
Angeles, California 
Competing interests: No competing interests were disclosed. 

2. Floris Foijer, European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center 
Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands 
Diana Spierings, European Research Institute for the Biology of Ageing, University of Groningen, University Medical 
Center Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands 
Competing interests: No competing interests were disclosed.

Ann-Marie C. BakerMaximilian Mossner Trevor A. Graham11* 1

*Corresponding author: Maximilian Mossner (m.mossner@qmul.ac.uk)

Competing interests: The authors declare that they have no competing interests. 

Grant information: TG acknowledges funding from Cancer Research UK (A19771), the Wellcome Trust (202778/Z/16/Z) and the National Institutes 

of Health via the Cancer Systems Biology Consortium U54 scheme (CA217376). MM has received funding from the People Programme (Marie Curie 

Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under Research Executive Agency grant agreement 608765.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Mossner M et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Mossner M, Baker AMC and Graham TA. The role of single-cell sequencing in studying tumour evolution. Faculty 

Reviews 2021 10:(49) https://doi.org/10.12703/r/10-49

Published: 26 May 2021, Faculty Reviews 10:(49) https://doi.org/10.12703/r/10-49

https://orcid.org/0000-0001-8905-9137
https://orcid.org/0000-0001-9751-3803
https://orcid.org/0000-0001-9582-1597
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12703/r/10-49
https://doi.org/10.12703/r/10-49


Faculty Reviews 2021 10:(49)Faculty Opinions

Introduction
Intra-tumour heterogeneity (ITH) and evolution are deeply inter-
twined. Heterogeneity is “fuel to the fire” of evolution – the 
population of cells in a tumour cannot adapt to a new selec-
tion pressure if there is no variation in the population for natural 
selection to operate upon. And because new (epi)genetic  
mutations are acquired each time a tumour cell divides, the proc-
ess of tumour growth (and so tumour evolution) inevitably  
generates heterogeneity within a tumour1.

For many decades, the prevalent opinion was that tumours gen-
erally follow a strictly “linear” evolutionary trajectory whereby 
the sequential addition of “driver” genomic aberrations was  
associated with a clonal expansion leading to replacement of 
the complete tumour population. In this paradigm, tumour pro-
gression followed with the accumulation of driver alterations2.  
However, multi-region sequencing of bulk tumour tissues has 
now shown that ITH, in particular the frequent coexistence of  
subclones with different driver alterations, is common in all 
tumour types, prominently including lung3,4, hematologic5,6,  
colon7,8, breast9,10 and brain11,12 neoplasia.

A mechanistic understanding of the process of carcinogen-
esis requires understanding the drivers and dynamics of tumour 
evolution13. Consequently, predicting and indeed modulating  
the response of a tumour to treatment14, or whether a prema-
lignant lesion will become tumourous in the future15,16, both 
require predicting tumour evolution16. Indeed, recent work sug-
gests that evolutionary trajectories are recurrent across tumours, 
and biomarkers that identify these trajectories could enable  
personalised tumour medicine17–19.

ITH is a read-out of tumour evolutionary dynamics20 and con-
sequently measurement of ITH has prognostic relevance:  
pan-tumour analyses of whole exome sequencing data from 
The Cancer Genome Atlas revealed that tumours harbouring 
between two and four detectable clones have poorer prognoses  
than those containing fewer than two or more than four  
clones21, and clonal diversity of copy number alterations  
predicts survival in lung tumours22. Treatment resistance, 
tumour relapse and development of metastases can coincide 
with the expansion of “new” clones that harbour specific driver 
genomic alterations, conferring phenotypic advantages in the  
changing microenvironment5,6,23. In this context, one should 
be careful not to mistake passenger mutations arising through  
neutral evolution as contributors to evolutionary adaptation 
since somatic mutations accumulate randomly throughout cell 
divisions and many have no apparent effect on the fitness of a  
(sub)clone8. One considerable caveat in the assessment of ITH 
is the fact that generally we can sample only a small fraction 
of the entire tumour, thus limiting our ability to detect minor  
subclones. Extrapolating conclusions to the bulk tumour there-
fore should be done with caution. Translating measurements of 
tumour evolution, such as quantification of ITH, will require 
tumour sampling to be standardised (for example, number,  
position and size of biopsies) and tumour cellularity to be con-
sidered as these factors can confound interpretation of molecular  
composition24.

However, recent data indicates that even in tumour populations 
with largely identical genomes, a high degree of cell plasticity 
– extensive phenotypic cell-to-cell variability – is observed25–28,  
which can be caused by, among other factors, heterogeneity 
at the transcriptomic or epigenomic level or both. From an evo-
lutionary perspective, this is a highly important notion as it is 
tumour cell phenotypes and not genotypes that are undergoing  
selection.

Next-generation sequencing (NGS) techniques have contrib-
uted tremendously to our knowledge of the molecular archi-
tectures of tumours. However, the majority of data has been  
generated using DNA or RNA derived from “bulk” tumour  
tissue (Figure 1A), almost inevitably consisting of complex  
mixtures of tumour cells and stromal cells, such as fibroblasts, 

Figure 1. Dissecting molecular profiles of heterogeneous tumour 
cell populations by using bulk and single-cell methodology.  
(A) Intra-tumour heterogeneity usually manifests in the form of mixed 
cell populations with diverse molecular traits. As illustrated in this 
example, many tumours frequently show the coexistence of cell 
clones with different transcriptomic makeups and strongly varying 
population sizes. Although analysis of multicellular bulk pieces “A” 
and “B” reveals differences in the RNA expression profiles, these 
could be (inaccurately) attributed as intrinsic, tumour cell–specific 
changes (B). Only by using single-cell next-generation sequencing 
analysis, transcriptome profiles can be directly associated with 
specific cell types (such as tumour and various types of stromal 
cells) and allow the cell type complexity within heterogeneous tumour 
lesions to be enumerated (C). Importantly, only single-cell screening 
allows sensitive de novo identification of rare cell subpopulations 
that otherwise would be missed entirely or lie below the level of 
detection when bulk tissue analysis is used.
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Table 1. Overview of commonly used single-cell next-generation sequencing techniques.

Type of 
analysis

Method Application/Features

RNA sequencing SMART-Seq235 - Full-length mRNA sequencing

SMART-Seq336 - Full-length mRNA sequencing 
- UMI support

Quartz-Seq37 - Full-length mRNA sequencing

MATQ-Seq38 - Full-length mRNA + lncRNA sequencing

SUPeR-Seq39 - Full-length mRNA + lncRNA sequencing

Holo-Seq40 - Full-length mRNA + lncRNA + small RNA sequencing

MARS-Seq241 - 3-prime end mRNA sequencing 
- UMI support

CEL-Seq242 - 3-prime end mRNA sequencing 
- UMI support

mcSCRB-Seq43 - 3-prime end mRNA sequencing 
- UMI support

STRT-Seq44 - 5-prime end mRNA sequencing 
- UMI support

DNA sequencing Degenerate oligonucleotide primed 
polymerase chain reaction45

++CNV / −SNV detection

Multiple displacement 
amplification46–49

−CNV / +++SNV detection

Ampli150 ++CNV / +SNV detection

STRAND-Seq51–53 +++CNV detection (SNV unknown)

“Direct library preparation”54,55 +++CNV / ++SNV detection

Epigenomic 
sequencing

Bisulfite sequencing56,57 - CpG DNA methylation analysis

Drop-ChIP-Seq58 - Chromatin immune precipitation analysis for histone modifications

scATAC-Seq59,60 - Chromatin accessibility analysis

CUT&Tag61 - Targeted chromatin-protein association profiling

Abbreviations: CNV, copy number variant; lncRNA, long non-coding RNA; mRNA, messenger RNA; SNV, single-nucleotide variant; UMI, unique 
molecular index. Suitability of DNA sequencing applications is represented on a scale from (−) to (+++). Although a range of individual single-cell RNA 
sequencing (scRNA-Seq) protocols show overlapping characteristic features, the final choice of method depends primarily on the requirement for 
quantitative analysis (for example, number of cells) versus qualitative analysis (for example, full-length assessment for splicing/fusion transcripts). 
As a rule of thumb, the cost of library preparation and sequencing is related to the breadth of data per cell obtained.

macrophages and lymphocytes, which confound the analysis.  
Bioinformatics tools have been created to deconvolute the indi-
vidual cell types from bulk RNA sequencing (RNA-Seq)29–32  
but are complicated by the necessity for prior knowledge of 
transcriptome patterns that uniquely determine each cell type 
so that the signal from these cells can be isolated in the down-
stream analysis. However, since there is a dynamic inter-
play between tumour cells and their microenvironment, it is  
reasonable to expect that RNA expression of the same cell 
“type” can show inter-tumour and intra-tumour variability in 
gene expression33 (Figure 1A, B) and furthermore that this vari-
ation is an important determinant of tumour biology. Thus, bulk  
analysis risks missing important tumour biology.

The recent evolution of powerful single-cell sequencing  
techniques provides a unique opportunity to directly over-
come these limitations, allowing highly unbiased assessments of  

tumour heterogeneity – both subclonal heterogeneity of 
tumour cells and the cell types present in the stroma – with an 
unprecedented level of sensitivity (Figure 1A, C). In the fol-
lowing sections, we provide an overview of common meth-
ods and recent innovations achieved through the application of  
single-cell analysis.

Single-cell sequencing in tumours
Uni-modal techniques
One of the first single-cell sequencing applications was a  
single-cell RNA-Seq (scRNA-Seq) protocol established in 2009 
by Tang et al.34. This paved the way for a vast range of highly  
sophisticated single-cell next generation sequencing (scNGS) 
methods that characterise genomic, transcriptomic, epigenomic 
and proteomic patterns that will be explained in more detail 
below. To provide a quick overview, a summary of common  
methods can be viewed in Table 1.



Faculty Reviews 2021 10:(49)Faculty Opinions

By far the most extensive variety of scNGS protocols in use 
today are scRNA-Seq approaches, which differ in aspects such 
as cell isolation methods, type of transcript coverage, cDNA  
transcription, and library amplification. Another important 
aspect represents the utilisation of unique molecular identifiers  
(UMIs), which are random DNA sequences embedded in  
library adapters that uniquely “tag” a cellular RNA/DNA frag-
ment before polymerase chain reaction (PCR) amplification. By 
reading UMI tags after library preparation and sequencing, PCR 

duplicates can be easily distinguished from biological repli-
cates, thereby generating absolute counts of the initial fragments  
present.

In general, scRNA-Seq protocols can be divided into full-length 
transcript approaches, such as SMART-Seq235, Quartz-Seq37, 
MATQ-Seq38 or SUPeR-Seq39, and protocols sequencing short 
parts of the 3′ or 5′ end of RNA transcripts, such as MARS-Seq241,  
CEL-Seq242, mcSCRB-Seq43 or STRT-Seq44 (Figure 2A).  

Figure 2. Single-cell sequencing strategies. (A) Single-cell RNA sequencing approaches can be split broadly into techniques that sequence 
either the 3′ or 5′ end of individual RNA transcripts or random parts of the full transcript molecule. (B) The scarcity of starting RNA templates 
in a single cell is a major confounding factor leading to polymerase chain reaction (PCR) amplification bias and inaccurate quantification 
of transcript levels. Using adapters with “unique molecular indexes” (UMIs) (random nucleotide sequences) for reverse transcription allows 
tagging of individual transcripts before the PCR amplification step. After sequencing and mapping of amplified libraries, the abundance of 
initial RNA transcripts can be estimated by counting the number of UMIs for any detected RNA transcript, thereby mitigating amplification bias. 
(C) Overview of the most common amplification techniques for assessment of genomic DNA profiles in single cells. DOP-PCR, degenerate 
oligonucleotide primed polymerase chain reaction; MDA, multiple displacement amplification; WGS, whole genome sequencing.
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Full-length scRNA-Seq has the advantage of identifying alter-
native transcript isoforms, fusion transcript events and (to a 
limited extent) single-nucleotide variants (SNVs) and inser-
tion/deletion variants (INDELs) throughout entire RNA 
transcripts. The most commonly used full-length protocol,  
SMART-Seq2, has been shown to detect the largest number 
of transcripts per cell but exhibits higher amplification noise 
due to lack of UMI utilisation62 although this was addressed 
recently in the updated SMART-Seq3 protocol36. It also has  
significantly higher costs per cell unless the transposase enzyme 
for the final library tagmentation step is produced in-house63.  
Whereas the majority of scRNA-Seq protocols use oligo-dT 
priming of poly-A mRNA species, MATQ-Seq38, SUPeR-Seq39  
and Holo-Seq40 provide total RNA expression profiles, includ-
ing long non-coding RNA and circular RNA species, that are 
increasingly recognised as playing a key role in tumour patho-
genesis. To date, Holo-Seq40 is the only method capable of  
capturing expression of small RNAs (for example, microRNAs  
or enhancer RNAs) in scRNA-Seq. Although these full-length 
methods provide exceptional insight into the complexity 
of single-cell transcriptomes, they inevitably require several-
fold-higher sequencing depth compared with their 3′/5′ biased  
counterparts.

In comparison with full-length protocols, 3′ and 5′ assays ben-
efit from the (optional but straightforward) inclusion of UMIs 
enabling more accurate transcript quantification (Figure 2B).  
In addition, the possibility to barcode RNA of individual cells 
means that these methods allow early multiplexing of cell sam-
ples, thereby increasing the library preparation throughput by 
magnitudes and reducing costs. While these protocols are pre-
dominantly carried out in various plate formats, emulsion  
droplet-based techniques that are able to encapsulate single cells 
into oil droplets for separate processing (for example, the 10x  
Chromium platform64, inDrop65 and Drop-Seq66) have recently 
emerged. These technologies have an even higher through-
put with combined capturing and library preparation of tens 
of thousands of cells per sample and highly reduced library 
processing costs per cell. However, the drawbacks of such  
approaches are the high upfront infrastructure costs and the 
inability to map generated cell profiles to preanalytical assess-
ments, such as fluorescence-activated cell sorting (FACS)-based  
epitope profiling or cellular morphology.

Single-cell approaches for genomic DNA profiling (scDNA-
Seq) have experienced similar advances in the development of 
increasingly sensitive methods (Figure 2C). A single cell contains  
a minute amount of DNA (typically two copies of each allele 
as opposed to multiple mRNA copies of each gene) and there-
fore traditional scDNA-Seq protocols have required either the  
whole genome or loci of interest to be preamplified prior to 
library preparation. Generally, for whole genome amplifica-
tion (WGA), isothermal multiple displacement amplification 
(MDA) and variations thereof have been the methods of choice  
because of their wide breadth of genome coverage46,47. How-
ever, MDA is prone to allelic imbalance/dropouts and GC 
amplification bias when only a single diploid genome is used 

as the starting template, leading to relatively high error rates in  
SNV/INDEL calling and less precise detection of copy number 
variants (CNVs)48. Subsequent methods used FACS to isolate 
cells in the G

2
/M phase of the cell cycle to increase the start-

ing amount of DNA for WGA, which significantly reduced  
error rates67. Further optimisations of MDA and library chem-
istry increased SNV/INDEL detection rates to about 90%49 
but did not improve the poor detection of CNVs. An alterna-
tive method of single-cell WGA is degenerate oligonucleotide  
primed PCR (DOP-PCR) and this results in high coverage uni-
formity and therefore very accurate CNV detection but highly 
limited SNV detection because of low breadth of genome 
coverage, usually around 10%45. The recent development  
of the Ampli1 technology (Menarini Silicon Biosystems, 
Huntingdon Valley, PA, USA) improves on CNV detection 
and allelic dropout rates by implementing an optimised strat-
egy using enzymatic digestion, adapter ligation followed by  
single-primer amplification50. A further alternative method called  
STRAND-Seq51, and variations thereof developed by van den 
Bos et al.52 and Bakker et al.53, includes a preamplification-free  
approach, which leads to more precise CNV karyotyping and 
even allows delineation of the parental origin of alleles in sin-
gle cells. Generally, the choice of WGA method has to be 
directed by the type of genomic data that is intended to be  
interrogated.

An elegant approach to circumvent the problems associated 
with WGA has been developed by Zahn et al. and uses transpo-
some tagmentation directly on single-cell genomic DNA54. This 
technique, named “direct library preparation”, uses a one-pot  
reaction for DNA fragmentation and adapter ligation, omits 
preamplification before library construction and thereby pro-
vides a wide breadth of genome coverage that allows highly 
accurate CNV detection even with low coverage sequencing 
(<0.1×). In this approach, much like in the above-mentioned  
STRAND-Seq method52,53, the lack of preamplification allows 
researchers to easily identify and remove PCR duplicates 
because of the unique fragmentation pattern of a single-cell  
genome, resulting in vastly improved noise reduction. Intrigu-
ingly, genome allelic balance remains largely preserved and 
enables sensitive SNV/INDEL calling by combining single-
cell genomes in silico to create a “synthetic bulk”; for exam-
ple, single cells are assigned to a subclonal population by using 
their CNV profiles derived from the same scDNA-Seq dataset. 
More recently, the method has been scaled to allow processing 
of tens of thousands of cells with compatibility to commercially  
available single-cell processing solutions55.

Although the above-mentioned techniques allow deep insight 
into ITH at single-cell resolution, spatial information is 
lost because in the generation of single-cell suspensions for 
library preparation the tissue architecture is destroyed. To 
address this problem, several groups developed in situ analysis  
technologies68–70 that have single-cell – or near cellular – reso-
lution. For example, our group recently validated BaseScope 
for robust detection of mutation-specific RNA as a means to 
measure ITH in a spatial context71. The higher-throughput 
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“slide-seq” method interrogates global RNA expression pro-
files with single-cell resolution in virtually any type of sectioned  
tissue70. To achieve this, the authors engineered arrays of  
10-μm, uniquely barcoded beads with known positions that 
capture mRNA species upon transfer from tissue sections via  
oligo-dT priming, enabling high-resolution spatial transcrip-
tome mapping of tens of thousands of single cells per sec-
tion to be achieved. In theory, genetic information (CNVs and 
potentially SNVs) extracted from the RNA data can be used 
to spatially map genotypes concurrently with the RNA-based  
phenotypic characterisation. Of note, by implementing an inno-
vative in situ RNA-Seq approach, STARmap expands on the 
possibilities of slide-seq and enables even three-dimensional  
spatial single-cell transcriptomic profile resolution69.

Recent advances in single-cell processing have also allowed 
tumour epigenetics to be investigated on a larger scale and at 
cellular resolution. Widely used methods include single-cell 
bisulfite sequencing for measuring DNA CpG methylation56,57,  
droplet-based single-cell chromatin immunoprecipitation (drop-
ChIP) for assessment of histone modifications58, single-cell 
transposase-accessible chromatin sequencing (scATAC-Seq) for 
analysing chromatin accessibility59,60 and cleavage under tar-
gets and tagmentation (CUT&Tag) for measuring custom chro-
matin protein distribution61. Although they still provide, on a 
per-cell level, only a small fraction of the epigenetic informa-
tion obtained from bulk sample measurements, these techniques 
represent essential tools for connecting phenotype and genotype  
features of tumour evolution on a cellular level.

Analysis and interpretation of scNGS datasets must be performed 
with appreciation of certain caveats. For example, it is impor-
tant to note that tissue dissociation protocols for the generation 
of single-cell suspensions can be quite harsh, causing fragile  
states of single cells and RNA species in particular and this 
may bias detection to “hardy” cells. Moreover, owing to the  
scarcity of template material in a single cell and hence 
the necessity for strong signal amplification, stochastic  
dropout of biological features is inevitable. As such, qual-
ity control of the data and selection of adequate computational 
analysis strategies are of utmost importance to ensure that the  
results reflect true biological heterogeneity between and 
within samples and not simply variable quality of input mate-
rial or batch processing artefacts. Methods to robustly han-
dle these intrinsic sources of noise are essential: Excellent 
reviews of scNGS computational analysis pipelines can be found  
elsewhere72–76.

Multi-modal techniques
Mapping multiple biological features within the same cell is 
an important step towards understanding the molecular inter-
dependencies that lead to phenotypic diversity within tumours. 
As such, there is currently much interest in combining multiple  
uni-modal single-cell techniques to develop multi-modal 
scNGS approaches. For example, TARGET-Seq combines an 
improved SMART-Seq2 scRNA-Seq protocol with targeted  
SNV/INDEL genotyping by using custom primers amplifying  

loci from both RNA and DNA in the same reaction, thereby 
dramatically improving the high allelic dropout rate usually 
observed with mutation calling using (full-length) scRNA-Seq  
data only77. Similar approaches for successful mapping of tran-
scriptome and targeted genotype profiles of single cells have 
been reported by two other groups78,79 using modifications of  
3′ scRNA-Seq protocols. The use of 3′ RNA-Seq, in compari-
son with TARGET-Seq, as a genotyping source might be a lim-
iting factor for the genotyping success rate as mutations in the  
5′ region as well as in marginally expressed genes may not be 
detected. Though significantly expanding on our abilities to 
unify genotypic and transcriptomic cell profiles, the limita-
tion of the above methodologies is that prior knowledge of the 
mutations to be interrogated is required. Combined genome 
and transcriptome sequencing (“G&T-Seq”) has been the first  
method to provide a more unbiased screening solution and 
allows the assessment of complex genomic profiles in parallel  
with transcriptomic profiles80,81. With biotinylated oligo-dT  
capture probes, RNA moieties of a single cell can be physi-
cally separated from the DNA and both can be subjected  
independently to the aforementioned scNGS protocols.

The REAP-Seq and CITE-Seq protocols combine scRNA-
Seq and cell-surface proteomics by labelling single cells with  
antibody–oligonucleotide conjugates before extracting RNA82,83. 
The oligonucleotides of these conjugates carry epitope-specific 
barcodes and poly-A tails and therefore can be conveniently  
quantified by integrating them in common scRNA-Seq library 
protocols. In a similar approach, the RAID-Seq method 
employs scRNA-Seq of fixed single cells and simultaneously 
allows intracellular (phospho)proteins to be quantified84. These  
approaches are compatible with high-throughput microfluid-
ics platforms, such as that of 10x Genomics, and can be highly 
multiplexed to simultaneously assess dozens of protein epitopes  
and the corresponding transcriptomic profile of a single cell.

Insights from single-cell next-generation sequencing 
into tumour evolution
With a highly effective arsenal of single-cell methods at hand 
today, recent studies have revealed exciting novel insights into 
tumour heterogeneity and evolutionary principles. For example, 
Gao et al. investigated patterns of aneuploidy in triple-negative  
breast tumour (TNBC) by generating genome-wide CNV pro-
files of 1,000 single cells from 12 patients85. Interestingly, the 
investigators’ analysis revealed highly stable karyotypes across  
individual tumour clones and only rare events of “metastable” 
tumour cells showed additional single aberrations, presumably  
denoting evolutionary dead ends. The data was consistent  
with a mathematical model whereby CNVs were acquired in a 
“punctuated burst” early in TNBC tumourigenesis rather than 
through gradual acquisition. Notably, though, the model did 
not describe the effects of selection – which could conceivably 
lead to a clonal expansion and the clonality of CNVs observed  
in the data.

Another study characterised oestrogen receptor–positive 
breast tumour via scRNA-Seq in combination with cellular 
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barcoding analysis of bulk tumour cells (the ClonTracer  
system)86, revealing that resistance to anti-oestrogen therapy 
occurs mainly through selection of pre-existing clones87. Nota-
bly, resistance development appears to be further promoted by 
increased activity of the KDM5 histone demethylase family, 
which is frequently observed in patients, mainly by epigeneti-
cally induced enhanced transcriptomic heterogeneity, and can be  
reversed by KDM5 inhibition. Intriguingly, cellular barcoding 
in conjunction with scRNA-Seq data also indicated that, in con-
trast to anti-oestrogen treatment, eventual acquisition of resist-
ance to KDM5 inhibition is attributed to epigenetic and not 
genetic changes, highlighting different paths of evolutionary  
adaptation to therapy.

Subjecting TNBC single-cell to scDNA-Seq, followed by lon-
gitudinal analysis in TNBC tumours before, during, and after 
chemotherapy, also revealed the outgrowth of rare pre-existing  
clones upon chemoresistance development88, underlining the 
clinical relevance of measuring ITH. Intriguingly, the parallel  
scRNA-Seq analysis on a separate set of single cells from the 
same tissues uncovered that resistance-associated transcrip-
tional profiles partly pre-existed and were further reshaped dur-
ing therapy to fully establish the transcriptional signature of 
phenotypic resistance88 via upregulation of receptor tyrosine 
kinase, epithelial-mesenchymal transition and immune-associated  
expression pathways25.

H3K27M-mutant glioma represents a highly fatal tumour 
subtype that occurs during early childhood and is assumed 
to be linked to the activation of proliferative brain develop-
ment programs. By using scRNA-Seq, Filbin et al. were able, 
for the first time, to delineate the phenotypic composition of 
these tumours at cellular resolution, revealing that they are  
composed mainly of a stem-like oligodendrocyte precursor sub-
set with highly proliferative and tumour-propagating charac-
teristics but that differentiated cells represent only a minority  
of the tumour population89. Notably, complementing their pri-
mary tumour analysis with patient-derived xenografts indicated 
that platelet-derived growth factor receptor alpha (PDGFRA) 
and BMI1 are involved in maintaining the stem-like pheno-
type and therefore represent potential therapeutic targets in this  
inoperable and aggressive disease.

Although scRNA-Seq profiling provides detailed insight into 
cell-specific transcriptional states, some tumour types such as 
acute myeloid leukaemia (AML) can to a certain extent show 
a variety of differentiation phenotypes similar to that observed 
in healthy tissue homeostasis, which makes it necessary to  
accurately determine cell genotypes in parallel. As described 
earlier, van Galen et al. performed simultaneous scRNA-Seq  
and targeted sequencing of patient-specific mutations (present 
in RNA transcripts) from the very same cell79. By using a 
machine learning classifier, they revealed that AML single-
cell transcriptomes indeed closely resembled up to six normal  

myeloid differentiation states and their compositions were 
highly variable between patients and associated with genetic 
background and clinical outcome. Furthermore, their approach  
allowed unbiased assessment of AML stem-like cells, which 
revealed a strong upregulation of stress response, redox signal-
ling and self-renewal programs compared with normal hemat-
opoietic stem cells and identified CD36 and CD74 as novel 
putative leukaemia stem cell markers for potential therapeutic  
exploitation.

In an effort to unravel the complex relationship between tumour 
and stromal cells, recent studies from the Teichman lab using  
scRNA-Seq analyses in human- and mouse-derived melanomas 
revealed the requirement of a delicate balance of the immune 
complement system for maintaining tumour growth90. The 
group’s “CellPhoneDB” tool uses multicellular scRNA-Seq  
data to identify cell–cell communication networks by identify-
ing receptor–ligand pairings that underlie biological multicellular  
interactions91.

Collectively, although the findings described here are only a small 
representation of recent achievements made possible by single-
cell investigations, they highlight the immediate clinical rele-
vance of scNGS and the potential to transform our understanding  
of tumour ITH and mechanisms of clonal evolution.

Conclusions
Single-cell sequencing techniques have proven to be power-
ful tools to dissect the heterogeneity of tumour cells. Investi-
gating the genomic, transcriptomic and epigenomic features  
of individual tumour and stromal cells within a tumour, and 
their interactions, already revealed important biological mecha-
nisms underlying the propagation and maintenance of tumour 
development. The ongoing refinement of these methods  
and vast increase in throughput will soon allow even deeper and 
more precise characterisation of spatial and temporal tumour 
evolution, microenvironmental interactions and immune cross-
talk. The exciting new possibilities offered by single-cell  
technologies are likely to translate to new prognostic tools and 
personalised treatment strategies in the near future, extend-
ing the survival of tumour patients and improving clinical  
management.

Abbreviations
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fluorescence-activated cell sorting; INDEL, insertion/deletion  
variant; ITH, intra-tumour heterogeneity; MDA, multiple dis-
placement amplification; NGS, next generation sequencing; 
PCR, polymerase chain reaction; RNA-Seq, RNA sequencing;  
scDNA-Seq, single-cell DNA sequencing; scNGS, single-cell  
next-generation sequencing; scRNA-Seq, single-cell RNA 
sequencing; SNV, single-nucleotide variant; TNBC, triple-negative  
breast cancer; UMI, unique molecular identifier; WGA, whole  
genome amplification
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