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Abstract

Straw mulching has been widely adopted in dryland cropping but its effect on soil respiration

and microbial communities under warming are not well understood. Soil samples were col-

lected from a corn field with straw mulching (SM) for nine years and without straw mulching

(CK), and incubated at 15˚C, 25˚C, and 35˚C for 60 days. Soil respiration, C fractions and

bacterial and fungal community structure were measured SM had greater soil organic car-

bon and potential C mineralization and a similar microbial biomass carbon throughout the

incubation when compared with CK. Soil respiration increased with increasing temperature

and its temperature sensitivity (Q10) was lower with SM than CK. Similar microbial commu-

nity composition was found in the soils with SM and CK before incubation. However, SM

had a greater bacterial richness and the relative abundances of Proteobacteria, Acidobac-

teria, Nitrospirae, Planctomycetes, Bacteroidetes, and Basidiomycota, but lower relative

abundances of Actinobacteria, Chloroflexi, and Ascomycota than CK after incubation. Bac-

terial richness and diversity were greater at 15˚C and 25˚C than 35˚C, but there was no dif-

ference in fungal richness and diversity among the incubation temperatures. As

temperature increased, the relative abundances of Chloroflexi, Acidobacteria, and Bacteroi-

detes decreased, but Gemmatimonadetes and Ascomycota increased, and were signifi-

cantly correlated with soil C fractions and respiration. These findings indicated that the

effect of straw mulching on soil C cycling and microbial community structure can be highly

modified by increasing temperature.

Introduction

Soil contains around 1500 Pg of organic carbon (C) and plays a major role in the carbon

cycling in terrestrial ecosystems [1]. A small variation in soil C sequestration can lead to a sig-

nificant change in atmospheric CO2 concentration [2]. Increased soil C storage has been
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suggested as a way to mitigate greenhouse gas emissions [3]. In the recent decades, straw

mulching has widely been adopted to conserve soil water, regulate soil temperature and

increase crop yield in dryland cropping systems. The application of straw mulch also has been

proposed as a method to store organic carbon long term [4, 5]. In an 8-yr study in the Loess

Plateau of China, Wang et al. [5] reported that soil organic C (SOC) stock was 7–35% greater

with straw mulching than without. Generally, SOC would change slowly with management

practices due to its large pool sizes and inherent spatial variability [4]. Soil labile C fractions,

such as microbial biomass carbon (MBC) and potential C mineralization (PCM) would

response more rapidly to environmental change than SOC [6].

Straw mulching increased substrate availability for soil microbials due to additional input

[7]. Similarly, soil hydrothermal conditions can be significantly changed with straw mulching

as related to no mulching [8, 9]. Such changes in soils due to straw mulching would affect soil

respiration (SR) and microbial activities. Several studies reported that straw mulching could

increase the SR rate due to higher availability of C substrates [10]. However, SR rate was con-

trolled by many factors, such as soil temperature, moisture, and nitrogen levels. The studies

about the effect of straw mulching on SR rate had different results [11]. Soil microorganisms

are the main decomposer groups involved in the soil C cycling [3]. Most previous studies

showed that straw mulching can increase the activity and population of soil bacteria and fungi,

due to higher soil C substrate quality and quantity [12, 13]. But contrasting results were also

reported, that soil microbial diversity was significantly lower with straw mulching than with-

out [14].

In the context of climate change, the responses of SOC, SR and microbial activity to warm-

ing have gained more attentions recently. Increasing temperature would stimulate soil micro-

bial metabolisms [15], accelerate SOC decomposition [16] and increase C efflux through SR

[17]. Since the temperature sensitivity of SR (Q10) varied with the substrate availability [18],

how the comprehensive responses of C soil fractions, SR and microbial communities to straw

mulching would vary with different temperature change is now well reported. Here, we carried

out an incubation study, aimed to (1) determine changes in carbon fractions and SR rates to

different temperatures in soils with and without 9-yr straw mulching, (2) quantify the effect of

straw mulching on soil temperature sensitivity; and (3) explore the relationships among soil C

fractions, SR rates and the soil microbial community. We hypothesized that: (1) straw mulch-

ing would increase SR rates by increasing the input of organic matter in the soil compared

with no mulching; and (2) straw mulching could change the temperature sensitivity of the

agro-ecosystem due to the regulation of soil C fractions and soil microbial community.

Materials and methods

Experimental sites and soil sampling

A mulching experiment was started in 2009 at the Changwu Agro-Ecological Station in the

Loess Plateau (107˚ 44.70’ E, 35˚ 12.79’ N) of China. The site has a monsoon climate with a

mean annual temperature of 9.1 ˚C and an annual precipitation of 580 mm. The mean frost-

free period is 194 days and the open-pan evaporation is 1440 mm. The soil was a Heilutu silt

loam (Calcarid Regosol according to the FAO classification system), with 35 g kg-1 sand, 656 g

kg-1 silt, and 309 g kg-1 clay, 1.30 Mg m-3 bulk density, 8.3 pH, 9.10 g kg-1 SOC, and 1.10 g kg-1

soil total nitrogen at 0–20 cm depth at the initiation of the experiment.

The field experiment design has been described in detail by Wang et al. [5]. Briefly, field

plots with straw mulch (SM) and no mulch (CK) were arranged in a randomized complete

block design with three replications. Each plot size was 6.7 m wide by 10.0 m long. Plots and

blocks were separated by 0.5 and 1.0 m strips, respectively. SM included a surface of whole
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corn straw at 9000 kg ha-1. Corn straw had a C/N ratio of 40.1 and the contents of cellulose,

hemicellulose and lignin were 32%, 28% and 15.5%, respectively. Corn was planted in mid-

April and harvested in late September for each year. Corn was planted by hand under conven-

tional tillage which consisted of hand tractor-drawn plows to a depth of 10 cm at planting.

Nitrogen fertilizer as urea (46% N) at 120 kg N ha-1 and phosphate fertilizer as calcium super-

phosphate (20% P) at 60 kg P ha-1 were broadcast and then incorporated to a depth of 20 cm

using a rotary tiller before sowing. Potassic fertilizer was not applied because of high soil potas-

sium content (about 130 mg kg-1 at 0–20 cm soil depth). Corn was planted at 0.04 million

plants ha-1 with 60 cm row spacing for all treatments. No irrigation was applied. After crop

harvest, left-over straw mulch was removed from the soil surface.

Fresh soil samples were collected from after corn harvest in October 2017. Soil samples

(about 10 kg) were collected with a spade from the surface layer (0–20 cm) from five places

within a plot. Then we composited five samples to one sample, and placed them in plastic

boxes. We tried to avoid damaging the soil structure during the collection process. After

removing roots and rocks, the samples were sieved through a 2 mm mesh immediately and

then kept at 4 ˚C for incubation.

Design of the incubation study

Soil samples of 500 g were placed in a jar and incubated at 15 ˚C, 25 ˚C, and 35 ˚C, each with

three replicates, for a total of 18 samples. This range of temperatures was selected according to

the range of air temperatures that occurred during the crop growing season. The jars were

placed in incubators and soil samples were adjusted to 60% water filled pore space using

weighing method throughout the incubation [19]. We maintained constant soil moisture by

weighing each sample once a week and adjusting the water content to the target mass. Air sam-

ples from the headspace of the sealed mason jars were drawn through septa, transferred to

evacuated vials, and CO2 concentrations were measured using a Li-COR LI-840A infrared gas

analyzer [20]. The processed soils were then subjected to incubation and moisture for 60 days.

Carbon dioxide in the headspace of each jar was measured every day at the outset of the

incubation.

About 50 g of soil samples were removed from the incubator at 0 and 60 days after incuba-

tion (DAI), then air-dried at room temperature, and subjected to measure soil organic carbon

(SOC), potential C mineralization (PCM), and microbial biomass C (MBC). Furthermore,

fresh soil samples were collected before and at the end (day 60) of the short-term incubation to

measure the structural composition of both the bacterial and fungal communities. The fresh

soil samples for microbial analysis were stored at -80 ˚C for DNA extraction.

Soil analysis

SOC concentration (before and during incubation) was measured using a high induction fur-

nace C and N analyzer (Euro Vector EA3000, Manzoni, Italy) after pretreating the soil with 1

mole L-1 HCl to remove inorganic C. The PCM and MBC concentrations were determined

using the fumigation-incubation method reported by Wang et al. [5]. Briefly, 10 g air-dried

soil was moistened with water at 50% field capacity and placed in a 1 L jar containing beakers

with NaOH to trap evolved CO2, and incubated in the jar at 21 ˚C for 10 d. PCM concentra-

tion was determined by measuring CO2 absorbed in NaOH. The moist soil used for determin-

ing PCM was subsequently used for determining MBC by the modified fumigation-incubation

method for air-dried soils. The moist soil was fumigated with ethanol-free chloroform for 24 h

and placed in a 1 L jar containing beakers with NaOH. Fumigated moist soil was incubated for

10 d, and the CO2 absorbed in NaOH was back-titrated with HCl.
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Soil DNA was extracted from 0.5 g of freeze-dried soil using Fast DNA SPIN extraction kits

(MP Biomedicals, Santa Ana, CA, USA). The extraction method was same as Ren et al. [2].

The universal Eubacterial primers 338F (5’-ACTCCTACGGGAGGCAGCA) and 806R (5’-
GGACTACHVGGGTWTCTAAT-3’) were used for amplifying the 16S rRNA V3-V4 fragment.

The universal eukaryotic primers ITS5F (5’-GGAAGTAAAAGTCGTAACAAGG) and ITS1R

(GCTGCGTTCTTCATCGATGC) were used for amplifying the ITS-1 region. The 7-bp barcodes

were incorporated into the primers for multiplex sequencing. The solution for bacterial ampli-

fication contained 0.4 μl of each primers, 0.4 μl FastPfu polymerase, and 10-ng template DNA.

Thermal cycling consisted of initial denaturation at 98 ˚C for 2 min, 25 cycles (98 ˚C for 15 s,

55 ˚C for 30 s, and 72 ˚C for 30 s), followed by a final extension at 72 ˚C for 5 min. The PCR

reaction of ITS rRNA was carried out in a 25-μl mixture which contained 0.5μl of each primer

at 30 μmol l-1, 10-ng template DNA, and 22.5 μl of Platinum PCR SuperMix (Invitrogen,

Shanghai, China). PCR reactions for the fungal ITS region were 95 ˚C for 2 min, 30 cycles (95

˚C for 30 s, 55 ˚C for 30 s, 72 ˚C for 30 s), and followed by a final extension at 72 ˚C for 5

minutes.

Each sample was amplified for three times and the relative amplicons were mixed to pro-

vide a final PCR product. Each sample was amplified three times, and then the relative ampli-

cons were mixed to obtain one final PCR product. In order to improve the quality and

concentration of the PCR product, each mixed gene was subjected to electrophoresis in 2%

agarose gels. PCR products were further excised using an AxyPrep DNA Gel Extraction Kit

(Axygen Biosciences, USA), and the relative DNA was solubilized with ddH2O. Finally, PCR

products were pooled in a single tube and then sequenced using Illumina’s MiSeq platform at

the Personal Biotechnology Co., Ltd (Shanghai, China). Raw sequences were processed using

the Quantitative Insights into Microbial Ecology (QIME, v1.8.0) pipeline as described by

Caporaso et al. [21]. Finally, the raw sequences for all samples was sent to the Sequence Read

Archive (SRA) database of the National Center for Biotechnology Information (NCBI,

Bethesda, MD, USA) under the accession numbers SRP260944 and SRP261054 for bacteria

and fungi, respectively.

Data analysis

Data for soil C fractions, cumulative respiration, and soil microbial communities were ana-

lyzed using a two-way analysis of variance (ANOVA) (SPSS Statistics). The mulching treat-

ment and incubation temperature were considered fixed effects and replication as the random

effect for data analysis. Means were separated using Duncan’s multiple range test when treat-

ments and interactions were significant. Statistical significance was observed at P�0.05. Com-

munity taxonomic alpha richness and diversity (Chao1 and Shannon index) were calculated

by the mothur software (Version v.1.30.1) [22]. Principal component analysis (PCA), using

weighted UniFrac distances,was used to explore the differences in soil bacterial and fungal

community structure across the mulching methods and temperatures. Redundancy analysis

(RDA) was performed to gain insights into the relationship between the composition of soil

bacterial and fungal communities under straw mulching, no mulching, and incubation tem-

perature using CANOCO software [23].

The temperature sensitivity (Q10) of soil respiration were determined using the formulas as

follows [24]:

Rs ¼ aebT

Q10 ¼ e10b
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Where Rs is the soil respiration rate (mol m-2 d-1), T is the temperature (˚C), and a and b are

the coefficients. Q10 is estimated based on soil respiration rates under temperature increase

from 15˚C to 25 ˚C and 25 ˚C to 35 ˚C, separately. The one-way ANOVA and Pearson correla-

tion were analyzed using the SPSS software.

The microbial metabolic quotient (qCO2) was determined using the methods by Wardle

and Ghani [25].

Results

Soil carbon fractions

At the beginning of incubation, SOC and PCM contents were greater with SM than CK

(Table 1), and no difference in MBC was found between SM and CK. At the end of the short-

term incubation, SOC and PCM contents were greater in SM than CK when averaged across

incubation temperatures, and no difference in MBC was found between SM and CK (Table 2

and S1 Table). On average, the contents of SOC, PCM, and MBC were greater with 15 ˚C and

25 ˚C than 35 ˚C. Furthermore, the PCM content was greater after incubation than before

incubation in both SM and CK, while the MBC content decreased significantly after short-

term incubation.

Table 1. Soil carbon fractions before incubation.

Mulching a SOC (g/kg) PCM (mg/kg) MBC (mg/kg)

CK 8.86bb 207b 441a

SM 9.55a 321a 402a

a CK: no mulching; SM: straw mulching.
b Different lowercase letters indicate significant difference between straw mulching and no mulching.

https://doi.org/10.1371/journal.pone.0237245.t001

Table 2. Soil carbon fractions after incubation.

Mulching a Incubation temperature (˚C) SOC (g/kg) PCM (mg/kg) MBC (mg/kg)

CK 8.20b 326b 379a

SM 8.81a 374a 360a

15 8.61a 360a 406a

25 8.51b 363a 359ab

35 8.38c 327b 344b

Significance

Mulch (M) ��� �� NS

Temperature (T) ��� � �

M×T NS NS NS

a CK: no mulching; SM: straw mulching.
b Different lowercase letters indicate significant difference between straw mulching and no mulching or among incubation temperatures.

��� significant at P�0.001 levels;

�� significant at P�0.01 levels;

� significant at P�0.05 levels; NS, no difference.

SOC: soil organic carbon; PCM: potential C mineralization; MBC: microbial biomass carbon.

https://doi.org/10.1371/journal.pone.0237245.t002
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Soil respiration, temperature sensitivity (Q10) and metabolic quotient

(qCO2)

The rate of SR increased rapidly during early incubation and peaked at 10 DAI with 35 ˚C and

at 14–15 DAI with 15 ˚C and 25 ˚C and then declined (Fig 1). Averaged across incubation tem-

perature, the mean respiration rate during 0–15 DAI was greater in SM than CK. At the end of

incubation, the respiration rates were only about 50% of the initial values and the 60-d cumula-

tive CO2 emission was significantly greater in SM than CK (Fig 2). The cumulative respiration

was 1.78, 2.11, and 2.41 mol m-2 at 15 ˚C, 25 ˚C, and 35 ˚C (P<0.05), respectively. Strong cor-

relations were found between the cumulative respiration and incubation temperature (r2,

0.967 to 0.998; P<0.001), with a Q10 of 1.18 and 1.12 for CK and SM, respectively (Table 3).

The qCO2 under both CK and SM appeared to increase with increasing incubation tempera-

tures (Fig 3). For all incubation temperatures, SM had higher qCO2 than CK.

Fig 1. Soil respiration rate under different mulching methods and incubation temperatures. CK: no mulching; SM: straw mulching.

https://doi.org/10.1371/journal.pone.0237245.g001
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Soil microbial diversity and community structure

Observed species and bacterial alpha-diversity indices based on the Chao 1 richness and Shan-

non’s diversity indices were not significantly different with and without straw mulch before

incubation (Table 4). SM had greater bacterial richness compared to CK when averaged across

incubation temperatures. The bacterial richness and diversity were greater in 15 ˚C and 25 ˚C

than 35 ˚C (Table 5).

Principal coordinates analysis showed no difference in the OTU composition between CK

and SM before incubation (S1 Fig). However, both bacteria and fungi varied with mulching

treatments and incubation temperature after incubation (Fig 4). About 55.9–61.3% and 66.2–

69.7% of the variance was explained by the first two axes for bacteria and fungi after incuba-

tion, respectively. According to PCA analysis, bacterial and fungal communities were signifi-

cantly different from each other with and without straw mulch and for the incubation

temperatures (Figs 4 and 5).

Fig 2. Cumulative soil respiration over the 60-day incubation under straw mulching and no mulching at different

incubation temperatures. a CK: no mulching; SM: straw mulching. b Different lowercase letters indicate significant

difference between straw mulching and no mulching.

https://doi.org/10.1371/journal.pone.0237245.g002

Table 3. Regression equations between cumulative Soil Respiration (Rs) and incubation Temperature (T) under no mulching and straw mulching.

Mulching Equation Q10 R2 Significance

CKa Rs = 1.44e0.0163T 1.18 0.998 <0.001

SM Rs = 1.94e0.0115T 1.12 0.967 <0.001

a CK: no mulching; SM: straw mulching.

https://doi.org/10.1371/journal.pone.0237245.t003

PLOS ONE Warming modify responses of soil C and microbial to straw mulching

PLOS ONE | https://doi.org/10.1371/journal.pone.0237245 August 11, 2020 7 / 19

https://doi.org/10.1371/journal.pone.0237245.g002
https://doi.org/10.1371/journal.pone.0237245.t003
https://doi.org/10.1371/journal.pone.0237245


Bacterial and fungal community compositions

For all soil samples (before and after incubation), the dominant bacterial phyla (�1%) con-

sisted of Proteobacteria (29.5%), Actinobacteria (19.2%), Chioroflexi (14.8%), Acidobacteria
(14.4%), Gemmatimonadetes (8.49%), Nitrospirae (4.38%), Planctomycetes (4.18%), and Bacter-
oidetes (1.52%) (Fig 6). Before incubation, no significant difference in bacterial or fungal phyla

was found between CK and SM. However, after incubation, the relative abundances of phyla

Proteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, and Bacteroidetes were greater than

that of phyla Actinobacteria, and Chloroflexi was lower in SM than CK (Fig 6 and S2 Table).

For Proteobacteria, the dominant classes were Gammaproteobacteria, Alphaproteobacteria,

Betaproteobacteria, and Deltaproteobacteria, and only Deltaproteobacteria increased with

straw mulching at all incubation temperatures (S3 Table). Within Deltaproteobacteria, the

order Desulfurellales increased with straw mulch. However, the class Actinobacteria, Thermo-
leophilia, and MB-A2-108, a branch of Actinobacteria, declined greatly with straw mulch. For

Chloroflexi, class KD4-96, Chloroflexia, Thermomicrobia, and Gitt-GS-136 were lower in SM

than CK.

Fig 3. Soil microbial metabolic quotient (qCO2) under different mulching treatments and incubation temperatures. CK: no mulching; SM: straw mulching.

https://doi.org/10.1371/journal.pone.0237245.g003
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The microbial relative abundance of phyla and class varied with different incubation tem-

peratures (Fig 6 and S2 and S3 Tables). The relative abundances of phyla Chloroflexi, Acidobac-
teria, and Bacteroidetes decreased with incubation temperature, while the relative abundance

of the phylum Gemmatimonadetes was greater at 35 ˚C than at 15 ˚C and 25 ˚C. For bacteria,

the relative abundance class of Alphaproteobacteria, a branch of Proteobacteria, was greater at

15 ˚C than at 25 ˚C and 35 ˚C under CK, but was greater at 15 ˚C and 25 ˚C than at 35 ˚C for

SM. The relative abundance class Betaproteobacteria was greater at 35 ˚C than at 15 ˚C and 25

˚C under SM, and had no difference for CK. For Actinobacteria, the relative abundance of

Acidimicrobiia decreased with increasing incubation temperatures under SM. The relative

abundance of phyla Chloroflexi in CK and Acidobacteria in SM were greater at 15 ˚C and 25

˚C than at 35 ˚C.

The dominant fungal phyla consisted of Ascomycota (73.8%), Basidiomycota (9.71%), and

Zygomycota (5.49%) (Fig 6). For fungi, when averaged across incubation temperature, the rela-

tive abundance of phylum Ascomycota was lower, and Basidiomycota was greater in SM than

CK (Fig 6, S4 and S5 Tables). For the phylum Ascomycota, the class Sordariomycetes was the

most dominant class and was similar in CK and SM. The relative abundance of the phylum

Basidiomycota was greater in SM than CK at 15 ˚C and 25 ˚C. The relative abundance of the

fungi Ascomycota increased with increasing incubation temperatures. No significant difference

in other dominant fungal phyla was found among the different incubation temperatures.

Table 4. Soil bacterial and fungal diversity (Shannon index) and richness (Chao1 index) under different mulching methods before incubation.

Mulching a Bacteria Fungi

Chao1 Shannon Chao1 Shannon

CK 3628ab 7.58a 891a 4.47a

SM 3678a 7.58a 970a 4.61a

a CK: no mulching; SM: straw mulching.
b Different lowercase letters indicate significant difference between straw mulching and no mulching.

https://doi.org/10.1371/journal.pone.0237245.t004

Table 5. Soil bacterial and fungal diversity (Shannon index) and richness (Chao1 index) under different mulching methods after incubation.

Mulching a Incubation temperature (˚C) Bacteria Fungi

Chao1 Shannon Chao1 Shannon

CK 4810b 7.66a 1009a 4.59a

SM 5264a 7.68a 1048a 4.77a

15 5539a 7.78a 900a 4.75a

25 4926ab 7.72a 1073a 4.78a

35 4647b 7.51b 1112a 4.51a

Significance

Treatment (T) � NS NS NS

Temperature (ST) � �� NS NS

T×ST NS NS NS NS

a CK: no mulching; SM: straw mulching.
b Different lowercase letters indicate significant difference between straw mulching and no mulching or among incubation temperatures.

�� Significant at P�0.01 levels;

� significant at P�0.05 levels; NS, no difference.

https://doi.org/10.1371/journal.pone.0237245.t005
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Within the phylum Ascomycota, the relative abundances of the classes Dothideomycetes and

Lecanoromycetes increased as incubation temperatures increased. The relative abundance of

Agaricomycetes, a branch of the phylum Basidiomycota, was greater at 15 ˚C and 25 ˚C than at

35 ˚C under SM, and had no difference under CK.

Relationships among respiration, soil C fraction, and microbial community

composition

Soil respiration was highly correlated to SOC for all incubation temperatures (P<0.01), and

was correlated with PCM at 15 ˚C and 25 ˚C (P<0.05) (S6 Table). Redundancy analysis

showed strong relationships among soil C fractions, soil respiration, and microbial composi-

tions (Fig 7). SOC and PCM were positively correlated with the relative abundances of Acido-
bacteria, Bacteroidetes, Nitrospirae, and Planctomycetes, and SOC was negatively correlated

with Actinobacteria. The MBC was positively correlated to the relative abundance of Chloro-
flexi. SR was positively related to relative abundance of Proteobacteria, and negatively to the

relative abundance of Chloroflexi. For the dominant fungal phyla, SOC and PCM were posi-

tively related to the relative abundances of Basidiomycota and Zygomycota, and negatively to

that of Ascomycota. Furthermore, the correlations between SR, C fractions, and microbial

community structure varied with and without straw mulching at both the phylum and class

Fig 4. Principal Coordinates Analysis (PCoA) of soil microbial community composition under straw mulching and no mulching after incubation based

on Bray-Curtis distances. CK: no mulching; SM: straw mulching.

https://doi.org/10.1371/journal.pone.0237245.g004
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levels (S7 and S8 Tables). At the phylum level, SOC fractions and/or SR were significantly cor-

related to the abundance of Chloroflexi in CK, and with abundances of Proteobacteria, Acido-
bacteria, Bacteroidetes, and Ascomycota in SM.

Discussion

The significant decrease in SOC after incubation (Tables 1 and 2) was in accordance with Fol-

lett et al. [26]. The amount of SOC present at the beginning of the incubation was indicative of

a larger pool of the less resistant fractions that were available to be broken down and recycled,

thus resulting in lower percentages of the original SOC remaining after 60 days of incubation

[27]. During incubation, the higher SOC concentrations in SM compared to CK could be due

to the increased C input from straw mulch (Table 2), which was confirmed by a previous study

[5]. Throughout incubation, the reduction of SOC was greater with higher temperature than

lower temperatures, probably due to higher soil microbial activity at 35 ˚C. Fissore et al. [27]

also showed that cool temperatures reduced the rate of decomposition, resulting in high SOC

accumulation. Furthermore, Joergensen et al. [28] found that increasing the temperature from

15 ˚C to 25 ˚C, and further to 35 ˚C, can double and triple the rate of mineralizing soil organic

C. Allison et al. [29] suggested that the SOC response to temperature is dependent on how

microbial physiology and communities adapt to the new environments, which may lead to an

upward adjustment of C utilization and accelerated SOC loss. PCM concentration increased

during incubation for all treatments, probably due to the lower microbial activity caused by

cooler temperatures before incubation, and microbial activity recovered after incubation when

temperature and moisture became favorable. Before and after incubation, PCM was greater

with straw mulching than without mulching, which was consistent with the findings reported

by Wang et al. [5].

Although soil microbial activity was low at the beginning of incubation (Table 1), it prolif-

erated quickly with the incubation temperature at 15 ˚C, 25 ˚C, and 35 ˚C (Fig 1). Soil

Fig 5. Principal Coordinates Analysis (PCoA) of soil bacterial community composition at different incubation temperatures based on Bray-

Curtis distances. CK: no mulching; SM: straw mulching.

https://doi.org/10.1371/journal.pone.0237245.g005
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respiration increased rapidly at the early stage of incubation (0–15 DAI), decreased rapidly

during mid incubation (16–30 DAI), and then decreased relatively slightly during the later

stage of incubation (31–40 DAI). These changes in SR suggested that labile organic matter

may have depleted quickly along with incubation time as observed in previous studies [6].

After 40 DAI, the respiration rate remained stable due to lower C and N availability. Further-

more, a rapid proliferation of microbial communities might have subsequently allocated more

substrates to their proliferation and growth than to respiration, thereby decreasing soil respira-

tion. Thereafter, the soil respiration rate and cumulative CO2-C evolution reached a steady

state equilibrium during the day [30].

The daily respiration rate and cumulative respiration were strongly affected by straw

mulching and incubation temperatures over a 60-day incubation period in the present study

(Figs 1 and 2). Soil respiration was higher with straw mulching than without, similar to results

previously reported by Lanza et al. [31]. This higher rate of soil respiration can be explained by

a higher quality of organic C in the straw mulch treatment and a higher SOC [5]. Sources of C

inputs, including plant litter and rhizodeposition, act as substrates that are mineralized to CO2

by the soil microbial community [32]. Furthermore, there was a clear relationship between res-

piration rate and SOC and PCM (S6 Table), which was consistent with Lee et al. [19]. Both

SOC and PCM played a dominant role in determining the variance in soil respiration, and soil

microbial community composition was not the only major determinant of the soil respiration

Fig 6. Relative abundances of (a) bacterial and (b) fungal phyla under straw mulching and no mulching before and after incubation. CK: no mulching; SM:

straw mulching.

https://doi.org/10.1371/journal.pone.0237245.g006
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[33]. MBC was not correlated to respiration, which indicated that the microbial respiratory

response to carbon additions is not necessarily linked to microbial biomass growth response

[34]. However, Józefowska et al. [35] found a negative correlation between C content and res-

piration, which may be related to the protection of soil organic matter. Soil organic matter

may be stabilized in the form of organo-mineral complexes [36], which are resistant to micro-

bial degradation.

Soil respiration increased with increased incubation temperature (Fig 1), which agreed with

the results reported by Lee et al. [19] and Suh et al. [37]. However, many warming experiments

showed either no change [38] or decreased [39] soil respiration when incubated at higher tem-

peratures. Teklay et al. [16] suggested that once the soil C limitation was alleviated, the effect

of temperature became apparent. This difference could also be explained by changes in soil

water. Water stress could suppress respiration by decreasing microbial activities directly, but

also decrease soil respiration via the inhibition of carbon allocation and substrate availability

indirectly [40]. In our experiment, soil water content remained stable, and increasing incuba-

tion temperature may reduce the turnover time of labile and recalcitrant C pools and tempera-

ture sensitivity [41]. So, a longer-term incubation may be needed to test the effect of

temperature on soil respiration.

The Q10 values in our study were lower than previously reported by Wang et al. [42], where

they found that Q10 values ranged from 1.96 to 2.76. This difference was probably due to differ-

ent soil environments (soil organic matter, moisture, microorganism, and temperature) in the

two studies. Meyer et al. [43] also found that forest soils were more sensitive to soil warming

than cropland soils. In the last decade, some incubation studies illustrated that soils with high

C substrate quality have low Q10 [44], which was consistent with our study (Table 3). In our

Fig 7. Plots of the eigenvectors from Redundancy Analysis (RDA) in the plane of the first two axes to show the relations among the microbial populations

(black arrows) and soil C fractions and respiration (SR) (red arrows). Proteobacteria (Prot), Actinobacteria (Acti), Chloroflexi (Chlo), Acidobacteria (Acid),

Gemmatimonadetes (Gemm), Nitrospirae (Nitr), Planctomycetes (Plan), Bacteroidetes (Bact), Ascomycota (Asco), Zygomycota (Zygo), Basidiomycota (Basi) and

unidentified (unid).

https://doi.org/10.1371/journal.pone.0237245.g007
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present study, straw mulching had a lower Q10 as compared with no mulching. The higher

number of microorganisms in soil with straw mulching may accelerate the consumption of C

directly caused by soil respiration. No additional C sources were added during our incubation

experiment, causing soil C to become insufficient at the late incubation stage and resulting in

the decrease of the Q10 under the straw mulching. Similarly, lower qCO2 under straw mulching

also confirmed these conclusions (Fig 3). However, in our previous study, we found that the

Q10 was higher under straw mulching than no mulching, probably due to the driving factors

differing between the two studies [45]. Dai et al. [46] also indicated that the temperature sensi-

tivity of organic C mineralization in exogenous C is highly sensitive to SOC, compared with

no C input.

Huang et al. [47] reported significant correlations between the bacterial community rich-

ness and diversity and soil physicochemical properties. At the beginning of our incubation

experiment, the abundance of all microbial taxa did not differ with and without mulching

(Table 4). After incubation, soil microbial diversity increased because of increased microbial

activity (Tables 1 and 5). However, soil bacterial diversity did not show significant differences

between soils with and without straw mulch (except bacterial richness), although the PCA

analysis revealed that bacterial and fungi communities distinctly separated from each other for

CK and SM at all temperatures. Thus, further soil microbial composition studies are needed

for understanding the effect of straw mulching on soil bacteria.

Soil bacteria and fungi were also profoundly different at different incubation temperatures

(Fig 5). Lower bacterial and fungal diversities at 35 ˚C than at 15 ˚C and 25 ˚C indicated that

the increase in temperature may have temporarily enhanced microbial activities and simulta-

neously promoted competition, which could eventually result in fewer dominant species at 35

˚C when labile C was likely exhausted towards the end of the experiment [16]. Similarly, Pet-

tersson & Bååth [48] also found a temperature-dependent changes in soil bacterial community

in an 80-day incubation study at 5 ˚C˚C, 20 ˚C, and 30 ˚C. Wu et al. [49] showed that soil

microbial biomass, indexed by total phospholipid fatty acid concentration, shifted with tem-

peratures in all soils and decreased with increasing incubation temperature.

In our study, straw mulching markedly changed soil bacterial and fungal community com-

position (Fig 6). The abundances of phyla Proteobacteria, Acidobacteria, Bacteroidetes, Nitros-
pirae, and Planctomycetes increased and the abundance of Actinobacteria and Chloroflexi
decreased in SM relative to CK (Fig 6 and S2 Table), which was partly consistent with the

reports by Wang et al. [50]. The phylum Proteobacteria is generally enriched in the nutrient-

rich conditions and plays a significant role in C and N cycling [51, 52]. In this study, the

greater abundance of Proteobacteria in soils with straw mulch was probably due to the greater

SOC and C availability with the additional C input, which can be energy sources for the growth

of this phyla [53]. Similarly, the greater abundance of Acidobacteria may be due to more parti-

cle C fractions in SM than CK [22]. The variations of Bacteroidetes were stimulated by crop

roots and are well adapted to labile carbon in soil, thus the greater abundance of Bacteroidetes
might be due to increases in SOC due to straw mulching. The positive impacts of increased

organic matter content on the growth of Proteobacteria and Bacteroidetes have been previously

reported [2, 54]. Also, other specific taxa, especially for phylum Actinobacteria and Chloroflexi,
decreased significantly with SM and drove the negative responses of SOC (Fig 6 and S2 Table),

which suggested a possible balance of C dynamics being mediated by these two phyla. It has

been well established that classes Thermomicrobia and MB-A2-108, branches of Actinobacteria,

were more abundant in CK than SM. Thus, this phylum showed a negative correlation with

SOC in our study (Fig 7 and S7 Table), which was consistent with the reports by Ren et al. [2].

As for the fungal community compositions, the abundance of phylum Ascomycota was higher

under CK than SM, probably because it is involved in soil aggregation [22]. The higher
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abundance of phylum Basidiomycota in SM was mainly because these taxa are largely sapro-

trophic and benefit from nutrient enrichment of the soil resulting from the larger amounts of

input organic matter associated with straw mulching.

Our correlation analysis between C fractions and DNA abundance of the single taxa yielded

a high correlation coefficient for the abundances of phyla Actinobacteria, Acidobacteria, Bac-
teroidetes, Nitrospirae, and Planctomycetes (Fig 7 and S7 Table), which confirmed that these

taxa play an important role in the degradation of soil organic carbon compounds. This result

was partly consistent with Fierer et al. [53] and Lanza et al. [31]. Furthermore, the relationships

among soil C fractions, SR, and microbial community compositions were different with and

without straw mulch (S7 and S8 Tables), which indicated that temperature could influence the

response soil microbial community composition to straw mulching.

Conclusions

Based on a short-term incubation experiment, our study showed that straw mulching affected

soil respiration and microbial community composition at different incubation temperatures.

Compared to no mulching, straw mulching significantly increased SOC and PCM concentra-

tions, soil respiration and qCO2, decreased the Q10 value and changed soil microbial commu-

nity compositions. Soil respiration increased, while soil C fractions and microbial diversity

decreased, with increasing temperature. Such changes depended on the alteration of the bacte-

rial and fungal communities with straw mulching. Furthermore, increasing temperature could

change soil C sequestration by changing the relationships among soil respiration, microbial

community, and C fractions.
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