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Machine learning assistive rapid, label-free
molecular phenotyping of blood with two-
dimensional NMR correlational spectroscopy
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Translation of the findings in basic science and clinical research into routine practice is
hampered by large variations in human phenotype. Developments in genotyping and phe-
notyping, such as proteomics and lipidomics, are beginning to address these limitations. In
this work, we developed a new methodology for rapid, label-free molecular phenotyping of
biological fluids (e.g., blood) by exploiting the recent advances in fast and highly efficient
multidimensional inverse Laplace decomposition technique. We demonstrated that using
two-dimensional T;-T, correlational spectroscopy on a single drop of blood (<5 pL), a highly
time- and patient-specific ‘molecular fingerprint’ can be obtained in minutes. Machine
learning techniques were introduced to transform the NMR correlational map into user-
friendly information for point-of-care disease diagnostic and monitoring. The clinical utilities
of this technique were demonstrated through the direct analysis of human whole blood in
various physiological (e.g., oxygenated/deoxygenated states) and pathological (e.g., blood
oxidation, hemoglobinopathies) conditions.

TPrecision Medicine - Engineering Group, International Iberian Nanotechnology Laboratory, 4715 330 Braga, Portugal. 2 Institute for Infocomm Research,
Fusionopolis Way, Singapore, Singapore. > Department of Laboratory Medicine, National University Hospital, Singapore, Singapore. ®email: weng.kung@inl.int;
tze_ping_loh@nuhs.edu.sg

COMMUNICATIONS BIOLOGY | (2020)3:535 | https://doi.org/10.1038/s42003-020-01262-z | www.nature.com/commsbio 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01262-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01262-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01262-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01262-z&domain=pdf
http://orcid.org/0000-0002-7984-9319
http://orcid.org/0000-0002-7984-9319
http://orcid.org/0000-0002-7984-9319
http://orcid.org/0000-0002-7984-9319
http://orcid.org/0000-0002-7984-9319
http://orcid.org/0000-0002-4272-0001
http://orcid.org/0000-0002-4272-0001
http://orcid.org/0000-0002-4272-0001
http://orcid.org/0000-0002-4272-0001
http://orcid.org/0000-0002-4272-0001
mailto:weng.kung@inl.int
mailto:tze_ping_loh@nuhs.edu.sg
www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01262-z

scopy is a powerful and attractive technique in biochemistry

(e.g., for structural protein analysis!, characterizing meta-
bolomics responses in biological samples?~4) and inorganic chem-
istry>. However, high-resolution NMR systems are large, expensive
and incompatible with in situ or portable applications. There is an
increasing demand for low-field portable NMR system for use in
food sciences®, oil-gas exploration’, and clinical diagnostic at point-
of-care testing (POCT)®-11. In high-field NMR, biochemical infor-
mation is typically detected and encoded in the frequency domain
(“chemical shift”), in which the spectral resolution scale with respect
to the external magnetic field. This reduces its portability and limit
its downstream application in a large scale manner.

However, biochemical and biophysical information (e.g.,
molecular rotational, diffusional motion) can also be encoded in
the relaxation times frame, namely the longitudinal (T;) and
transverse (7,) using NMR-based POCT. In addition, molecular
information in the time-domain can be inversely decoded with
the availability of fast and reliable Laplace inversion algorithm?”-12,
This can provide parallel information that is not available in the
traditional NMR frequency domain based spectra.

In recent years, significant advances in NMR system
miniaturization®13-1> (e.g.,, electronic console!®141617  radio-
frequency probe®10:18-20 mijcrofluidic-based chip2122) utilizing
small foot-print permanent magnetic (<1 Tesla) for one-
dimensional NMR relaxometry on water-proton (e.g., T,-relaxa-
tion) have been widely applied for point-of-care medical
testing®®14. These include immuno-magnetic labeled (e.g.,
tumour cells®?2, tuberculosis?> and magneto-DNA detection of
bacteria?*) and the label-free detection of various pathological
states such as oxygenation?/oxidation level!® of the blood,
malaria screening®?°, and rapid phenotyping of oxidative stress
in diabetes mellitus6-27.

We demonstrated (to the best of our knowledge) the first
unique two-dimensional ‘molecular fingerprint' of a single drop
of blood (<5 uL) obtained in minutes using two dimensional
T,-T, correlational spectroscopy with an inexpensive,
benchtop-sized NMR spectrometer2829. By exploiting the
recent development of fast and highly efficient multi-
dimensional inverse Laplace decomposition algorithm?-30,
unique two-dimensional signature of various hemoglobin (Hb)
derivatives with respect to its magnetic resonance relaxation
reservoirs in oxygenated (oxy-Hb), deoxygenated (deoxy-Hb)
and oxidized (oxidized Hb) states were observed for the first
time (to the best of our knowledge) and its phenotypic
expression in various pathological states (e.g., blood oxidation,
hemoglobinopathies) are reported in this work. Machine-
learning techniques (e.g., multidimensional scaling (MDS), t-
SNE, Isomap) were introduced to transform the NMR corre-
lational maps into user-friendly information for medical deci-
sion making. We report that the supervised models (e.g., neural
network) were at least on par or outperformed the average
trained human being in performing the deep image analysis of
molecular fingerprint of red blood cells (RBCs).

I I igh-resolution nuclear magnetic resonance (NMR) spectro-

Results
Water-protein interactions in blood microenvironment.
Freshly collected whole blood samples containing predominantly
the oxy-Hb were collected from healthy donors ('wild-type').
Oxygenation and re-oxygenation was achieved with rigorous
pipetting in ambient air. Using microcapillary tube, the whole
blood was sampled and spun (6000 x g, 1 min) into narrowband
of RBCs for micro NMR measurements (Figs. 1-2).

Three peaks (R-peak, S-peak and T-peak) with (T, = 141 ms,
T,=562ms), (T,=4.47ms, T; =335ms) and (T,=1.12ms,

T, = 188 ms) respectively were observed from the T;-T, correla-
tional spectroscopy performed on the water-proton nuclei (\H) of
the RBCs (Fig. 3a). It appeared that RBCs microenvironment
could be decomposed into two major relaxation reservoirs,
consisting of one slow relaxation component (R-peak), and two
fast relaxation components (S-peak, T-peak), attributed to the
interaction of the water molecules with its' respective micro-
environment ie., bulk water, intermediate hydration layer,
macromolecules protein, respectively (Supplementary Fig. 1).
Water molecules are subjected to diverse dynamic processes as a
result of their interaction with variety of sites/functional groups.

The significantly large signal intensity (and slowest relaxation
component) of R-peak is attributable to bulk water molecules
which makes up more than 98% of the total mass-ratio of RBCs.
The bulk water has minimal and indirect contact with
macromolecules protein (through long-range dipolar couplings),
and hence the weakest water-protein interactions. The relaxation
dephasing system came predominantly from the dipole-dipole
homonuclei coupling of water-to-water network. On the other
hand, the presence of two distinct individual peaks (i.e., S-peak,
T-peak) suggested that the fast relaxation component can be
further resolved into sub-regions®1:32. The S-peak is the water
molecules at the intermediate hydration layer, and the T-peak are
water molecules, which came into direct contact with the surface
of macromolecular protein. Dortch et al. and McDonald et al,,
proposed the idea of exchange peaks3? and surface relaxation34,
respectively, but the observation in this work is in consistent with
the three peaks model proposed by Lores et al. and Thompson
et al.3>36,

Interestingly, each peak (R-peak, S-peak, T-peak) possess
consistent and yet unique ratio of Ty/T, of (3.99, 74.90, 167.86),
respectively, which appeared to characterize the degree of water-
protein interactions (Fig. 3b and Table 1). We define here the T;/T,
ratio as A-ratio. With increased water-protein interactions, the
motion of water-proton was drastically slower and restricted (and
hence the reduced T relaxation and T, relaxation). The spin-spin
relaxation appeared to be much more efficient (shorter T,
relaxation) relative to its' spin-lattice relaxation counterpart and
hence a large A-ratio. In contrast, an unbound free molecules in the
extreme fast motion region, possess large T; relaxation and T,
relaxation, with A-ratio approaches unity (~1). Importantly, the
relaxation profile forms unique and specific two-dimensional
‘molecular fingerprint' of each individual that is very sensitive to
its' molecular microenvironment measurable at the timescales of
NMR relaxation times.

Oxidative degradation of hemoglobin in blood. Freshly col-
lected whole blood sample which consists of predominantly the
oxy-Hb was oxidized to oxidized Hb in the presence of sodium
nitrite, and spun down for NMR measurements (see Methods).
The relaxation times of the three major peaks were (R-peak: T, =
120 ms, Ty} =217 ms), (S-peak: T, =4.18 ms, T; = 120 ms), and
(T-peak: T, =1.34ms, T, =50.3 ms) in oxidized state reduced
considerably as compared to the baseline oxygenated state (non-
oxidized, diamagnetic state) (Fig. 4a, b). The presence of excessive
oxidized Hb in blood causes serious tissue hypoxia, a pathological
state known clinically as methemoglobinemia3”.

The marked relaxation enhancement observed was due to the
presence of five unpaired electrons in the ferric iron (Fe3*), which
acted as the paramagnetic relaxation center3’8. The magnetic
moment of ferric iron is 1000-fold higher than that of one single
proton”3. Significantly, due to the long-range dipolar nuclei-
electron, the paramagnetism of the unpaired electrons had consider-
able effect on the bulk water molecules (R-peak). In contrast to the
oxygenated states (in diamagnetic state), the spin-lattice relaxation
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Fig. 1 Two-dimensional NMR T;-T, correlational spectroscopy for molecular phenotyping of blood. a Schematic diagram of the bench-top sized NMR-
based POCT system. The applied radio frequencies were centered at 21.57 MHz, which corresponds to the Larmor frequency of water-proton in 0.5 Tesla
of the permanent magnet. The 90-degree pulse used is 10 ps. The whole system is lightweight (<2 kg) and portable suitable for in situ measurements. The
abbreviations are; USB Universal Serial Bus, trans Transmitter, rcv Receiver, amp pre-amplifier, PA power amplifier, rf radio-frequency, and PC personal
computer. b The pulse sequence used for the T;-T, correlational spectroscopy is the modified inversion recovery with CPMG observation. It is encoded for
a period of t; and subsequently spaced for a period of t, for n-train pulses, in entirely in analogous to the two-dimensional NMR spectroscopy in the
frequency domain. The relaxation properties can be used as a highly sensitive and specific molecular probe, and provide important molecular motion (e.g.,
correlational relaxation, diffusion properties), which is not readily available in NMR spectra in the frequency domain. ¢ A single drop of whole blood
contained in a microcapillary tube was spun using standard hematocrit centrifuge (6000 x g, 1 min) to separate and concentrate the RBCs from the plasma.
The capillary tube is then loaded into a permanent magnet. The tube was adjusted as such that the radio frequency coil (inner diameter of 1.20 mm)
focuses on the packed RBCs (enrichment part). This is essential to have ‘clean signal' from the RBCs without (or with minimal) interference of blood
plasma.
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Fig. 2 A proposed scheme of human-machine interaction for rapid, label-free disease detection in clinical hemoglobinopathies. a The NMR-based
POCT is used with (or without) the assistant of artificial intelligence (AD). b The highly unique and detailed 2D magnetic resonance-based molecular
fingerprint can be used directly (without Al) for rapid screening. ¢ Clinical phenotype (e.g., clinical representation) can be bias due to subjective human
judgment. With Al, deep image analysis (e.g., hierarchical clustering, dimension reduction) were performed to transform the highly complicated data (e.g.,
hyper dimension) into human friendly information to assist in medical decision making (e.g., diagnostic, staging) in real-time mode (Fig. 6). d Multi-omics
information (e.g., proteomics, genomics) may be performed simultaneously to confirm the genetic variants and/or other anomalies. Back-end laboratory
and time consuming test (e.g., high-performance liquid chromatography (HPLC)) may be by-passed depending on the outcome of the molecular
phenotyping.
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Fig. 3 The T,-T, correlational spectrum of blood microenvironment. a The decomposed relaxation reservoirs (R-peak, S-peak, and T-peak) of packed red
blood cells microenvironment with the hemoglobin in oxygenated state. The coordinate is represented as (T, relaxation (in ms), T; relaxation (in ms), A-
ratio (unitless)). A-ratio is the ratio between T;/T,. b The multiple relaxation reservoirs of the blood microenvironment in the T;-T, correlational spectrum
in log-log plot; i.e., the bulk water (R-peak), hydration layer (S-peak), and direct macromolecular protein interaction (T-peak) for hemoglobin in oxygenated
state. In the oxidized state, the T-peak dropped substantially (To-peak). The unbound molecule, R, (e.g., free water) located on the diagonal line (A-ratio

approaches unity).

Table 1 The decomposed relaxation reservoirs of packed red
blood cells with the hemoglobin in (a) oxygenated, (b)
oxidized, and (c) deoxygenated states.

Bulk water, R-peak T, (ms) T, (ms) A-ratio
a. oxygenated state 562 141 3.99

b. oxidized state 217 120 1.81

c. deoxygenated state 463 102 4.53
Hydration layer, S-peak T, (ms) T, (ms) A-ratio
a. oxygenated state 335 4.47 74.94
b. oxidized state 120 418 28.71
c. deoxygenated state 242 271 89.30
Direct bound macromolecules, T-peak T, (ms) T, (ms) A-ratio
a. oxygenated state 188 112 167.86
b. oxidized state, (T;) 50.3 1.34 37.54
b. oxidized state, (Tg) 2.43 0.78 3.12

c. deoxygenated state 175 0.565 309.73

A-ratio is the ratio between T;/T>.

effect in oxidized states (in paramagnetic state) appeared to be much
more efficient in comparison to the spin-spin relaxation effect and
hence the reduction in A-ratio = 1.81 (Table 1).

A distinctively long stretch of T;-relaxation distribution,
extending across two orders of magnitude (ca., 1 ms to 100 ms
along the T; dimension) displayed by the protein-bound water-
proton molecules (from T-peak to Ty-peak). The ‘relaxation tail
originating from (T, =1.34ms, T; =50.3 ms) to (T, =0.78 ms,
T, =2.43 ms), notably became a distinctive feature of oxidized
Hb. This is due to the distance (r)-dependent paramagnetism
effect, in which the relaxation efficiency reduced at the rate of 1/r°
from its relaxation center’’. As the proton nuclei approach the
relaxation center (of the unpaired electron), the T,- and T,-
relaxation components reduced to a comparable rate (A-ratio
approaching unity, T, in Fig. 3b). The gradual process of Hb
oxidation under the exposure of mild oxidant were captured in a
well-controlled manner confirmed the existence of transitional
states in the formation of ‘tail' (Supplementary Fig. 2).

On the other hand, the protein-bound water molecules (T-peak)
in the deoxygenated states, exhibited profound T, shortening

(0.565 ms) with relatively very little T; shortening (175 ms) due to
the short relaxation time of electron and its obscure protein
configuration®?. As a result, the A-ratio of deoxy-Hb (309) is
distinctively larger than its oxy-Hb (167.9) and oxidized Hb (37.5)
counterparts (Fig. 4c).

Rapid molecular phenotyping in clinical hemoglobinopathies.
We demonstrated the clinical utility of molecular phenotyping in
clinical hemoglobinopathies by mapping out the spectrum of
heterozygous HbE, HbD and a heterozygous beta thalassemia
(HBB:c.27_28insG) variants (Fig. 5 and Table 2). An additional
six other Hb variants (in Supplementary Fig. 3b) were received
for machine learning and blind test studies (Table 3 and Fig. 6). A
limitation of this study was that the current study only involve
heterozygous HbE phenotype. Given the low prevalence of
homozygous HbE variant phenotype (~0.1%) in our popula-
tion*!, therefore, we were unable to include such subject during
the study period. The Hb variants were first identified by a cation-
exchange high-performance liquid chromatography method (Bio-
Rad Variant II analyzer) and further confirmed by capillary
electrophoresis (Sebia CAPILLARYS 2 analyzer) and genotyping.
NMR measurements were carried out in its native state (without
any chemical treatment) of the spun down packed RBCs.

The Hb genotyping identified single nucleotide polymorphism in
the B-globin in the first and second samples, which was consistent
with HbE (Fig. 5a) and HbD variant (Fig. 5b). A third rare Hb
variant samples were identified with a G insertion at codon 27 of
the B-globin gene (Fig. 5c). These hemoglobin variants exhibit
similar clinical phenotype such as mild hemolysis and susceptible to
oxidation*243. The two-dimensional correlational mapping of Hb
variants (Fig. 5a-c) revealed an unusual spectrum characteristic as
compared to wild-type RBCs (Supplementary Fig. 3). The HbE
variant (T, =1.06 ms, T; =106 ms), HbD variant (T, = 1.20 ms,
T, =96.3ms), and the beta thalassemia variant (T, = 1.40ms,
T)=172ms) appears to have large and distorted T-peak with
relatively short T;- and T,- relaxations as compared to wild-type
Hb (T, = 1.12 ms, T} = 188 ms). The T-peak dispersion for the beta
thalassemia variant with a mutated p-globin chain was particularly
large with a flat plateau, suggesting that frame shift mutation causes
a greater amount of hemoglobin instability*? (Fig. 5c).

In addition, the Hb variants appear to have much higher
concentration of oxidized Hb as compared to the wild-type
(Supplementary Fig. 3a). T;-relaxation stretching was observed for
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Fig. 4 The T;-T, correlational spectrum of blood microenvironment of (wild type) packed red blood cells. There were in various physiological states;
a oxygenated, b oxidized, and ¢ deoxygenated states. The zoom-in details of decomposed relaxation reservoirs for fast relaxation components (S-peak and
T-peak) and the slow relaxation component (bulk water molecules, R-peak) is not shown. The coordinate for R-peak is indicated at upper left of the
spectrum. The coordinate is represented by (T, relaxation (in ms), T; relaxation (in ms), A-ratio). Freshly prepared oxy-Hb was subjected to oxidation with
10 mM sodium nitrite for 45 min, and sodium dithionite (in excess) for 40 min to chemically locked the Hb in the deoxygenated state. All the samples were
washed thrice and resuspended into 1x PBS for micro MR measurements. The experimental parameters used were echo time =200 ps, Ty-incremental
steps = 32 steps, and signal averaging = 4. The number of echoes used were 4000 (oxygenated Hb) and 2000 (oxidized Hb, deoxygenated Hb).
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Fig. 5 The T,-T, correlational spectrum of blood microenvironment of (various hemoglobin variants) packed red blood cells. The variants were (a) HbE
variant, (b) HbD variant, and (c) rare beta thalassemia variant, and other Hb variants (in Supplementary Fig. 3b). The zoom-in details of decomposed

relaxation reservoirs for fast relaxation components (S-peak and T-peak) and the slow relaxation component (bulk water molecules, R-peak) is not shown.
The coordinate for R-peak is indicated at upper left of the spectrum. The coordinate is represented by (T5 relaxation (in ms), T; relaxation (in ms), A-ratio).
The experimental parameters used were echo time = 200 ps, number of echoes = 4000, T;-incremental steps = 32 steps, and signal averaging = 4. Note

that there is a possible artifact denoted as (*).

HDbE variant (T, = 0.94ms, T; = 9.44 ms) and the beta thalasse-
mia variant (T7,=0.56ms, T;=10ms), in agreement with
commonly observed clinical phenotype such as mild hemolysis
due to increased oxidative damage. Interaction of Hb variants and
other forms of hemoglobinopathies can lead to complex
thalassemia syndromes with varying clinical phenotypes (Fig. 2).

Machine learning assisted medical decision. The 32 anonymized
subjects consist of mixture of non-disease samples (wild-type),
and disease samples (details in Supplementary Fig. 4). The NMR
correlational spectroscopy maps (‘molecular fingerprint’) were
converted into computer language for deep image analysis using
statistical programming languages (e.g., R, Orange 3.1.2). Struc-
tural abnormalities in hemoglobin variants also lead to the
observation of clinical methemoglobinemia in the late stage. The
oxidized Hb samples were simulated examples for clinical
methemoglobinemia.

The unsupervised learning techniques were used for dimension
reduction (e.g, MDS), and classification (e.g., hierarchical

clustering) to assist in making medical decision (Fig. 6a). The
2D NMR correlational spectroscopy maps are complex 3D
contour plots, and MDS technique was used to reduce higher
dimension into two dimensional scatter plot which is more user-
friendly for interpretation of information (Fig. 6b). Each feature
(‘molecular fingerprint' of one subject) was classified based on the
common similarity within their intra-cluster as opposed to their
inter clusters. Subjects were successfully classified into two
clusters (disease (oxidized Hb, blue), non-disease (healthy wild
type, red)) using the MDS technique (P <0.05), apart from the
mutated counterpart (Hb variants, orange). In addition, the
disease subtypes (sub-type 1: oxidized Hb, sub-type 2: partially
oxidized Hb) were also observed (Fig. 6b). Distances between
each subjects were shown in the heat map (Fig. 6¢). Using
hierarchical clustering, disease staging, prognosis or risk factor
prediction (high/low-risk factor) were enabled (Fig. 6¢, d).
Other techniques (e.g., Isomap, linearly local embedding, t-sne)
were evaluated and similar results were reproduced qualitatively
(Supplementary Fig. 5).
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Blinded test: machine vs human learning. The 32 anonymized
subjects consist of mixture of non-disease samples (wild-type)
and disease samples (details in Supplementary Fig. 4). Supervised
learning models (e.g., logistic regression, neural network, k
nearest neighbors (kNN) and naive Bayes) were used to evaluate
its' efficiency against human-being. K-fold cross validation (e.g.,
k=2, 3, 5) and leave-one-out method were used for samplings.
Five technicians were trained to differentiate between (diseases,
non-disease) and subsequently were asked to classify the state of
the spectrum based on a binary decision (diseases, non-disease) in
blinded manner. At the end of the experiment, the results were
cross-checked and classified as true positive, true negative, false
positive and false negative (Supplementary Fig. 6). On-average,
the machine learning models (e.g, CA =0.885, sensitivity =
0.885, specificity = 0.887) outperformed the human being (e.g.,
CA =0.794, sensitivity =0.811, specificity =0.720) in many
aspects, when k =5 (Table 3). The performance of the supervised
models, in general, improved with increasing value of k and
achieved the maximum point when ‘Tleave-one-out' method was
used in training the datasets (details in Supplementary Fig. 7).
Noticeably, the performance variation between each individual
was larger than that of machine learning models as a result of
human subjective judgment. On-average, machine learning

Table 2 The decomposed relaxation reservoirs of packed red
blood cells with the hemoglobin variants in (a) wild-type
(control), (b) HbE variant, (c) HbD variant, and (d) rare beta
thalassemia variant.

Bulk water, R-peak T, (ms) T, (ms) A ratio
a. Hb wild-type (control) 562 14 3.99

b. HbE variant 631 158 3.99

c. HbD variant 640 165 3.88

d. rare Hb variant 640 165 3.88
Hydration layer, S-peak T, (ms) T, (ms) A-ratio
a. Hb wild-type (control) 335 4.47 74.94
b. HbE variant 335 4.22 79.39
c. HbD variant 373 418 89.23
d. rare Hb variant 362 6.48 55.86
Direct bound macromolecules, T-peak T, (ms) T, (ms) A-ratio
a. Hb wild-type (control) 188 112 167.9
b. HbE variant 106 1.06 100

c. HbD variant 96.3 1.20 80

d. rare Hb variant 172 1.40 122.9

models (30s) also took much shorter time than human (about
10 min) to complete the tasks given.

Discussion

In this work, we showed that detailed and specific molecular
microenvironment of water-proton interactions in blood can be
mapped out using the two-dimensional T;-T, correlational
spectroscopy (Supplementary Table 1 and Supplementary
Table 2). Interestingly, as water is ubiquitous to life form, water-
protein interactions (e.g., the protein hydration) attracted con-
siderable interests from terahertz spectroscopy** to neutron
scattering®®, provides an equivalent of ‘inverse proteomic' infor-
mation. This adds a new dimension to the existing traditional
omics framework (e.g., genomic, proteomic) potentially revealing
many biological pathways and understanding of fundamental of
biological processes which have never been examined before.

It is demonstrated that the proposed technique here is capable
of rapid label-free phenotyping the biological fluids in various
physiological conditions (e.g., de/oxygenation level) and patho-
logical states (e.g., blood oxidation, hemoglobinopathies) in
uniquely personalized manner. We showed that time-to-result
could be accomplished in minutes (Supplementary Fig. 1). With
the recent availability of ultrafast signal acquisition methods!?
and efficient inversion algorithm?, real-time characterization and
monitoring is possible. Aided with machine learning techniques,
complicated NMR correlational maps were immediately trans-
formed into clinically meaningful and user-friendly information.

Secondly, encoding multidimensional biochemical and bio-
physical information at molecular level using two-dimensional
relaxation profiling (instead of chemical shifts), circumvent the
limitation of using conventional big footprint NMR. Unlike high-
field NMR spectroscopy, mass spectrometry, high-performance
liquid chromatography where the instrumentation are often bulky
and expensive (Table 4), an interesting NMR-based POCT pro-
posed in this work offers inexpensive assay and instrumentation
(e.g., open source code software-defined-radio#®-48). Importantly,
the unique and specific molecular fingerprint of liquid biopsy is
able to provide a multiple global snapshot for disease dynamic
monitoring in a minimally invasive manner4>°0.

In summary, a novel concept of high unique and specific
‘molecular fingerprint' of blood was demonstrated using time-
domain two-dimensional NMR-based POCT. The assessment of
multidimensional relaxation components of the blood was shown
to be highly time- and patient-specific, delivering personalized
information that is critical in clinical diagnostic, monitoring and
prognostic purposes. Such personalized and precise method laid a
strong foundation for the next generation of personalized

regression) in comparison to 5 technicians.

Table 3 The performance of supervised machine learning models (e.g., neural network, k nearest neighbor (kNN), and logistic

Methods AUC CA Sensitivity Specificity Precision F1

Neural network 0.92 0.906 0.906 1 0.938 0.913
kNN 0.912 0.844 0.844 0.83 0.881 0.855
Logistic regression 0.927 0.906 0.906 0.83 0.914 0.909
Average 0.920 0.885 0.885 0.887 0.91 0.892
Technician 1 - 0.781 0.778 0.800 0.955 0.857
Technician 2 - 0.750 0.731 0.833 0.950 0.826
Technician 3 - 0.813 0.846 0.667 0.917 0.880
Technician 4 - 0.813 0.885 0.500 0.885 0.885
Technician 5 - 0.813 0.815 0.800 0.957 0.880
Average - 0.794 0.811 0.720 0.932 0.866

The k-fold cross validation sampling methods (e.g., k =2, 3, 5) and leave-one-out method were used to test and train the data. The performance of naive Bayes model is well below the average human
being (details in Supplementary Fig. 7). The abbreviations used were area under the curve (AUC), classification accuracy (CA), and Fi-score is the harmonic mean for precision and sensitivity.
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Fig. 6 Machine-learning assisted NMR-based POCT in making medical decision. a The workflow of machine learning in processing the complicated data
into user-friendly medical decision (e.g., disease subtyping). The maps were converted into machine language using the image embedding (e.g., Squeeze
Net) features. Dimensionality reductions were performed using various unsupervised models (e.g., MDS, t-SNE, Isomap). Supervised learning models (e.g.,
neural network, logistic regression, naive Bayes) were used to train and predict the data. The performance of supervised learning techniques were
compared to that of human performance (Table 3). b The classification of three states (disease, non-disease, variants) and disease subtyping (sub-type 1:
oxidized Hb, sub-type 2: partially oxidized Hb), and ¢ heat map of 32 anonymized subjects processed using multidimensional scaling technique (300 max
iterations, PCA-Torgersen). The legend (red, white) indicates (longer, shorter) distance between subjects. Other unsupervised models (e.g., linearly local
embedding, Isomap, t-sne) were also evaluated for comparison (Supplementary Fig. 5). d The hierarchical clustering enabled disease staging, prognosis or
risk factor prediction (high/low-risk subject) with respect to standard reference. For simplicity, three referencing states (WT and oxidized Hb) were shown.
The non-disease state consists of (healthy wild-type), and disease state consist of (oxidized Hb, Hb variants). The short forms used were wild type (WT),
oxidized Hb (Oxi), and Hb variants (Var). The clustering circles (dotted lines) were drawn for eye-balling purposes. The NMR correlational map of each
subject is shown in Supplementary Fig. 4.
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hemoglobinopathies.

Table 4 Comparison between the current proposed NMR-based POCT with Al-aided technology and existing state-of-the-art
technologies (e.g., high-field NMR52, electrophoresis>3, hplc54, and PCR-based assay#>) which have been reported for clinical

NMR-based POCT High-field NMR Electrophoresis HPLC cation PCR-based assay
exchange

Information Phenomic Proteomic Proteomic Proteomic Genomic

Mode of action Water-protein interactions Chemical shift (frequency Electric field (protein Mass transfer DNA amplification
(time domain) domain) charge)

Multi-dimensional  Yes Yes Yes No No

Al-assisted Yes No No No No

Equipment size Bench-top Large Bench-top Large Large

Equipment price Cheap Expensive Cheap Expensive Expensive

Price per assay Ultra cheap Medium Medium Expensive Expensive

Sample processing Easy Easy Difficult Difficult Difficult

Time to results Minute Hours Hours Hours Hours

POCT Yes No Yes No No

Non-destructive Yes Yes No No No

Functional test Yes Yes No No No

References This work Levitt et. al., Kutlar et. al., Kehra et. al., Kutlar et. al.,

HPLC high-performance liquid chromatography.

The price per assay for NMR-based POCT refers to a single microcapillary tube (<$0.10). In addition, the proposed method is label-free and therefore no chemical treatment is required.

medicine. The rapid, high-throughput and label-free nature of the
proposed method has major implication in in vitro disease
diagnosis and monitoring whereby the use of minimal invasive
liquid biopsy read-out allows frequent testing. The use of
machine learning algorithm improves the delivery of information
(e.g., speed and accuracy), which may become a key factor in
speeding up the translational of technological innovations to
clinical routine and practices.

Methods

NMR setup and parameters. The 'H magnetic resonance measurements of bulk
packed red blood cells were carried out at the resonance frequency of 21.57 MHz
using a portable permanent magnet (Metrolab Instruments, Switzerland), B, = 0.5
T using a benchtop-type console (Kea Magritek, New Zealand). A temperature
controller was set to maintain the measurement chamber at 24.5 °C. The T,-T,
correlational pulse sequences were set at standard inversion recovery, followed by
Carr-Purcell-Meiboom-Gill (CPMG) train pulses (Fig. 1).

The experimental parameters used; echo time = 200 us, number of echoes = 2000
(for oxidized, and deoxygenated state) and 4000 (for oxygenated state), T; incremental
steps = 32 (logarithmic) steps, and signal averaging = 4. A recycle delay of 2 s was set
between each experiment to provide sufficiently long time to allow all the molecular
spins to return to thermal equilibrium. The total acquisition time depends on the
combination of a number of factors (e.g., number of scans, T;-incremental).

We demonstrated that a total experimental time in less than 6 min is sufficient
for a high sensitivity and good spectral resolution, and without losing the spectral
integrity (details in Supplementary Fig. 1). The 2D correlation maps were
processed using built-in ILT algorithm (FISTA inversion)®! method with 5000
iterations and smoothing parameter of 1 were used. The inversion typically
completed in less than 2 min using a desktop computer (Intel Core Pentium i3
CPU @ 3.2 GHz, 1.74 Gb RAM).

Clinical ethics and protocols. This study received ethics approval from the local
Institutional Review Board of the National Healthcare Group. K2 EDTA-
anticoagulated whole blood samples were washed and re-suspended with phos-
phate buffer saline (PBS). Informed consent was obtained from all subjects
involved in this study. All blood samples were either used immediately or kept at 4
°C and used within three to four days (unless mentioned otherwise) of collection
before the micro MR analysis. To induce the Hb into various derivative states, the
blood samples were incubated with the desired chemical as mentioned in the Text
(e.g., sodium nitrite) and finally washed to remove the chemical residual. Hepar-
inized micro capillary tubes (Fisher Scientific, PA) were used to transfer the pro-
cessed blood and finally spun down at 6000 x g for 1 min to obtain packed red
blood cells for MR measurements.

Machine learning algorithm and workflow. The NMR-based POCT can be used
with or without the assistant of AI (Fig. 2). Machine learning techniques were used to
transform the human complicated data (e.g, 2D NMR correlational maps) into user-
friendly medical decision making following the workflow developed (Fig. 6). The maps

were converted into machine language using the image embedding features (e.g.,
Squeeze Net). Machine learning techniques were used to perform dimension reduction
using various techniques (e.g., MDS, t-SNE, Isomap) (Supplementary Fig. 5).

Blinded test. Supervised learning models (e.g., neural network, k nearest neighbor,
logistic regression, and naive Bayes) were used to train and predict the data. We
first trained 5 human beings to differentiate between (diseases, non-disease) and
asked them to classify 32 anonymized subjects that were not seen before (Sup-
plementary Fig. 4). They were allowed to backtrack (and change) the results as long
as it was within the allocated time-frame (10 min). At the end of the experiment,
the results were cross-checked and classified them as true positive (TP), true
negative (TN), false positive (FP) and false negative (FN) (Supplementary Fig. 6).
Statistical programming languages (e.g., Orange 3.1.2) was used for machine
learning algorithm running on a personal laptop (Intel Core Pentium i7 CPU @
2.70 GHz, 8.00 GB RAM). Once the models in machine learning were built, the run
test takes less than 30 s to complete all the tasks, while each of the human beings
took about 10 min on-average.

Statistics and reproducibility. Two tailed Student's ¢ test was used to calculate the
P value.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The machine learning algorithms and 2D NMR raw maps along with any remaining info
are available from corresponding author upon reasonable request at weng.kung@inl.int.

Code availability

Machine learning calculations were made possible with Orange Data Mining. Full
documentation, source code, and installation instructions are publicly available at https://
orange.biolab.si.
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