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It is widely accepted that the amygdala plays a critical role in acquisition and consolidation
of fear-related memories. Some of the more widely employed behavioral paradigms that
have assisted in solidifying the amygdala’s role in fear-related memories are associative
learning paradigms. With most associative learning tasks, a neutral conditioned stimulus
(CS) is paired with a salient unconditioned stimulus (US) that elicits an unconditioned
response (UR). After multiple CS-US pairings, the subject learns that the CS predicts the
onset or delivery of the US, and thus elicits a learned conditioned response (CR). Most
fear-related associative paradigms have suggested that an aspect of the fear association
is stored in the amygdala; however, some fear-motivated associative paradigms suggest
that the amygdala is not a site of storage, but rather facilitates consolidation in other brain
regions. Based upon various learning theories, one of the most likely sites for storage
of long-term memories is the neocortex. In support of these theories, findings from our
laboratory, and others, have demonstrated that trace-conditioning, an associative paradigm
where there is a separation in time between the CS and US, induces learning-specific
neocortical plasticity. The following review will discuss the amygdala’s involvement, either
as a site of storage or facilitating storage in other brain regions such as the neocortex,
in fear- and non-fear-motivated associative paradigms. In this review, we will discuss
recent findings suggesting a broader role for the amygdala in increasing the saliency of
behaviorally relevant information, thus facilitating acquisition for all forms of memory, both
fear- and non-fear-related. This proposed promiscuous role of the amygdala in facilitating
acquisition for all memories further suggests a potential role of the amygdala in general
learning disabilities.
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INTRODUCTION
It is widely accepted that the more emotionally arousing an
event is (whether positive or negative), the better the event
will be remembered (Cahill and McGaugh, 1995; van Stegeren
et al., 1998; Cruciani et al., 2011). Such emotionally arousing
events have been shown to peripherally cause many physiological
changes, such as increased cortisol levels and elevated dehy-
droepiandrosterone (Schwartz, 2002; Dickerson and Kemeny,
2004). Investigations of the neurobiology of emotion have sim-
ilarly demonstrated that emotionally arousing events modulate
glucocorticoid and epinephrine levels in the brain. Many of these
investigations have further suggested that the amygdala plays
a key role in regulating these biochemical changes by regulat-
ing our emotional response to an event. For example, brain
imaging analyses in humans have demonstrated a positive cor-
relation between the amount of amygdala activation and degree
of emotional arousal (Cahill et al., 1996; Costafreda et al., 2008).
Furthermore, patients with amygdala damage exhibit impair-
ments in their ability to recognize and express emotion (Adolphs

et al., 1994, 1995). These analyses, along with rodent and non-
human primate studies of amygdala function (Thompson et al.,
1977; Lukaszewska et al., 1980; Swartzwelder, 1981; Rosen and
Davis, 1988) have suggested that the amygdala plays a central role
in mediating our emotional response to an event.

In addition to regulating the response to an emotional event,
further analyses have also demonstrated that amygdala activa-
tion is directly tied to how well the emotional event is remem-
bered. For example, memory tests in humans have found a
positive correlation between the level of consolidation and the
extent of amygdala activation (Cahill et al., 1996; LaBar et al.,
1998). Furthermore, amygdala lesions in various species, includ-
ing humans (Cahill et al., 1995), have been shown to dramati-
cally impair a subject’s ability to remember an emotional event
(Werka et al., 1978; Liang et al., 1982; Jellestad and Bakke, 1985;
Peinado-Manzano, 1988). Likewise, pharmacological activation
of the amygdala produces a dose-dependent enhancement of
memory for emotionally-motivated behavioral paradigms (Liang
et al., 1986, 1990; Introini-Collison et al., 1991, 1996). These, and
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other similar analyses, have strongly suggested that the amygdala
plays a role in facilitating memory consolidation for emotionally
arousing events.

Although most would agree with the amygdala’s importance in
memory consolidation, there is still debate regarding the amyg-
dala’s role as an actual site of memory storage versus simply
modulating storage of memory in other brain regions. Many
learning theories suggest that the most likely site for long-term
memories is the neocortex (Eichenbaum et al., 1992; Squire et al.,
2004). However, some findings suggest that an aspect of some
memories is stored in the amygdala, especially with fear asso-
ciative learning paradigms. The following review will discuss
findings utilizing fear- and non-fear-motivated Pavlovian behav-
ioral paradigms to illustrate our current understanding of how
the amygdala facilitates memory acquisition and consolidation.

AMYGDALA’S ROLE IN MEMORY STORAGE
FEAR ASSOCIATIVE LEARNING
Studies utilizing fear conditioning paradigms, a type of Pavlovian
conditioning, have demonstrated that the amygdala plays a role in
both acquisition and consolidation of cued-fear associative learn-
ing (Kim and Jung, 2006; Johansen et al., 2011). In this review,
the term subjects will be used when similar findings have been
reported with multiple species. In cued-fear associative learning,
a subject learns to associate a cue, such as a light or tone, the
conditioned stimulus (CS), with an unpleasant stimulus evok-
ing fear, such as a footshock, the unconditioned stimulus (US).
To measure the strength of the tone-footshock-association, sub-
jects are presented with the same cue in a novel environment and
the fear response is recorded. Support for the amygdala playing
a key role in fear associative memories stems from a myriad of
studies varying in techniques, including lesioning (Blanchard and
Blanchard, 1972; Kapp et al., 1979; Iwata et al., 1986; Phillips and
LeDoux, 1992), electrophysiological recordings (Applegate et al.,
1982; Pascoe and Kapp, 1985) and pharmaceutical manipulations
(Gallagher and Kapp, 1978; Gallagher et al., 1981). The following
section will focus on findings illustrating the role of the amygdala
in consolidating cued-fear associations.

Amygdala as a site of storage
Analyses of amygdala function with cued-fear-conditioning have
led many to suggest that the amygdala acts as a possible site of
storage for these associations. In support of this theory, stud-
ies have demonstrated that the amygdala plays an essential role
in retrieval of long-term fear associations (Lee et al., 1996;
Maren et al., 1996; Schafe et al., 2001; Gale et al., 2004). For
example, findings demonstrated that rats with lesions to the
basolateral amygdala 1-day, 2-weeks, 1-month (Lee et al., 1996;
Maren et al., 1996) or 16-months (Gale et al., 2004) following
cued-fear-conditioning exhibit significantly less freezing behav-
ior compared to sham controls. Additionally, inactivation of the
amygdala prior to retention testing results in significantly fewer
conditioned responses (CRs), compared to controls (Muller et al.,
1997). Furthermore, studies disrupting protein synthesis in the
amygdala, a molecular mechanism believed to be important for
long-term memory consolidation (Guzowski et al., 2000; Kandel,
2001), have demonstrated impairments in fear-related memory.

For example, various studies have demonstrated that disruptions
in protein synthesis in the amygdala following acquisition via
infusion of a protein synthesis inhibitor impair fear memory
retention (Schafe and LeDoux, 2000; Duvarci et al., 2008; Kwapis
et al., 2011). These studies, collectively, provide strong support for
the amygdala either playing an essential role in retrieval of fear
memories or that the amygdala is a site of storage for long-term
fear associations.

To date, most investigations of amygdala’s involvement in
fear-conditioning, summarized in the discussion above, utilize
a delay-conditioning paradigm; not many studies have exam-
ined the amygdala’s role in a trace-fear-conditioning paradigm. In
delay-conditioning, there is no separation in time between pre-
sentation of the CS and US. In contrast, there is a stimulus-free
interval between the CS and US in trace-conditioning (Figure 1).
Trace-fear-conditioning has been demonstrated to be dependent
upon a number of distinct brain regions, including normal hip-
pocampal (McEchron et al., 1998; Czerniawski et al., 2011) and
medial prefrontal cortical activity (Runyan et al., 2004; Gilmartin
and McEchron, 2005). However, the amygdala’s role in trace-
fear-conditioning is not as well understood as the hippocampus
and medial prefrontal cortex. Raybuck and Lattal (2011) found
that global amygdala inactivation via GABAA agonist muscimol
infusion prior to trace-fear-conditioning resulted in no signif-
icant differences in freezing behavior, compared to sham and
vehicle controls, suggesting that acquisition for the trace-fear-
association is independent of the amygdala. In contrast, studies
have found that global amygdala inactivation via infusion of the
same GABAA agonist muscimol or blocking protein synthesis
in the amygdala hinders acquisition for trace-fear-conditioning
compared to controls (Kwapis et al., 2011; Gilmartin et al., 2012),

FIGURE 1 | Schematic of Pavlovian conditioning paradigms. (A) In
delay-conditioning, the conditioned stimulus (CS) (e.g., tone, whisker
stimulation) co-terminates with the unconditioned stimulus (US) (e.g., mild
footshock, eye shock). (B) In trace-conditioning, there is a stimulus-free
separation in time between the CS and US.
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suggesting that acquisition for the trace-fear association is depen-
dent upon amygdala involvement. Although further analyses are
needed to decipher the discrepancy between these findings, one
possible explanation could reside in the extent of the amygdala
inactivation. Studies have shown that different amygdala nuclei
play specific roles in delay-fear-conditioning (Nader et al., 2001).
Such nuclei specific analyses have not been as well examined
with trace-fear-conditioning and could account for the conflict-
ing findings. Although these analyses of amygdala function in
trace-fear-conditioning conflict, analyses with delay-fear associ-
ations suggest that the amygdala is critically involved and could
act as a possible site of storage for trace-fear associations.

Amygdala not as a site of storage
Although most analyses of cued-fear-conditioning suggest that
the amygdala is a site of storage, most learning theories suggest
that the neocortex is the most likely site of storage for long-
term memories (Eichenbaum et al., 1992; Squire et al., 2004).
In support of this theory, studies have demonstrated that train-
ing on an object orientation task, a paradigm where non-human
primates learn to direct their attention toward a specific visual
stimulus, alters both neuronal sensitivity and preferred orienta-
tion in primary visual neocortex (Schoups et al., 2001; Ghose
and Maunsell, 2002). Likewise, rearing rodents in an enriched
environment, a learning condition where subjects are reared in
an environment facilitating enhanced motor, visual, and social
stimulation, induces various forms of neocortical plasticity, such
as increased dendritic material (Greenough and Volkmar, 1973;
Juraska et al., 1980; Juraska, 1984) and increased number of
dendritic spines in primary visual neocortex (Globus et al.,
1973; Diamond et al., 1975; Turner and Greenough, 1985; Kolb
et al., 2003). Furthermore, findings from frequency discrimi-
nation training, where a subject learns to preferentially favor a
specific tone, have been shown to alter the preferred frequency
receptive field in primary auditory neocortex (Disterhoft and
Stuart, 1976; Kitzes et al., 1978; Kraus and Disterhoft, 1982;
Diamond and Weinberger, 1986; Edeline et al., 1993; Recanzone
et al., 1993; Rutkowski and Weinberger, 2005). Finally, studies uti-
lizing tactile discrimination, where a subject learns to dissociate
two tactile stimuli, have been shown to alter somatosensory neo-
cortical map hand representation (Jenkins et al., 1990; Recanzone
et al., 1992) and alter neuronal firing rate in primary somatosen-
sory barrel neocortex (Krupa et al., 2004) for digit and whisker
stimulation, respectively. These, and similar studies, along with
various learning theories, have strongly suggested that the neo-
cortex is modulated in response to learning and is a likely location
for storage of most long-term memories.

In addition to these analyses suggesting that the neocortex is
a likely site of long-term memory storage, some studies have also
suggested that fear associations are not stored in the amygdala,
but rather stored in other brain regions, such as the neocortex.
These analyses have argued that the amygdala does not act as
a site of consolidation for fear, but rather facilitates our ability
to express fear. For example, studies have found that inactiva-
tion of the amygdala impairs freezing behavior in rodents when
presented with cat fur, a non-learned stimulus that naturally
induces fear in rodents (Vazdarjanova et al., 2001). These findings

suggest that amygdala lesion-induced abnormalities in cued-fear-
conditioning are due to an inability to express fear rather than
removal of the site responsible for fear-related memory consol-
idation. Further support for this theory has come from analy-
ses utilizing inhibitory avoidance conditioning. With inhibitory
avoidance conditioning, a subject learns that a dark compart-
ment CS is associated with an unpleasant stimulus, a footshock
US. However, rather than demonstrating this learned associa-
tion with a fear response, the rodent demonstrates the learned
association by avoiding entering the dark compartment. Note,
there are many variations of this paradigm that can add other
forms of learning such as an operant component; however, for
the purpose of this review, we will focus on the associative aspects.
Studies utilizing the inhibitory avoidance conditioning paradigm
have found that post-training amygdala lesions do not impair
expression of the learned fear-association (Liang et al., 1982;
Parent et al., 1995). These findings suggest that the amygdala is
not a site of storage for inhibitory avoidance fear associations.
Furthermore, these findings suggest that the amygdala may not be
a site of storage for cued-fear-conditioning. However, the molec-
ular analyses demonstrating that post-training amygdala infusion
of protein synthesis inhibitors following cued-fear-conditioning
impair memory retention (Kwapis et al., 2011; Gilmartin et al.,
2012) disagree with these findings, and suggest that an aspect of
the cued-fear memory is stored in the amygdala. Irrespective of
the specific site of storage for fear associations, these, and other
studies, have collectively demonstrated that the amygdala plays an
essential role in either storing fear-related memories or facilitating
consolidation of fear-related memories in other brain regions.

NON-FEAR ASSOCIATIVE LEARNING: EYEBLINK CONDITIONING
The studies previously discussed, along with various oth-
ers analyses examining amygdala function with fear-associative
paradigms, have strongly suggested a role for the amygdala in fear
associations; however, amygdala involvement in classic non-fear
associative paradigms, such as eyeblink conditioning, are not as
well understood. In eyeblink conditioning, a subject learns that a
neutral stimulus CS, such as a tone or whisker stimulation, pre-
dicts delivery of a second stimulus US that elicits an eyeblink.
After repeated CS-US pairings, the subject learns to blink when
presented with the CS in anticipation of the US. In delay-eyeblink
conditioning, the US co-terminates with the CS; thus there is no
separation in time between the two stimuli (Figure 1). This form
of learning is mediated by brainstem-cerebellar processing (Clark
et al., 1984; Mauk and Thompson, 1987) and is not dependent
upon neocortical processing (Norman et al., 1977; Oakley and
Russell, 1977; Mauk and Thompson, 1987). Furthermore, various
lesion and electrophysiological analyses have suggested that con-
solidation for delay-eyeblink associations occur in the cerebellum.
For a detailed review of mechanisms for memory consolidations
with delay-eyeblink-conditioning see Thompson and Steinmetz
(2009). Based upon current understanding of the neuronal path-
ways necessary for delay-eyeblink-conditioning, the amygdala is
not believed to play a prominent role in acquisition of the asso-
ciation (Thompson and Steinmetz, 2009). Furthermore, unlike
fear associative paradigms, this form of conditioning is not pre-
dominantly believed to be fear-motivated. Although analyses of
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heart rate and blood pressure, factors that increase with fear,
have demonstrated increased levels within the first few CS-US
pairings, these properties decrease, while the associative behavior
increases with conditioning (Hein, 1969; Powell and Kazis, 1976).
These studies suggest that acquisition for eyeblink condition-
ing is not dependent upon fear, thus further suggesting that the
amygdala would not play a dominating role in task acquisition.
However, studies have found that under certain conditions, the
amygdala does play a role in modulating acquisition for eyeblink
associations.

Delay-eyeblink conditioning
In support of a role for the amygdala in facilitating acquisi-
tion of eyeblink associations, studies examining delay-eyeblink-
conditioning have found that amygdala stimulation increases the
rate of acquisition for the association (Whalen and Kapp, 1991;
Canli and Brown, 1996; Neufeld and Mintz, 2001). These studies
strongly suggest that the amygdala can play a role in modulat-
ing memory for eyeblink conditioning, similar to fear associa-
tive learning paradigms. In support of this role, lesion studies
have further suggested a more direct role for the amygdala in
acquisition of eyeblink associations. Studies have found that post-
training amygdala lesions do not have an effect on performance;
however, pre-training amygdala lesions impair acquisition for the
delay-eyeblink association (Weisz et al., 1992; Choi et al., 2001;
Lee and Simons, 2004; Lindquist and Brown, 2004; Sakamoto and
Endo, 2010). Furthermore, amygdala lesions have been found to
reduce the rate of learning by dramatically impairing acquisition
for the association during the initial days of training (Rescorla
and Solomon, 1967; Choi et al., 2001; Mintz and Wang-Ninio,
2001; Lee and Simons, 2004). These findings suggest that the
amygdala plays a critical role in enhancing the effectiveness of
the CS early in training to assist with delivery of CRs. These,
and other analyses of amygdala involvement in acquisition of the
delay-eyeblink association, have offered support toward a two
process model for consolidation (Figure 2). In this model, the ini-
tial phase of learning activates the amygdala and other emotional
responses, possibly increasing the saliency of the CS. In the second

(later) phase of learning, amygdala involvement decreases while
motor and sensory regions solidify the association and generate
well-timed CRs (Rescorla and Solomon, 1967; Choi et al., 2001;
Mintz and Wang-Ninio, 2001; Lee and Simons, 2004). In support
of this hypothesis, many non-specific emotional responses (e.g.,
increased heart rate and respiration) have been found to dissipate
as appropriately timed CRs emerge (Hein, 1969; Powell and Kazis,
1976).

This theory, that the amygdala plays an initial role in learning
by increasing the saliency of the behavioral events, is believed to
be a general property in acquisition for other non-fear-motivated
paradigms. Such a theory would suggest that the amygdala
focuses one’s attention on behaviorally relevant events or stimuli
to facilitate acquisition and consolidation. In support of this argu-
ment, anatomical analyses of amygdala projections have found
that the amygdala directly projects to the inhibitory thalamic
reticular nucleus (TRN) (Zikopoulos and Barbas, 2012). The
TRN receives projections from the neocortex and thalamus, but
only sends inhibitory projections to the thalamus (Crick, 1984;
Pinault, 2004), thus facilitating its ability to directly mediate or
filter thalamocortical interactions (Figure 3). Further analyses
have demonstrated that the TRN is activated when a subject is
attending to a stimulus (Montero, 1997; McAlonan et al., 2008;
Petrof and Brown, 2010). Furthermore, TRN lesions have been
found to impair a rat’s ability to attend to a stimulus (Weese et al.,
1999). These findings, along with its anatomical connections
facilitating inhibition of thalamic activation of the neocortex,
have strongly suggested a role for the TRN in regulating what our
brains are attending to (Crick, 1984; Pinault, 2004). Amygdala to
TRN projections would allow the amygdala to directly modulate
what information is conveyed to the neocortex. Such regula-
tion would empower the amygdala to determine what our brains
should attend to and thus would have tremendous implications
toward more rapid acquisition of behaviorally relevant stimuli for
any learning task (Figure 3).

Although the rodent literature has offered much support
for the amygdala involvement in initial acquisition and this
two process model for memory consolidation, not all studies

FIGURE 2 | Schematic of amygdala involvement in a two process

model for memory consolidation. In phase 1 of the model, the
amygdala, receiving event information, increases the saliency of the
event to motor and sensory regions, thus facilitating memory

consolidation and behavioral response to the event. In phase 2 of the
model, motor and sensory regions, primed with amygdala activation from
phase 1, begin to solidify the memory and generate appropriate behavioral
responses.
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FIGURE 3 | Schematic of amygdala and thalamic reticular nucleus

involvement with eyeblink conditioning. Information from the
conditioned stimuli (CS) first projects to the thalamus, where it will then
project to the neocortex and thalamic reticular nucleus. The thalamic
reticular nucleus can then compare information from the neocortex,
amygdala, and thalamus. Then, via selective inhibition of thalamic activity,
the thalamic reticular nucleus can modulate what information the

neocortex receives. Modulation of neocortical input would modulate
neocortical activation of the pontine nuclei that directly assists in
generating the appropriate conditioned response “Blink.” Note in the
above illustration, the amygdala can facilitate appropriate behavioral
responses by not only modulating neocortical activation of the pontine
nuclei via thalamic reticular nuclear stimulation, but also via direct
projections to the pontine nuclei.

examining amygdala involvement have supported this theory.
Some rodent studies have observed a general reduction in the
rate of acquisition with amygdala lesions (Sakamoto and Endo,
2010). Furthermore, studies using rabbits have suggested that the
amygdala’s involvement in delay-eyeblink-conditioning is not as
prominent as suggested from rodent analyses. Analysis of delay-
eyeblink-conditioning in rabbits have demonstrated only mildly
impaired performance with amygdala lesions (Weisz et al., 1992).
In their analysis, Weisz and colleagues (1992) further demon-
strated that the impairing effects of amygdala lesions in rabbits
can be diminished by increasing the intensity of the auditory
stimulation used for the CS. These findings suggest that the
saliency of the CS could have dramatic implications toward amyg-
dala involvement and may account for possible discrepancies with
amygdala lesions across species.

Another possible explanation for some of the discrepancies
between these lesion studies could reside in the size of the lesion.
Anatomically, it is known that the lateral amygdala receives con-
verging input from both the auditory CS and somatosensory US
pathways (Burton and Craig, 1979; LeDoux et al., 1987, 1990;
Whalen and Kapp, 1991; Weisz et al., 1992). The lateral amyg-
dala then projects to the basolateral amygdala and finally to
the central amygdala. From the central amygdala, information
projects directly to the pontine nuclei that then feeds informa-
tion to the cerebellum. Although these regions are intercon-
nected, there is no reason to believe each of these nuclei, or
even every cell within each nuclei, would have equal involve-
ment in acquisition for the delay-eyeblink association. Analyses
of training-induced neuronal activation in the amygdala found
that about 60% of the neurons responded to the CS while about
70% responded to the US (Richardson and Thompson, 1984).
Thus, partial lesions could disproportionately alter the amygdala’s
involvement in delay-eyeblink associations. Furthermore, when
neuronal activity from specific amygdala nuclei were examined, it
was determined that unlike the central amygdala, which exhibited

increased activity with conditioning, the basolateral amygdala did
not exhibit a learning-specific pattern of activation (Rorick-Kehn
and Steinmetz, 2005). Furthermore, additional analyses deter-
mined that although the central amygdala exhibited learning-
specific activation, the extent of this activation could be modu-
lated by simply varying the intensity of the US (Rorick-Kehn and
Steinmetz, 2005). These findings strongly suggest that discrep-
ancies in amygdala lesion studies could be due to differences in
training conditions and the specificity of nuclei lesioned.

Trace-eyeblink conditioning
Although there are some inconsistencies in amygdala anal-
yses, most studies suggest that the amygdala plays a crit-
ical role in acquisition of delay-eyeblink associations; how-
ever, analyses with trace-eyeblink-conditioning have not found
that the amygdala plays as prominent of a role in acquisi-
tion of the association. In trace-eyeblink-conditioning, the CS
and US are temporally separated by a stimulus-free interval
(Figure 1). This form of learning is both hippocampal- and
neocortal-dependent in that pre-conditioning lesions of the hip-
pocampus and specific regions of the neocortex impairs a sub-
ject’s ability to learn the trace-eyeblink association (Solomon
et al., 1986; Moyer et al., 1990; Kim et al., 1995; McGlinchey-
Berroth et al., 1997; Clark and Squire, 1998; Kronforst-Collins
and Disterhoft, 1998; Weiss et al., 1999; Weible et al., 2000;
McLaughlin et al., 2002; Takehara et al., 2002, 2003; Han et al.,
2003; Tseng et al., 2004; Galvez et al., 2007). Unlike delay-
eyeblink-conditioning, where consolidation for the association is
believed to reside in the cerebellum, trace-eyeblink associations
are believed to also reside in the neocortex. For example, analy-
ses of neocortical plasticity following trace-eyeblink-conditioning
have demonstrated unilateral learning-specific metabolic expan-
sion of the primary neocortical area receiving input from
the CS, compared to pseudo-conditioned controls (Galvez
et al., 2006, 2011). Further analyses have demonstrated that
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neocortical lesions prevent acquisition for the trace-eyeblink
association (Galvez et al., 2007). These, and other similar studies,
have strongly suggested that the neocortex is a site of storage for
trace-eyeblink associations.

With the neocortex acting as a site of storage for trace-eyeblink
associations, most would speculate that the amygdala, similar
to delay-eyeblink-conditioning, would play a role in facilitat-
ing consolidation. However, in trace-eyeblink-conditioning the
amygdala does not appear to play as prominent of a role as
observed in delay-eyeblink-conditioning. Analysis of metabolic
activity in the central amygdala following eyeblink condition-
ing acquisition demonstrated increased activation with delay-
eyeblink-conditioning; however, only a trend toward increased
activation following trace-eyeblink-conditioning was observed
(Plakke et al., 2009). Although this is only a single analysis,
it suggests decreased involvement of the amygdala with trace-
eyeblink-conditioning. However, based upon the two process
model for consolidation (Figure 2) one would expect the amyg-
dala to play a significant role during initial acquisition, but not
once the association was learned. Furthermore, based upon the
model, as the association is learned, the amygdala would decrease
its involvement. This prediction of the model, along with the fact
that trace-eyeblink associations require significantly more CS-US
pairings, decreases the likelihood that the amygdala would still be
activated following acquisition. Obviously, additional analyses of
amygdala involvement in trace-eyeblink conditioning are neces-
sary in order to make any definitive statements; however, analyses
with delay-eyeblink-conditioning and the two process model for
consolidation (Figure 2) suggest that the amygdala plays a role in
facilitating initial acquisition for trace-eyeblink associations.

CONCLUSION
Over the last several decades, there has been overwhelming evi-
dence that the amygdala plays an essential role in facilitating
acquisition and consolidation of fear associations. Although there
is some question regarding the specific location of long-term
memory storage (whether the amygdala or another region), these
analyses strongly suggest that the amygdala plays a critical role in
acquisition and consolidation of fear-related memories. However,

the amygdala’s role is not as clearly defined when examining
non-fear-related memories. Utilizing eyeblink-conditioning as a
non-fear-motivated task, this review suggests that there is also
substantial support for amygdala involvement in acquisition of
non-fear-motivated tasks. Analyses of amygdala involvement in
these non-fear-motivated tasks suggest that the amygdala acts to
increase the saliency of the learned stimuli so that other brain
regions can consolidate the learned response. These findings sug-
gest a two process model for memory consolidation. In this
proposed model, the amygdala facilitates determining what tha-
lamic information is conveyed to the neocortex. In support of
this model, studies have found anatomical projections from the
amygdala to the TRN, a brain region critically involved in direct-
ing attentional activation of the neocortex, the most likely site of
storage for long-term memories. This model would suggest that
amygdala lesions would decrease the rate of consolidation by not
facilitating the initial phase of learning, but these lesions would
not hinder a subject’s ability to eventually acquire the associa-
tion. These predictions are entirely consistent with the amygdala
analyses with eyeblink conditioning mentioned above. Although
this model was proposed under the framework of the eyeblink
paradigm, the implications of these findings would have a broader
role in other non-fear-motivated tasks. Additionally, such a model
would also have a role in fear-motivated tasks. However, due
to the amygdala’s multifaceted role in different aspects of fear-
motivated tasks, it is difficult to determine if the amygdala’s
role in modulating thalamocortical communication decreases
during task acquisition similar to that of non-fear-motivated
tasks. Together, these findings suggest that the amygdala plays a
promiscuous role in directing our attention toward behaviorally
relevant stimuli, thus facilitating acquisition and memory consol-
idation for both fear- and non-fear related memories. Currently,
many analyses of the amygdala’s role in humans have focused
on individuals suffering from fear-related disorders such as post-
traumatic-stress-disorder; however, the findings presented in this
review demonstrate that the amygdala may also play a critical
role in non-fear-related learning, suggesting that amygdala abnor-
malities could also plague many other neurological disorders of
learning and memory.
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