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40-019 Katowice, Poland
* Correspondence: mateusz.koziol@polsl.pl

Received: 17 January 2020; Accepted: 14 February 2020; Published: 18 February 2020
����������
�������

Abstract: In this paper, ferroelectric antimony sulfoiodide (SbSI) nanowires have been used to
produce composites for device fabrication, which can be used for energy harvesting and sensors.
SbSI is a very useful material for nanogenerators and nanosensors in which the high values of the
piezoelectric coefficient (d33 = 650 pC/N) and the electromechanical coefficient (k33 = 0.9) are essential.
Alternatively, cellulose and epoxy resin were matrix materials in these composites, whereas SbSI
nanowires fill the matrix. Piezoelectric response induced by vibrations has been presented. Then, a
composite with an epoxy resin has been used as an element to construct a fiber-reinforced polymer
piezoelectric sensor. For the first time, comparison of piezoelectric properties of cellulose/SbSI and
epoxy resin/SbSI nanocomposite has been presented. The influence of concentration of SbSI nanowires
for properties of epoxy resin/SbSI nanocomposite and in a fiber-reinforced polymer based on them
has also been shown. Results of aligning the SbSI nanowires in the epoxy matrix during a curing
process have been presented as well.

Keywords: SbSI nanowires; nanocomposite; nanogenerator; nanosensor; energy harvesting;
FRP laminate

1. Introduction

Nowadays, the demand for different types of energy harvesting increases. Among them are thermal,
solar, chemical, nuclear, and mechanical energies. Currently, the pyroelectric [1,2], triboelectric [3,4],
and piezoelectric [5,6] effects are frequently used to convert appropriate energy types into electrical
energy. The most common energy source available is mechanical energy, and the piezoelectric effect
is widely used to harvest it. The first mention of a piezoelectric generator based on ZnO nanowires
to convert mechanical energy to electrical energy is in 2006 [6]. Since then, many investigations
have been performed on piezoelectric nanogenerators, to harvest, e.g., vibrations, wind, human
body motion, wind, acoustic waves, and other mechanical energy forms [7–10]. Nowadays, various
materials and their composites especially ZnO [6,11–14], BaTiO3 [15–17], PZT [18], and many other
compounds [18] are used to construct piezoelectric nanogenerators. Epoxy resins [12,17] or different
types of cellulose [13–16] are used as a matrix material in these composites.

The most common method to induce voltage generation is the use of mechanical vibrations [19].
This energy form can be easily found in everyday life, i.e., household appliances, vehicle movement, etc.
The most typical vibrations with the highest amplitudes occur every day for frequencies lower than 100
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Hz. To use these energy sources in the most efficient way, it is essential to construct devices to convert
vibration energy within this frequency range. Smart textiles and wearable nanogenerators are other
branches in which piezoelectric and triboelectric nanogenerators may be successfully and efficiently
use. They may be fabricated based on rayon, cotton, or wool [20–22], as well on SbSI nanowires [23].
Recently, there is a growing demand for these kinds of energy sources. They should allow converting
the energy of human movement into the electrical energy to supply and charge mobile electronics
in the future. Electrical, mechanical, and thermal properties were measured for textiles coated with
nanomaterials and were found to be important for the performance of smart textiles [24].

Piezoelectric materials can also be used as integrated sensors [19,25], e.g., in composite laminates
that are the basic advanced construction materials. They are commonly used to measure strain and
deformation in constructions. It allows monitoring of the material condition to prevent its destruction
progress, e.g., airplanes, ships, and bridges.

Recently, there is a growing interest in nanogenerators and nanosensors which are fabricated
based on SbSI nanowires [23,26–31]. SbSI is a semiconductor and ferroelectric material exhibits very
good electromechanical (k33 = 0.9) [32] and piezoelectric (d33 = 650 pC/N) properties [33]. Because of
the huge values of the mentioned parameters, sensors based on SbSI are competitive to sensors made
of other materials.

In recent years, a fabrication technology of cellulose/SbSI nanowires composite (CSNC) [29] and
epoxy resin/nanowire composite (ESNC) [26] has been published. In this article, we have briefly
described the similarities and differences in the case of both processes and the further use of ESNC to
produce a fiber-reinforced polymer (FRP) laminate sensor [31]. For the first time, results of piezoelectric
response under vibration and their comparison for CSNC and ESNC have been presented in this article.
The influence of concentration of SbSI nanowires for properties of ESNC and in a fiber-reinforced
polymer based on them has also been shown. Results of preliminary research of aligning the SbSI
nanowires in an epoxy resin matrix during a curing process in an electric field have been presented.

2. Materials and Experimental Methods

Fabrication of CSNC, ESNC, and FRP laminates based on ESNC is summarized in Figure 1. The
first stage in the preparation of both composites and the FRP sensor is the sonochemical fabrication of
SbSI nanowires by the so-called Nowak’s method. Pure elements (antimony, sulfur, and iodine) were
used to sonochemically obtain SbSI nanowires. The stoichiometric mixture of elements was placed
in ethanol in a closed container made of polypropylene. It did not allow volatile synthesis products
to escape. After that, the container was submerged in water in a cup-horn connected to ultrasonic
processor VCX-750 with converter VC-334 (Sonics & Materials, Inc., Newtown, CT, USA). Refrigerated
circulating bath AD07R (PolyScience, Niles, IL, USA) was used to keep a constant temperature of 293
K during the whole time (2 h) of the synthesis process. In the next step, to remove the remaining
substrates, the obtained gel was rinsed by using pure ethanol and centrifuged. Finally, SbSI gel was
inserted in a vacuum chamber under reduced pressure at room temperature in order to evaporate
ethanol from its volume. The SbSI nanowires in prepared xerogel have cross dimensions 10 nm to 50
nm and length of several microns. Further information on the sonochemical process, as well as on
obtained SbSI xerogel (e.g., SEM and HRTEM micrographs, SAED and XRD patterns, DRS spectrum)
in [34].

The prepared nanowires have been used to produce CSNC. In this case, SbSI nanowires have been
mixed with pieces of Northern Bleached Softwood Kraft (NBSK) cellulose fibers in the mass ratio of 1:4.
Ultrasounds were used again to guarantee a homogeneous mixture of both components. The dilute
suspension of CSNC was applied on blotting paper and compressed to obtain a sheet of randomly
interwoven cellulose fibers and SbSI nanowires. The samples of CSNC were then cut from so prepared
sheet. Gold electrodes were sputtered on opposite sides of the samples by using Sputter coater Quorum
Q150T ES (Quorum Technologies Ltd., Laughton, UK). The copper wires were coupled with electrodes
by High Purity Silver Paste 05002-AB (SPI Supplies, West Chester, PA, USA). The samples were covered
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with silicones rubber (Elastosil N10 from DRAWIN Vertriebs-GmbH, Hohenbrunn, Germany) to guard
them against the ambient moisture. Further details of the process, the composite morphology, and
other results for CSNC, see [29].Materials 2020, 13, x FOR PEER REVIEW 3 of 12 
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Figure 1. Scheme of sonochemical preparation of SbSI nanowires, the epoxy resin/ SbSI nanowire and
cellulose/SbSI nanowires composites, generator/sensor assembly, and scheme of FRP laminate with
integrated sensor [26,29,31]. Description in the text.

To produce an ESNC the SbSI nanowires and LH288 epoxy resin (HAVEL COMPOSITES,
Svesedlice, Czech Republic) were mixed in 20% and 40% mass ratio. Then, they were pre-mixed
mechanically and then mixed again in ultrasound by using the same set-up configuration as described
above. At this stage, the preparation of the ESNC sample and FRP laminate diverged.

In the case of the ESNC sample, the hardener H281 (HAVEL COMPOSITES, Svesedlice, Czech
Republic) was added with a volume proportion to resin 1:4, according to technical requirements.
A thin layer of so prepared mixture was placed on a glass substrate and left in an Environmental
Chamber SH-242 (Espec, Osaka, Japan) at a constant temperature (283 K) for 24 h to be cured. Part of
the mixture was also placed in the same chamber between two electrodes to enable the alignment of
SbSI in the electric field. The applied electric field intensity was 10 kV/cm. After the main curing, the
same procedure as in for CSNC was applied to produce a nanogenerator. More details of the process,
the composite morphology, and other results for 20% CSNC, one can find in [26].

The sample surface dimensions of ESNC and CSNC were the same and equaled 10 × 10 mm.
Sample thicknesses were 0.10 mm and 0.05 mm for ESNC and CSNC, respectively.

To produce the FRP laminate, 10 layers of a plain-woven glass fabric (KROSGLASS, Krosno,
Poland) were used as a reinforcement. After preparing the mixture of SbSI nanowires with the resin,
the same hardener was added to it in the same ratio as mentioned above. The whole was mixed
mechanically. The silver-conducting paint (05002-AB, SPI Supplies, West Chester, PA, USA) was
applied as electrodes on two glass fabric cuttings. Copper wires were connected to both electrodes to
provide an electrical signal outside of the sensor. Then, the active material (a mixture of epoxy resin,
SbSI nanowires, and hardener) was applied onto the electrodes and one piece of glass fabric was placed
between them, and a mixture was penetrated throughout this layer. It allows avoiding a short circuit of
the electrodes in further process. The material was left for one hour to pre-cure. The cured mixture is,
in fact, an ESNC. Next, the prepared sensor was placed between the remaining plain-woven glass and
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copper wires were pulled out of a stack. The prepared stack of glass layers was placed into a preform,
that was filled with the same resin and hardener by using the VARTM (vacuum-assisted resin transfer
molding) method. After curing, the plates including the active layer of ESNC were cut mechanically
into the samples. A more detailed description of the FRP laminate preparation process is described
in [31].

Sample photographs and SEM images were taken by a Stemi 2000-C stereoscopic microscope
(Carl Zeiss, Oberkochen, Germany) equipped with an Olympus DP25 camera and a Phenom PRO X
scanning electron microscope (Phenom World, Eindhoven, Netherlands), respectively.

Piezoelectric response of CSNC and ESNC were measured in air at the temperature of 293 K. The
sample was mounted on a plate made of plexiglass that was attached to a vibration generator by a wax
thin layer. The vibration amplitude and frequency were controlled by using vibrometer WH-30 with
octave filter FO-1 (STANMARK Products, Cracow, Poland). The U–I characteristics were registered
for various load resistances by using the Zeal resistance box (1 Ω–109 Ω). The output voltage was
acquired by EG & G 5110 amplifier (Princeton Applied Research, Oak Ridge, TN, USA). The values of
load resistance were recalculated considering its input impedance of 100 MΩ.

The piezoelectric properties of the FRP laminate sensors were determined by 3-point
non-destructive (within the elastic deflection range) bending tests. The tests were performed by
the INSTRON 4469 machine (INSTRON, Norwood, MA, USA). Spacing between supports was 200
mm. The sample was bent to a deflection of 1.0 mm at various speeds of loading bar movement (1, 2,
5, 10, 20, 40, 60, 80, 100, 150, and 300 mm/min). Then, the sample was left under deflection for 120
s and reloaded at the same speed. After 30 s (time necessary to sensor discharge), the load–reload
cycle was executed for the next loading speed. The electric signals of FRP laminate were registered by
Keithley 6517A electrometer (Keithley Instruments, Cleveland, OH, USA). During the nondestructive
deflection, the load–deflection curves were recorded.

3. Results and Discussion

Figure 2 shows the comparison of U–I characteristics under vibration excitation for different load
resistances for CSNC and ESNC composite.
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Figure 2. (a) Comparison of U–I characteristics and (b) volume power density (PV) recorded under
vibration excitation (f = 24 Hz, A = 1 mm) for different load resistances for CSNC (�) and for ESNC
with 20% (•) and 40% (N) concentration of SbSI nanowires. The vertical lines indicate the values of
sample resistance corresponding to the power maximum (description in the text).

One can see that for CSNC registered voltages and currents have lower values than for ESNC. The
open-circuit voltage reaches only 6 mV for the CSNC. In the case of the ESNC, it is 45 mV and 25 mV
for a composite with 20% and 40% concentration of SbSI nanowires, respectively. Due to miscellaneous
sample thickness, the power has been recalculated based on measured U–I characteristics. Then
considering the sample volume the volume power density (PV) vs. load resistance (R) curves were
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determined. Despite smaller voltage and current values for CSNC, the determined PV is comparable
with 40% ESNC, due to a fact that the CSNC sample is thinner than the ESNC sample. The maximum
volume power densities reach values of 0.157 nW/cm3, 0.492 nW/cm3, and 0.136 nW/cm3 for CSNC,
20% ESNC, and 40% ESNC, respectively. In the case of the 40% ECNS sample, the power density is
nearly 4 times lower than for 20% ECNS due to the conglomeration of SbSI nanowires. This is well
known; the maximum PV is reached for load resistance and equals the internal resistance of the sample.
Thus, determined internal sample resistances are 16.6(33) MΩ, 12.0(24) MΩ, and 9.1(16) MΩ for CSNC,
20% ESNC, and 40% ESNC, respectively. It must be underlined that the root-mean-square voltage
values were measured, as well as U–I characteristics were acquired in real conditions (load resistance),
considering the measurement setups. However, it is possible to enlarge the received power during
vibration by applying external load mass on the sample [26]. One can notice that an increase of SbSI
nanowires concentration leads to a decrease in internal resistance. This is because SbSI nanowires
have lower resistance than the matrix. On the other hand, they are more homogeneously distributed
throughout the composite which leads to more efficient power generation. One can see that there is
also an influence of matrix material for the internal resistance of the samples. These explanations are
supported by SEM images presented in Figure 3 and discussed below.
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Figure 3. SEM micrographs of CSNC (a) and ESNC with 20% (b) and 40% (c) weight concentration of
SbSI nanowires.

Figure 3 shows the morphology of CSNC and ESNC with different concentrations of SbSI
nanowires. Due to high difference in SbSI nanowires (lateral dimensions 10–100 nm and lengths up to
several µm [34]), and cellulose fibers (diameter 10–30 µm and length up to 1 mm [35,36]) dimensions,
the SbSI nanowires conglomerate within cellulose fiber matrix (Figure 3a). In the case of ESNC with
20% weight concentration (Figure 3b), there is no agglomeration of SbSI nanowires and they are
randomly dispersed in the epoxy resin matrix, forming so-called 0–3 composite [37]. With the increase
of SbSI concentration, they become agglomerate (Figure 3c). Similar dependence has been noticed also
in the case of examined FRP laminate and will be discussed further below.

Figure 4 presents the results of the piezoelectric response registered during the bending tests of
the FRP laminate sample containing the sensor with different concentrations of SbSI nanowires.
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Figure 4. (a) Piezoelectric responses generated by the sensor recorded for different loading velocity
(1, 2, 5, 10, 20, 40, 60, 80, 100, 150, and 300 mm/min) at constant deflection value x = 1 mm for FRP
laminate with 20% (red curve, left scale) and 40% (black curve, right scale) of SbSI nanowires weight
concentration. (b) Determined values of maximum voltage for different speed of deformation and
constant value of maximum deflection (x = 1 mm) during loading (#—20%, #—40%) and reloading
(•—20%, •—40%), respectively. Left and right scales refer to FRP laminate with 20% and 40% of SbSI
nanowires weight concentration, respectively. The sensor was reloaded at the same speed as at loading.

One can see that the piezoelectric response of the FRP laminate sample with 20% of SbSI nanowires
weight concentration is nearly one order of magnitude higher than for the one with 40% of SbSI
nanowires concentration (Figure 4). However, the character of changes is the same in both cases. The
FRP sensor containing 40% weight concentration of SbSI nanowires shows weaker piezoelectric activity
than the sensor containing 20% SbSI nanowires. This seems to be strange at first glance. However, the
obtained results leave no doubt in this matter as for ESNC. The explanation for this effect can be found
in the local agglomeration of the nano-additive in the resin matrix. The mechanism of piezoelectric
charge generation for FRP laminate has been described in [31], and the differences can be explained
taking into consideration the morphology of both sensors (Figure 5).
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Here, as well as in the case of ESNC, one can see the agglomeration of SbSI nanowires in FRP
sample with 40% of SbSI nanowires weight concentration (Figure 5b), which does not appear for 20%
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concentration (Figure 5a). It is most likely due to the increased probability of mutual mechanical
tacking of individual nanowires during the mixing process, and then joining subsequent nanowires
with the resulting agglomerate. This is an effect often found in composites containing nano-dimensional
components. Similar phenomena have been previously noticed for carbon nanotubes [38,39]. In
those articles, certain optimum content of the nano-additive (carbon nanotubes) was found at which
material properties (electrical conductivity, modulus of elasticity) achieved a maximal value. Below
and over the optimal concentration, values of these parameters began to fall. The authors explained
such an effect, among other issues, by a local agglomeration of the nanomaterial. As well here, with an
increase of SbSI nanowires weight concentration, they more likely tend to conglomeration. In this case,
agglomerated nanowires are surrounded by a nonconductive epoxy resin matrix. The conglomeration
of SbSI nanowires means that they are less randomly dispersed in a matrix, and then a piezoelectric
charge is not uniformly discharged to electrodes through nonconductive epoxy resin (or cellulose)
matrix. The piezoelectric response then becomes smaller in both cases of ESNC and FRP laminate.
Moreover, the increase in SbSI nanowires content results in a decrease in the mechanical response of
the composite. Figure 6 presents the load–deflection curves for the nondestructive deflection tests up
to 1.5 mm.
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Figure 6. Load force vs. deflection curves recorded for the FRP laminate without an active layer (�)
and with an active layer containing integrated sensor-area made of epoxy resin with 20% (•) and 40%
(N) weight concentration of SbSI nanowires.

Deflection curves (Figure 6) for laminate containing 20% of SbSI nanowires and without the
integrated sensor overlap. One can see that further addition of SbSI nanowires (40% weight in this case)
results in the weakening of the laminate. The same deflection is reached at a lower load force. After
performing nondestructive bending research, the samples were subjected to regular static bending tests.
Also, in this case, the FRP laminate containing 40% of SbSI nanowires was the weakest one. Determined
values of flexural strength were 393(19) MPa, 381(13) MPa, and 314(11) MPa, whereas values of flexural
modulus were 19.9(5) GPa, 19.7(6) GPa, and 19.2(1) GPa, for FRP without an active layer, and with
an active layer containing 20% and 40% weight of SbSI nanowires, respectively. Laminate integrated
sensors find an application in aviation, construction monitoring, etc. Therefore, this undesirable effect
will not limit the application of these structures in contradistinction to, e.g., metal–fiber laminates
(FML) [40].
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One of the possible solutions to improve the piezoelectric properties of ESNC is the application of
an electric field for the duration of the curing process. Figure 7 presents SEM images of ESNC cured
without and with the applied electric field.
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One can see (Figure 7b), all nanowires are aligned, and its c-axis is nearly parallel to the direction of
the electric field. Recall that the curing process was carried out in T = 283 K. This temperature is lower
than the Curie temperature of SbSI nanowires (TC = 292(1) K) [34]. Therefore, SbSI nanowires are in the
ferroelectric phase and align along the external electric field. However, not all of them aligned perfectly
along external electric field direction, even though the resin with low viscosity was used (500–900
mPa·s at room temperature according to the manufacturer). The biggest value of the deflection angle
of single nanowire c-axis from external electric field direction is less than 35◦, whereas its medium
value is 12.5(39)◦. Note that the longer the nanowire is, the higher the deflection angle forms. This is
due to the increase of resin viscous torque acting on the nanowire, which is not overcome by electric
field torque rotating the long nanowire. Except for SbSI nanowire alignment, no conglomeration of
them is visible on the SEM micrograph (Figure 7b). The surface charges that may be constrained on
ferroelectric domain boundaries [41,42] in SbSI nanowires may lead to their separation in the matrix
material. The 0-3 type composite simultaneously rebuilt into the 1-3 type composite [37]. Possibility
of ferroelectric SbSI nanowires alignment in the external electric field is a well-known phenomenon
recently studied [43,44] and occurs spontaneously, i.e., while fabricating composite by electrospinning
method [28].

The question might arise about the working temperature range of the presented nanocomposites.
According to the datasheet provided by the producer, cured LH288 resin has a maximum long-term
operating temperature of 353 K. This temperature corresponds approximately to the glass transition
temperature of the resin. The safe temperature of permanent use of the resin should not exceed 323 K
for working as an independent material (without significant filling, e.g., with fiberglass), whereas the
flash point of the resin is above 423 K. During the analysis of the curing process, no influence of SbSI on
the intensity of this process was observed. The thermal decomposition of SbSI begins in 545 K. Above
609 K the remaining material is Sb2S3 (see the thermal gravimetry analysis (TGA) in an appendix
of [45]). Thermal decomposition of SbSI reaches a higher temperature than the working temperature
range of epoxy resin; therefore, the ESNC is applicable in the whole operating temperature range of
epoxy resin. In the case of CSNC, the temperature limit is set by SbSI, whereas thermal decomposition
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of cellulose occurs at ~573–673 K (see TGA curves in [46,47]), which is just a little higher than the
thermal decomposition temperature of SbSI. Moreover, the study of thermal decomposition of epoxy
resin (of another type than in this article) and NBSK cellulose (the same type of cellulose as in this
article) composite is shown in [47]. The authors state that the incorporation of cellulose filler enhanced
the thermal stability of all epoxy nanocomposites compared to pure epoxy composites [47]. One can
expect that the CSNC application will be limited by a lower SbSI decomposition temperature of 545 K.

4. Conclusions

Comparison of piezoelectric responses registered for vibration excitation (f = 24 Hz, A = 1mm) for
different load resistances for CSNC and for ESNC with 20% and 40% concentration of SbSI nanowires
has been presented. It has been shown that the matrix material has had a significant influence on the
piezoelectric properties of the composite. Moreover, a comparison of ESNC for different nano-additive
leads to a conclusion that an increase of a volume fraction of the nano-piezoelectric material (SbSI
nanowires) leads to decreasing of the output signal and power. It is influenced by the agglomeration
of SbSI nanowires in the matrix material. Note that agglomeration may take place even for a smaller
amount of nanowires but the increase of its concentration results in a greater quantity of agglomerates.
More detailed studies on this phenomenon for ESNC will be performed in the future.

Agglomeration occurs also in the case of FRP laminate (Figure 5). Moreover, the increase in SbSI
nanowires mass fraction from 20% to 40% causes an evident decrease in FRP laminate mechanical
response signal (Figure 6). Therefore, further examination for FRP laminate is also necessary to find
the best concentration of SbSI nanowires in a sensor to achieve the highest piezoelectric properties and
mechanical strength of the composite.

Preliminarily conducted research shows that the application of the external electric field allows
SbSI nanowires aligning which should improve the piezoelectric response of the composite due to
anisotropy of piezoelectric modulus and electromechanical coefficient of SbSI nanowires. Besides, it
can also be one of a possible solution to the conglomeration issue.

Summarizing, for the first time, piezoelectric response for vibration and its comparison for CSNC
and ESNC with different SbSI nanowires concentration has been presented. The discussion presented
above leads to the conclusion that both composites are appropriate to work in ambient temperatures.
However, due to phase transition in SbSI, the highest piezoelectric response and performance of the
samples are achieved in lower temperatures. The influence of SbSI nanowires concentration for the
conglomeration of them in ESNC and FRP laminate has been presented for the first time, and the
solution to this issue has been proposed. Moreover, the thinner sample preparation and curing the resin
under the applied electric field will result in more efficient power generation. Taking into consideration
the discussion presented above and the mechanical properties of the ESNC and CSNC composites, it
leads to the conclusion that ESNC is a promising material to harvest vibration energy and CSNC may
be used as smart wearable textiles, in the future.
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