
Exercise-Induced Circulating
microRNAs: Potential Key Factors in
the Control of Breast Cancer
Guilherme Defante Telles1, Miguel Soares Conceição2, Felipe Cassaro Vechin1,
Cleiton Augusto Libardi 3, Marcelo Alves da Silva Mori 4,5,6, Sophie Derchain2 and
Carlos Ugrinowitsch1*

1Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo
(USP), São Paulo, Brazil, 2Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas,
Campinas, Brazil, 3MUSCULAB—Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical
Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil, 4Department of Biochemistry and Tissue Biology,
Institute of Biology, University of Campinas, Campinas, Brazil, 5Obesity and Comorbidities Research Center (OCRC), University of
Campinas, Campinas, Brazil, 6Experimental Medicine Research Cluster (EMRC), Campinas, Brazil

Losses in skeletal muscle mass, strength, and metabolic function are harmful in the
pathophysiology of serious diseases, including breast cancer. Physical exercise training is
an effective non-pharmacological strategy to improve health and quality of life in patients
with breast cancer, mainly through positive effects on skeletal muscle mass, strength, and
metabolic function. Emerging evidence has also highlighted the potential of exercise-
induced crosstalk between skeletal muscle and cancer cells as one of the mechanisms
controlling breast cancer progression. This intercellular communication seems to be
mediated by a group of skeletal muscle molecules released in the bloodstream known
as myokines. Among the myokines, exercise-induced circulating microRNAs (c-miRNAs)
are deemed to mediate the antitumoral effects produced by exercise training through the
control of key cellular processes, such as proliferation, metabolism, and signal
transduction. However, there are still many open questions regarding the molecular
basis of the exercise-induced effects on c-miRNA on human breast cancer cells. Here,
we present evidence regarding the effect of exercise training on c-miRNA expression in
breast cancer, along with the current gaps in the literature and future perspectives.
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INTRODUCTION

Significant loss of skeletal muscle mass, strength, and metabolic function is associated with
unfavorable prognosis in various cancer types, including breast cancer (Rier et al., 2016; Kubo
et al., 2017; Caan et al., 2018; Jang et al., 2020; Lee et al., 2021). Decreases in skeletal muscle strength
and mass impair overall health of patients with breast cancer due to enhanced drug toxicity and
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cancer-related fatigue (Kazemi-Bajestani et al., 2016; Murphy,
2016; Boekel et al., 2018; Guigni et al., 2018; Mazzuca et al., 2018),
which require easing the treatment regimen. Together, these
factors can increase morbidity and mortality of patients with
cancer (Kazemi-Bajestani et al., 2016; Zhang et al., 2020).
Contrarily, physical exercise training is one of the most
effective strategies to increase skeletal muscle strength and
mass, metabolic function, overall health, and quality of life of
patients with breast cancer (Garber et al., 2011; Hawley et al.,
2014; Dethlefsen et al., 2017a; Adraskela et al., 2017;
Kraschnewski and Schmitz, 2017; Hojman et al., 2018;
Campbell et al., 2019; Hayes et al., 2019; Patel et al., 2019).
Interestingly, a growing body of evidence has recently indicated
that exercise training also plays a role in controlling breast cancer
progression through skeletal muscle release of humoral factors in
the blood stream (Hojman et al., 2011; Dethlefsen et al., 2016;
Ruiz-Casado et al., 2017; Figueira et al., 2018; Hojman et al.,
2018).

The exercise-induced humoral factors allow the crosstalk
between skeletal muscle cells and other tissues’ cells (Pedersen
and Febbraio, 2012; Hawley et al., 2014; Safdar et al., 2016; Safdar
and Tarnopolsky, 2018). Those factors are known as myokines, a
group of molecules (e.g, protein/peptides, metabolites and
different species of RNAs) that regulates key cellular processes,
such as cell proliferation, metabolism, and signal transduction,
acting as important mediators of the systemic effects of exercise
training (Safdar et al., 2009; Pedersen and Febbraio, 2012; Hawley
et al., 2014; Dethlefsen et al., 2016; Safdar et al., 2016; Dethlefsen
et al., 2017a; Dethlefsen et al., 2017b; Ruiz-Casado et al., 2017;
Safdar and Tarnopolsky, 2018). Among the myokines, the
microRNAs (miRNAs) have been deemed as important
molecules as they regulate cellular activity at the post-
transcriptional level through mRNA degradation,
destabilization, or repression of gene translation (Safdar et al.,
2016; Ha and Kim, 2014; Huntzinger and Izaurralde, 2011;
Alizadeh et al., 2019; Camera et al., 2016; D’Souza et al., 2017;
Davidsen et al., 2011; Drummond et al., 2008; Fyfe et al., 2016;
Mooren et al., 2014; Nielsen et al., 2010; Ogasawara et al., 2016;
Telles et al., 2021). In fact, miRNAs are a class of small (~22
nucleotides) non-coding RNAs that can be produced in different
tissues (e.g., skeletal muscle, adipose tissue) and released to the
bloodstream (i.e., circulating miRNAs: c-miRNAs) (Safdar et al.,
2016; Safdar and Tarnopolsky, 2018; Alizadeh et al., 2019;
D’Souza et al., 2017; Davidsen et al., 2011; Drummond et al.,
2008; Fyfe et al., 2016; Nielsen et al., 2010; Ogasawara et al., 2016)
usually associated with different proteins and lipoprotein
complexes (e.g., protein argonaute-2, high- and low-density
lipoproteins or inserted in extracellular vesicles) (Safdar et al.,
2016; Dufresne et al., 2018; Safdar and Tarnopolsky, 2018). As
c-miRNAs are demonstrated to modulate the expression of genes
related to tumor development/progression, these myokines have
been proposed as key factors involved in the effects produced by
exercise training on breast cancer cells (Zhang et al., 2007;
Isanejad et al., 2016; Santos et al., 2016; Adhami et al., 2018;
Dufresne et al., 2018; Santos et al., 2018). In the present
perspective, we present evidence regarding the effect of
exercise training on c-miRNA expression in breast cancer,

along with current gaps in the literature and experimental
design suggestions to address these gaps.

HAS THE EFFECT OF EXERCISE TRAINING
PER SE ON C-MIRNA EXPRESSION BEEN
INVESTIGATED IN BREAST CANCER?
Mounting evidence indicates that exercise training can mitigate
the development of breast tumors (Hojman et al., 2011;
Dethlefsen et al., 2016; Figueira et al., 2018; Hojman et al.,
2018). Figueira, Cortinhas (Figueira et al., 2018), in a meta-
analysis of 28 preclinical studies [including 2085 animals (rats,
mouse, and mice) with breast cancer], showed that exercise
training promotes a reduction in the total number of tumors
(-20.2%), and tumors per animal (-63.2%), as well as in tumor
proliferation (-79.4%), weight (-36.6%), and volume (-44.3%). In
an in vitro model, Hojman, Dethlefsen (Hojman et al., 2011)
incubated MCF-7 breast cancer cells with the blood serum of
mice following exercise and observed a 52% decrease in tumor
cell proliferation. The results of an elegant study by Dethlefsen,
Lillelund (Dethlefsen et al., 2016) corroborate the previous ones
showing a decreased viability (~-9.5%) of different breast cancer
cells lineages (MCF-7 and MDA-MB-231) incubated with the
serum of breast cancer survivors (undergoing chemotherapy)
following an exercise bout when compared to resting serum.
Collectively, the aforementioned findings indicate the existence of
exercise-induced circulating factors with antitumoral effects.
Considering their role in intercellular communication,
c-miRNAs are proposed to participate in these effects (Safdar
et al., 2016; Dufresne et al., 2018; Safdar and Tarnopolsky, 2018).

Isanejad, Alizadeh (Isanejad et al., 2016), using the inbred
female BALB/c mice (6–8 weeks old) model of breast cancer,
demonstrated that neoadjuvant hormone therapy combined with
a 5-week exercise training protocol increased the expression of
miRNA-206 and let-7a (both related to tumor suppression) and
reduced the expression of the oncomiR miR-21 in tumor tissue.
These results were accompanied by decreased ERα and HIF-1
mRNA levels (linked to tumor growth and angiogenesis) (Cheng
et al., 2005; Akao et al., 2006; Liu et al., 2011), along with a
reduction in Ki67 expression, an important nuclear marker of cell
proliferation related to poorer survival in women with breast
cancer (Cheang et al., 2009). However, the literature investigating
the role of exercise-induced c-miRNAs in humans with breast
cancer is scarce (Adams et al., 2018; Hagstrom and Denham,
2018; Alizadeh et al., 2019). Adams, Arem (Adams et al., 2018)
compared c-miRNAs changes between patients assigned to either
a weight loss intervention (encompassing increased physical
activity, reduced caloric intake, and behavioral therapy) or
usual care. Significant differences in the expression of six
c-miRNAs were observed in the weight loss arm: an increase
in miR-191-5p, -24-3p and let-7b-5p, and a decrease in miR-
106b-5p, -27a-3p, and -92a-3p. Interestingly, the usual care arm
showed changes in the opposite direction for the expression of
miR-106b-5p, -191-5p, and 92a-3p. Most notably, miR-106
family supports tumor cells proliferation (Ivanovska et al.,
2008) and is used for prognosis of cancer recurrence (Zheng
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et al., 2015). Importantly, patients underwent a weight loss
intervention encompassing increased physical activity, reduced
caloric intake, and behavioral therapy, and patients had
completed their treatment before enrolment. Hagstrom and
Denham (Hagstrom and Denham, 2018) showed that 16 weeks
of resistance exercise training did not produce significant changes
in c-miRNA expression compared to usual care in patients with
stage I–IIIA breast cancer participants who completed the
treatment and had no evidence of recurrent disease (except for
hormonal therapy). However, high-responders (based on the
gains in upper and lower body strength) to the resistance
exercise training exhibited increased c-miR-133a-3p relative to
low responders. The miR-133a may have an important tumor
suppression effect regulating cell cycle and breast cancer cell
proliferation (Cui et al., 2013). Alizadeh, Isanejad (Alizadeh et al.,
2019) investigated the response of exercise training on c-miRNA
levels in women with hormone receptor-positive breast cancer
treated with hormone therapy. Patients were divided into two
groups: hormone therapy and hormone therapy-exercise
training. Additionally, two groups of healthy women were
included in the study (negative control and positive control
that performed the same exercise training protocol). Both
breast cancer groups had higher baseline levels of circulating
oncomiRs (miR-21, miR-155, miR-221, miR-27a, and miR-10b),
as well as lower levels of tumor suppressors c-miRNAs (miR-206,
miR-145, miR-143, miR-9, and let-7a) when compared to the
healthy groups. Importantly, the hormonal therapy-exercise
training group showed lower expression of all the analyzed
c-oncomiRs compared to pre-intervention and to the
hormonal therapy group (except for miR-221) at post-
intervention. In addition, the authors showed a greater
increase in tumor suppressor c-miRNAs related to the former
than the latter (reaching values close to those of healthy women).
It is noteworthy that Alizadeh, Isanejad (Alizadeh et al., 2019)
study combined the exercise training intervention with hormone
therapy. Taken together, no experimental design has attempted to
determine the effect of exercise training per se on c-miRNAs
expression in patients with breast cancer.

ACUTE VS. CHRONIC EFFECT OF
EXERCISE TRAINING ON C-MIRNA
EXPRESSION IN BREAST CANCER
Initially, exercise training studies have focused on the chronic
effect (i.e., overall training intervention effect with no residual
effect from an exercise bout) of exercise interventions
(i.e., exercise training) on reducing breast cancer risk factors
(e.g., sex steroid hormones, inflammatory cytokines, adipokines)
(McTiernan, 2008; Hojman et al., 2017). However, exercise
training-induced physiological adaptations are caused by the
accumulation of transient and coordinated transcriptional,
translational and post-translational changes following each
exercise bout (i.e., acute effect) (Hawley et al., 2014). Thus,
this acute effect has been deemed as one of the main
mechanisms underpinning the exercise effect on breast
cancer cells.

The previously cited reduction in tumor cell proliferation
occurred when MCF-7 breast cancer cells were incubated with
blood serum collected immediately after mice completed an
exercise bout (Hojman et al., 2011). Similarly, Dethlefsen,
Lillelund (Dethlefsen et al., 2016) observed a significant
reduction in the viability of MCF-7 and MDA-MB-231 breast
cancer cell lines incubated with blood serum collected
immediately after an exercise bout compared to the pre-
exercise blood samples. Importantly, breast cancer survivors
(stages I to III) resting serum, collected after 6 months of an
exercise training intervention (carried out after chemotherapy
completion), did not induce changes in the viability of both cell
lineages. Based on these findings, the authors proposed amodel in
which the exercise-induced antitumoral effect is driven by the
repetitive and transient acute spikes in the synthesis of systemic
factors following each exercise bout (Dethlefsen et al., 2017a;
Hojman et al., 2018). In this model, the response to each exercise
bout (e.g., the release of systemic factors, sympathetic activation,
increased blood flow) can induce immediate stress on tumor cell
homeostasis, which might lead to tumoral modifications (e.g.,
improved immunogenicity and metabolism adjustments) and
contribute to slow down tumor progression over time
(Hojman et al., 2017). Although preclinical data suggest that
acute exercise-induced systemic changes can control breast
cancer cell development, the molecular candidates remain to
be better characterized.

miRNA expression is modulated both acutely and chronically
following exercise (D’Souza et al., 2017; Mooren et al., 2014;
Nielsen et al., 2010; Telles et al., 2021; Uhlemann et al., 2014;
Baggish et al., 2011; Banzet et al., 2013; Tonevitsky et al., 2013;
Aoi et al., 2013; Sawada et al., 2013; Nielsen et al., 2014; Baggish
et al., 2014; Mitchelson and Qin, 2015; Russell et al., 2013; Gomes
et al., 2014). For example, miR-133 is canonically expressed in
skeletal muscle (D’Souza et al., 2017; Nielsen et al., 2010; Telles
et al., 2021; Mitchelson and Qin, 2015; Russell et al., 2013) and
significantly increased in the bloodstream (i.e., c-miR-133) after
an exercise bout (Banzet et al., 2013; Baggish et al., 2014; Gomes
et al., 2014; Mooren et al., 2014; Nielsen et al., 2014). Interestingly,
it was demonstrated that miR-133a expression is significantly
reduced in five breast cancer cell lines (MCF-7, MDA-MB-231,
BT-549, SK-BR-3, and T47D) compared to a normal breast cell
line HBL-100, as well as in human breast cancer tissue compared
to adjacent non-cancerous breast tissue (Cui et al., 2013). Thus, it
has been suggested that this miRNA can translocate from skeletal
muscle to circulation and to cancer cells, where it acts as an
exercise-induced systemic factor downregulating tumor
progression. Moreover, Pulliero, You (Pulliero et al., 2020)
showed that an exercise bout modulates the expression of
14 c-miRNAs involved in pathways relevant to the control of
cancer development and progression (e.g., oncogene and
metastasis suppression, cell proliferation, apoptosis, cancer
invasion) in healthy postmenopausal women (54–78 years old).
Specifically, c-miR-206 and c-miR-30c expression were
upregulated and downregulated, respectively. Interestingly,
miR-206 transfection and anti-miR-30c silencing inhibit cell
growth and increase apoptosis of MCF-7 breast cancer cells. It
is noteworthy that miR-206 is also canonically expressed in the
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skeletal muscle (Mitchelson and Qin, 2015; Telles et al., 2021).
Collectively, it is plausible to suggest that miRNAs can translocate
from the muscle to the bloodstream in response to an exercise
bout and regulate gene expression in pathways associated with
tumor growth and suppression in breast cancer cells (Figure 1)
(Dufresne et al., 2018). However, the aforementioned studies
(Adams et al., 2018; Hagstrom and Denham, 2018; Alizadeh et al.,
2019) only investigated the chronic c-miRNA response after an
exercise training intervention in patients with breast cancer.
Therefore, acute changes in c-miRNAs after an exercise bout
(pre and post an exercise training intervention) remain to be
elucidated in patients with breast cancer.

EFFECT OF DIFFERENT EXERCISE MODES
ON C-MIRNAS EXPRESSION IN BREAST
CANCER
Exercise training can induce specific muscular adaptations
depending on the exercise mode (Hawley, 2009; Hawley et al.,
2014; Coffey and Hawley, 2016). For instance, resistance exercise
training interventions maximize neuromuscular adaptations,
such as muscle hypertrophy and strength (Campos et al.,
2002; Mitchell et al., 2013; Bellamy et al., 2014; Nader et al.,
2014; Damas et al., 2016; Morton et al., 2019). On the other hand,
aerobic exercise training interventions improve aerobic muscle
metabolism and cardiorespiratory fitness (e.g., aerobic power)
(Maeda et al., 2001; Coffey and Hawley, 2007; Daussin et al., 2007;
Sloth et al., 2013; Konopka et al., 2014; Milanovic et al., 2015).
Besides different functional and morphological adaptations,
distinct exercise modes can also affect myokines secretion
(Trovato et al., 2019).

The expression of a number of miRNAs (e.g., miR-1, -21, -23a,
-133a, -133b, -181a, -206, -378, and -486) is modulated in the
human skeletal muscle (Camera et al., 2016; D’Souza et al., 2017;
Davidsen et al., 2011; Drummond et al., 2008; Fyfe et al., 2016;
Ogasawara et al., 2016; Telles et al., 2021; Russell et al., 2013; Rivas
et al., 2014; Olsen et al., 2006) and bloodstream (Banzet et al.,
2013; Baggish et al., 2014; Gomes et al., 2014; Nielsen et al., 2014)
following distinct exercise intervention modes. Interestingly,
some of these miRNAs may hamper tumor development,
progression, and metastasis (Si et al., 2007; Zhu et al., 2008;
Cui et al., 2013). In the breast cancer context, Hagstrom and
Denham (Hagstrom and Denham, 2018) showed changes in the
c-miR-133a-3p in high responders relative to low ones after a
supervised resistance exercise training intervention (3 × 8–10
RM, three times per week for 16 weeks). On the other hand, the
previously cited changes in c-miRNAs expression observed in the
study of Alizadeh, Isanejad (Alizadeh et al., 2019) (i.e., lower
expression of c-oncomiRs and greater increase in tumor
suppressor miRNAs in the hormonal therapy-exercise training
group) resulted from an aerobic exercise training intervention.
Aerobic exercise was performed three times per week, for
12 weeks, using a high-intensity interval training protocol,
composed of four sets of 4 min of uphill walking at an
intensity of 90%–95% of the maximum heart rate, interspersed
by 3 min of active recovery, at 50%–70% of the maximum heart
rate. However, performing combined training (i.e., aerobic and
resistance training performed in the same training period) has
been deemed as the gold-standard non-pharmacological strategy
to improve health and quality of life of women with breast cancer
(Herrero et al., 2006; Schmitz et al., 2010; Mijwel et al., 2018; de
Paulo et al., 2019). Also, combined training modulates skeletal
muscle miRNA expression in healthy subjects (Camera et al.,

FIGURE 1 | Hypothesized mechanism of exercise training controlling the progression of breast cancer through the molecular crosstalk between skeletal muscle
and cancer cells. In response to an exercise training bout, miRNAs are produced in the skeletal muscle and can translocate to the bloodstream inserted in extracellular
vesicles, such as exosomes. c-miRNAs reach breast tumor through circulation and act as anti-cancer molecules, decreasing tumor proliferation, weight, and volume
(Images from Freepik.com).
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2016; Fyfe et al., 2016; Telles et al., 2021). Moreover, the
significant reductions in the viability of both MCF-7 and
MDA-MB-231 breast cancer cell lines observed by Dethlefsen,
Lillelund (Dethlefsen et al., 2016) were due to the incubation with
serum from breast cancer survivors undergoing chemotherapy
collected immediately after a 2-h acute combined exercise
protocol. The exercise protocol consisted of 30 min of warm-
up, 60 min of resistance training, and 30 min of a high-intensity
interval exercise bout. Therefore, it is reasonable to suggest that
combined exercise training can increase the expression of specific
c-miRNAs related to the control of breast cancer cells. However,
none of the cited studies (Adams et al., 2018; Hagstrom and
Denham, 2018; Alizadeh et al., 2019) considered the potential of
interventions combining aerobic and resistance exercise
protocols in the same training program in breast cancer.

DISCUSSION

Exercise training has been deemed as a non-pharmaceutical strategy
to counteract breast cancer (Campbell et al., 2019; Patel et al., 2019).
The positive effect of exercise training is mainly driven by
improvements in a set of outcomes (e.g., muscle hypertrophy and
strength, cardiorespiratory fitness, body composition) ultimately
associated with improved quality of life and reduced mortality
risk in cancer patients (Herrero et al., 2006; Schmitz et al., 2010;
Dethlefsen et al., 2017a; Adraskela et al., 2017; Kraschnewski and
Schmitz, 2017; Hojman et al., 2018; Mijwel et al., 2018; Campbell
et al., 2019; de Paulo et al., 2019; Patel et al., 2019). Emerging
evidence suggests that exercise training can also directly affect breast
tumor through changes in exercise-induced c-miRNA levels, which
perform the molecular crosstalk between skeletal muscle and cancer
cells (Hojman et al., 2011; Dethlefsen et al., 2016; Ruiz-Casado et al.,
2017; Dufresne et al., 2018; Figueira et al., 2018; Hojman et al., 2018).
However, existing studies did not have appropriate designs to
determine the exercise effect per se on patients with breast cancer
(Adams et al., 2018; Hagstrom and Denham, 2018; Alizadeh et al.,
2019). Determining this effect is challenging as patients are usually
undergoing cancer treatment (e.g., chemotherapy) or are survivors
with no evidence of recurrent disease. Thus, isolating exercise
training effects from other variables requires implementing an
exercise intervention in the period between the cancer diagnostic
and treatment commencement, named “window of opportunity”
(Ligibel et al., 2019). This window allows investigating the exercise-
induced changes in c-miRNAs expression, tumor biology (e.g.,
tumor metabolism, proliferation), and miRNAs expression in the
tumor concomitantly.

Additionally, the c-miRNA responses of women with breast
cancer or survivors have been investigated only chronically, pre
and post exercise training interventions (Adams et al., 2018;
Hagstrom and Denham, 2018; Alizadeh et al., 2019). As the
direct effect of exercise training on controlling tumor
development has been attributed to the repetitive and transient
spikes in myokines release after each exercise bout (Dethlefsen
et al., 2017a; Hojman et al., 2018), c-miRNA analysis should be
performed before and immediately after it. Furthermore, as

exercise-induced acute changes in muscle transcriptome may
occur over time (Damas et al., 2018), it would be interesting
to compare the changes in c-miRNA expression following an
acute exercise bout performed before and after an exercise
training intervention (i.e., baseline acute effect and post-
training acute effect).

Finally, there is paucity of data regarding the changes in
c-miRNAs expression induced by different exercise training
modes. Importantly, c-miRNA expression is modulated following
combined exercise protocols (Camera et al., 2016; Fyfe et al., 2016;
Telles et al., 2021) and serum from breast cancer survivors, following
a combined exercise bout, decreased cancer cells viability, in a cell
culture model (Dethlefsen et al., 2016). Therefore, another
perspective is to consider the use of combined resistance and
aerobic exercise training protocol to investigate the acute/chronic
c-miRNAs responses in patients with breast cancer.

In conclusion, evidence on the potential of exercise-induced
c-miRNAs in breast cancer control is growing, but the topic is
far from being elucidated. Here, we summarized the current
knowledge into the topic and suggested perspectives for future
experimental designs to investigate the direct role of exercise-
induced c-miRNAs in breast cancer. Advances in knowledge
towards the mechanisms underpinning the exercise-induced
c-miRNAs in breast cancer can be important to determine new
biomarkers related to mitigating the burden of the disease. In
addition, the discovery of molecules related to breast tumor
control can help the development of new technologies with the
potential to treat patients with breast cancer.
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