
Can Occupancy Abundance Models Be Used to

M. Cecilia Latham1*, A. David M. Latham1, Nathan F. Webb2¤, Nicole A. Mccutchen3, Stan Boutin4

1 Landcare Research, Lincoln, Canterbury, New Zealand, 2 Alberta Environment and Sustainable Resource Development, Edmonton, Alberta, Canada, 3 Department of

Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories, Canada, 4 Department of Biological Sciences, University

of Alberta, Edmonton, Alberta, Canada

Abstract

Estimating the abundance of wild carnivores is of foremost importance for conservation and management. However, given
their elusive habits, direct observations of these animals are difficult to obtain, so abundance is more commonly estimated
from sign surveys or radio-marked individuals. These methods can be costly and difficult, particularly in large areas with
heavy forest cover. As an alternative, recent research has suggested that wolf abundance can be estimated from
occupancy–abundance curves derived from ‘‘virtual’’ surveys of simulated wolf track networks. Although potentially more
cost-effective, the utility of this approach hinges on its robustness to violations of its assumptions. We assessed the
sensitivity of the occupancy–abundance approach to four assumptions: variation in wolf movement rates, changes in pack
cohesion, presence of lone wolves, and size of survey units. Our simulations showed that occupancy rates and wolf pack
abundances were biased high if track surveys were conducted when wolves made long compared to short movements,
wolf packs were moving as multiple hunting units as opposed to a cohesive pack, and lone wolves were moving
throughout the surveyed landscape. We also found that larger survey units (400 and 576 km2) were more robust to changes
in these factors than smaller survey units (36 and 144 km2). However, occupancy rates derived from large survey units
rapidly reached an asymptote at 100% occupancy, suggesting that these large units are inappropriate for areas with
moderate to high wolf densities (.15 wolves/1,000 km2). Virtually-derived occupancy–abundance relationships can be a
useful method for monitoring wolves and other elusive wildlife if applied within certain constraints, in particular biological
knowledge of the surveyed species needs to be incorporated into the design of the occupancy surveys. Further, we suggest
that the applicability of this method could be extended by directly incorporating some of its assumptions into the
modelling framework.
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Introduction

Large mammalian carnivores provide conservation biologists

and resource managers with complex challenges, such as

endangered carnivore species recovery, human-carnivore conflict,

and the management of carnivore species to conserve threatened

and endangered prey. An inherent obstacle to the effective

management of carnivores is the difficulty in obtaining reliable

density estimates [1], [2]. Wolves (Canis lupus) are an excellent

example because they are wide-ranging habitat generalists, exist at

low densities, and are often secretive and reclusive, making surveys

that rely on direct sightings difficult or impossible. Consequently,

indirect measures of abundance (e.g., howling surveys, harvest

statistics, catch-per-unit-effort, and hunter sightings) have often

been used instead [3]–[5]. Wolf densities have, however, been

estimated in many locations across North America and are

becoming increasingly common in the literature (e.g., [6]). These

estimates are usually obtained by intensive aerial snow-tracking or

radiotelemetry [7], [8]. However, telemetry studies are expensive,

requiring animal capture and radio-marking, and frequent

monitoring of those individuals (usually over multiple years),

making them impractical for broad regions. Further, in landscapes

with ongoing wolf harvest seasons, it can be difficult to maintain

an adequate sample of marked animals.

More cost-effective approaches such as transect intercept

probability sampling and the sampling unit probability estimator

(SUPE) have been used to estimate the density of wolves and other

carnivore species [9]–[12]. These methods have proven to be

useful in large study areas ($10,000 km2) with open forest-cover

types. However, the reliability of density estimates obtained using

these methods and their cost-effectiveness are questionable in areas

where track networks cannot be followed continuously from an

aircraft due to heavy forest cover [12]. Accordingly, Webb and
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Merrill [13] proposed utilizing the relationship between occupancy

and abundance [14]–[17] to estimate wolf abundance in areas

where other approaches might not be feasible.

Occupancy–abundance relationships are a fundamental pattern

in ecology [18]. Usually occupancy (the number of occupied

survey units) increases with abundance and consequently re-

searchers have applied this positive relationship to estimate the

abundance of organisms via occupancy surveys [19]. However, as

Webb and Merrill [13] note, the inherent difficulty of directly

observing large carnivore species such as wolves remains a major

obstacle and makes the utility of traditional occupancy–abundance

models impractical. Accordingly, these authors suggested that if

sampling could be standardized, an empirically-derived relation-

ship between the proportion of survey units occupied by wolf

tracks and abundance might provide a means to estimate wolf

density. This would, however, require conducting occupancy

surveys across multiple areas with known animal densities, which is

likely unfeasible. As an alternative, Webb and Merrill [13] utilized

movement models to derive an occupancy–abundance relation-

ship from ‘‘virtual’’ surveys of simulated wolf track networks across

a range of wolf pack densities. This technique has the potential to

provide a time- and cost-effective approach to estimating wolf

abundance across broad regions.

The virtually-derived occupancy–abundance relationship de-

scribed above rests on a number of assumptions [13], related

primarily to the biology of the surveyed species. Amongst these

assumptions is that of similar movement rates among sampling

intervals, cohesive social groups, and the ability of surveyors to

distinguish wolf tracks made by lone animals. Furthermore, the

occupancy-derived abundance estimates produced by this model

are scale-specific and will vary with the size of the survey units

[20]. For example, if a survey unit is too small, a greater

proportion of units will be occupied if wolves make long versus

short movements and thus abundance will be overestimated.

Alternatively, if the survey unit size is too big, then the probability

of detecting a species is always high [20], a result which provides

little information when comparing across study areas or over time.

Higher than expected rates of occupancy may also occur if the

pack is not moving as a cohesive unit (e.g., pack members go on

individual forays or are dispersing) and if lone wolves are moving

throughout the study area (e.g., [21], [22]). Because these factors

are likely to vary both within and among study areas, the utility of

the virtually-derived occupancy–abundance approach hinges on

the robustness of the method to changes in these factors.

In this study, we explored an approach similar to that of Webb

and Merrill [13] to estimate wolf abundance using a movement-

based occupancy–abundance model. Our primary objective was to

determine how changing the size of the survey unit affects the

sensitivity of the method to real-world conditions under which this

model would be expected to apply, i.e. variation in wolf movement

rates, changes in pack cohesion, and lone wolf movements. We

compared occupancy–abundance relationships of 36 km2 grids

with 144 km2, 400 km2, and 576 km2 grids. The smallest size

corresponds with the size of the survey unit proposed by Webb

and Merrill [13], the 144 km2 grid corresponds to the average

daily distance moved by wolves in our area during winter (10 km),

the 400 km2 grid corresponds to the 90th percentile of daily wolf

movements during winter, and the largest size corresponds to the

approx. size of the average winter wolf territory in our study area

[8], [21].

Methods

Study Area
We evaluated the robustness of Webb and Merrill’s [13]

movement-based occupancy–abundance model using data from

wolves in the western boreal plains in northeastern Alberta,

Canada. Specifically, we used Global Positioning System (GPS)

location data collected from wolves inhabiting the West Side of the

Athabasca River (WSAR) and western portion of the East Side of

the Athabasca River (ESAR) woodland caribou (Rangifer
tarandus caribou) ranges. This area encompassed approx.

21,000 km2 of boreal mixed-wood and peatland vegetation within

public lands near the town of Wabasca-Desmarais (55u57’’N,

113u49’’W).

Topographic relief within caribou range is minimal (500 m to

700 m), but increases to approx. 950 m in the Pelican Mountains

(adjacent uplands) in the southwest of the study area. The

Athabasca River, which flows south to north between WSAR and

ESAR, is the lowest point at approx. 400 m. The study area is

characterized by numerous other smaller rivers and streams. The

study area is a naturally fragmented mosaic of peatlands (60%) and

upland mixed-woods (40%). Peatlands consisted of black spruce

(Picea mariana) bogs (60% of peatlands) and black spruce–

tamarack (Larix laricina) fens (30% of peatlands). In addition,

marshes and swamps interspersed peatlands throughout much of

the study area. Well-drained upland mixed-woods were dominated

by trembling aspen (Populus tremuloides), white spruce (Picea
glauca), balsam fir (Abies balsamea), and jack pine (Pinus
banksiana).

The study area has been extensively impacted by the energy

sector, which consists of the creation of seismic lines (2–8 m wide)

for exploration purposes and of well pads (1 ha), pipelines, and

roads for oil and gas extraction purposes. Approximately 3.2% of

the study area had been disturbed by the energy sector as of 2007

[23]. Because of the scarcity of merchantable timber in peatlands

(i.e., caribou range), logging is generally confined to upland forests

adjacent to the caribou ranges. Approximately 4.5% of the study

area had been logged as of 2007.

Ethics Statement
Our data collection complied with all relevant federal laws of

Canada and provincial laws of Alberta. Capture and handling

procedures adopted in this study were reviewed and approved by

the University of Alberta Biosciences Animal Policy and Welfare

Committee (Protocol No. 471503), and by the Government of

Alberta (Alberta Environment and Resource Development Wild-

life Research and Collection Permit Nos. 23428 and 23669).

Wolf Data
We used location data from 11 GPS-collared wolves captured

from 8 packs in January 2006–March 2008 (pack sizes: 2–22

wolves, average pack size = 7.8) to derive parameters for

movement-based occupancy–abundance models. We trapped

wolves within WSAR and ESAR using modified foot-hold traps

in summer and we caught wolves in winter via helicopter net-

gunning. We fitted captured wolves with Lotek (Lotek Engineer-

ing, Newmarket, ON, Canada) 4400S (remote downloadable)

collars programmed to obtain a location every 45 minutes in late-

April to mid-June (i.e., wolf denning season) 2006 and every

2 hours for the remainder of our study. We only had 1 GPS-

collared wolf per pack at any time. We differentially corrected

GPS locations to reduce measurement error [24]. Previous trials in

Alberta using Lotek GPS collars (with a high number of channels)
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on wolves have demonstrated minimal habitat-induced bias,

suggesting that further corrections were unnecessary [25].

Wolf movement-based occupancy modelling
The approach described in Webb and Merrill [13] involved

dividing their study area into survey units, a sample of which were

surveyed for the presence of wolves by simulating aerial searches

for wolf tracks two days after fresh snowfall. The proportion of

occupied survey units, as indicated by the presence of wolf tracks,

provides an index of occupancy that can be converted to an actual

wolf density estimate. The size of the survey unit used by Webb

and Merrill [13] (36 km2) was equivalent to that used by the SUPE

protocol [11], and was selected to ensure that the occupancy–

abundance curve did not saturate at the high wolf pack densities

present in their study area. To determine how changing survey

unit size affects the sensitivity of this model to variation in wolf

movement rates, changes in pack cohesion, and loner movements,

we first created four regular survey grids using Geospatial

Modelling Environment [26] in ArcGIS 10.1 (ESRI� Inc.,

USA). Each survey grid covered 14,400 km2 within WSAR

(,70% of the range) but differed in the size and number of

survey units: (1) Grid 36 km2 had 400–6 km 66 km survey units,

(2) Grid 144 km2 had 100–12 km 6 12 km survey units, (3) Grid

400 km2 had 36–20 km 6 20 km survey units, and (4) Grid

576 km2 had 25–24 km 6 24 km survey units.

We then constructed wolf territories for each of 12 wolf pack

densities (0.0–5.5 packs/1000 km2) representing the range of

observed densities across most of North America [6], including

WSAR [8]. For each pack-density, wolf territories were repre-

sented by circular home ranges of sizes varying from 182 km2

(wolf pack density = 5.5 packs/1,000 km2) to 1,800 km2 (wolf

pack density = 0.5 packs/1,000 km2). We distributed wolf

territories in a regular pattern across the study area, assuming

8% overlap with neighbouring territories [6].

To simulate wolf pack movement following a fresh snowfall

event, we first calculated wolf movement parameters including

step length, turning angle, and number of travel moves from 2-

hour wolf GPS locations. Following Turchin [27], we defined step

length as the straight-line distance between two consecutive

telemetry locations and turning angle as the change in direction

between consecutive steps; number of travel moves (steps .150 m)

was quantified over a 2-day period. Because the model proposed

by Webb and Merrill [13] was created to survey wolf tracks in

snow during winter, we only used GPS location data from

December–February (i.e., months with consistent snow cover on

the ground) for our simulations. We assessed differences in average

step length between months and across years. We found no inter-

annual variation in step length (t = 1.66, P = 0.09) and thus

combined data from all years; however, wolf step lengths differed

between winter months (tJan-Feb = 2.72, P,0.05; tJan-Dec = 23.13,

P,0.05; tFeb-Dec = 27.92, P,0.05), with wolf movements being

on average shortest in February and longest in December

(Table 1).

Step length and turning angle distributions were used in a 2-

state, habitat-biased correlated random walk movement model to

move a wolf pack across the landscape for a 2-day interval

following the steps described in Webb and Merrill [13]. The two

movement states in the model were ‘‘moving’’ and ‘‘not moving’’.

Not moving states were identified as those steps ,150 m, which

are generally associated with bed-sites and kill-sites and lead to no

net displacement [28]. The habitat bias in the model was derived

using a resource selection function [29] developed for the WSAR

study area using wolf GPS locations collected between October

and March (i.e., snow-covered months; Appendix S1). Separate

step length and turning angle distributions were developed for

February and December (i.e., the complete range of wolf

movement rates in our study) and used to simulate 1,000 wolf

travel paths within each wolf pack territory for each of the two

months. We verified that simulated movements closely replicated

actual wolf movements by comparing total distance moved (km),

and total number of road, pipeline and river crossings of 22

simulated and real 2-day paths, as paired by the start location of a

real wolf path. Because we assumed that wolf pack territory sizes

decreased as the density of wolf packs increased on the landscape,

we also tested for an effect of changing wolf territory size on winter

wolf movement rates. Winter wolf movement rates were not

influenced by territory size based on a non-significant correlation

between average winter 2-hour step length and winter 100%

minimum convex polygons (rs = 0.23, P = 0.50, n = 11).

To simulate virtual wolf surveys, we randomly selected one 2-

day movement path per wolf territory and then mimicked aerial

surveys within 20% of randomly selected cells in each of the four

survey grids. Occupancy was calculated as the proportion of

survey units that intersected a wolf movement path. We iterated

this virtual survey ten times at each wolf pack density and

calculated the mean proportion of occupied survey units. We

considered ten replicates per simulation to be adequate based on

stabilization of the mean occupancy rate (Figure S1). For our

virtual aerial surveys, we assumed that detectability of wolf paths

within survey cells was 100%, irrespective of survey unit size. We

discuss the implications of this assumption in the discussion.

We tested the sensitivity of the occupancy–abundance relation-

ship obtained for each of four survey grids to variation in (1) wolf

movement rates, (2) changes in pack cohesion (i.e., the number of

individual hunting units within a territory), and (3) lone wolf

movements. To depict variation in wolf movement rates, wolf

travel paths were constructed by drawing 2-hour step lengths and

turning angles from empirical distributions from December (long

Table 1. Two-day movement parameters for 11 GPS-collared wolves in northeastern Alberta, Canada, 2006–2008. Parameters are
based on 2-hour GPS locations.

Month Step length (m) Turning angle (6)

Mean SD Mean SD

December 3,013 2,657 22.46 103.85

January 2,118 2,159 2.56 108.17

February 1,488 1,606 0.48 105.12

Dec. to Feb. 1,928 2,074 0.10 105.12

doi:10.1371/journal.pone.0102982.t001
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movements) versus February (short movements). Changes in pack

cohesion were assessed at three levels: complete pack cohesion (i.e.,

all wolves followed the same movement path), two independent

hunting units, and four independent hunting units. To simulate

movements where each wolf pack was divided into two or four

hunting units, we randomly selected two or four 2-day movement

paths per wolf territory. We assessed the effect of lone wolves

crossing the landscape by comparing simulations assuming no lone

wolves with simulations assuming that 13% of the wolf population

were loners [30]. To construct travel paths of lone wolves, we used

the habitat-biased correlated random walk movement model

described above but with the exception that we did not constrain

movement paths to occur within the boundaries of a territory.

All statistical analyses were performed in R [31].

Results

During the months of December, January and February, wolves

in WSAR were actively moving during 57% 6 14% (mean 6 SD;

range = 38%–82%) of the recorded 2-hour time steps and moved

an average of 1,017 6 595 m/hour. During December, the

distribution of active step lengths followed a log-normal distribu-

tion (Figure S2) with a mean step length of 3,013 m (range

= 162 m–12,283 m; Table 1). Likewise, the distribution of active

step lengths during February followed a log-normal distribution

(Figure S2) with a mean step length of 1,488 m (range = 151 m–

11,843 m; Table 1). Two-day simulated wolf travel paths did not

differ significantly from observed wolf paths in their total length,

number of river or pipeline crossings, or in the number of survey

units intersected in each of the four survey grids (Table 2).

We found that the occupancy–abundance relationship estimat-

ed from the two smaller survey units (36 km2 and 144 km2) was

sensitive to variation in wolf movement parameters (Figure 1a, b).

For any given wolf pack density, occupancy rates were higher if

wolf movements were long (Dec. movements) compared to short

movements (Feb. movements). More importantly, the difference in

occupancy rate increased as wolf pack density increased.

Conversely, the relationship derived using the two larger survey

units (400 km2 and 576 km2) was not as sensitive to variation in

wolf movement parameters, with occupancy–abundance curves

being similar over the range of wolf pack densities that we

simulated (Figure 1c, d).

The occupancy–abundance relationship estimated from all four

survey unit sizes was sensitive to changes in wolf pack cohesion

(Figure 2). Occupancy rates increased as the number of individual

hunting units moving within a given territory increased from a

cohesive pack to four independent units. Further, divergence in

occupancy rate curves between the 3-levels of pack cohesion we

simulated increased as wolf pack density increased. Comparative-

ly, the two larger survey units (Figure 2c, d) were less sensitive to

changes in pack cohesion than the two smaller survey units

(Figure 2a, b). For example, the 36 km2 survey grid estimated that

at a density of 1 wolf pack/1,000 km2 the occupancy rate would

be ,0.2 when wolf packs hunted as a cohesive unit, whereas it

would be ,0.6 when wolf packs split into 4 independent units, i.e.,

a 3-fold difference in occupancy rates (Figure 2a). Conversely, at

that same wolf pack density the 576 km2 survey grid estimated an

occupancy rate of 0.8 when wolf packs hunted as a cohesive unit

and an occupancy rate of ,1 when they split into 4 independent

units, i.e., a smaller difference of 25% (Figure 2d). The sensitivity

of the occupancy–abundance curves to changes in pack cohesion

simulated using the empirical distribution from February (Figure 2)

were very similar to those observed using the step length

distribution from December.

All four grid sizes were sensitive to the inclusion of lone wolves

(Figure 3). For the two smaller survey units, occupancy rates were

higher if lone wolves were included in simulations, with divergence

between the two curves being greatest at higher wolf pack densities

(Figure 3a, b). This divergence was more pronounced for the

36 km2 survey units than for the 144 km2 units; in the latter grid

the two curves converged at densities of ,5.5 wolf packs/

1,000 km2. Similarly, occupancy rates were higher if lone wolves

were included in the simulations using 400 km2 and 576 km2

survey grids; however, divergence between the two curves was

greatest at medium wolf densities. The sensitivity of the

occupancy–abundance curves to the presence of lone wolves

simulated using the empirical distribution from February (Figure 3)

were very similar to those presented using December movements.

Discussion

A parameterized occupancy–abundance relationship has high

value for any wolf monitoring or management program if it can

provide robust estimates of wolf abundance and if the relationship

can be generalized to a number of different systems. However,

deriving such a relationship empirically would be prohibitively

expensive and time consuming. As an alternative, Webb and

Merrill [13] introduced the idea of using an occupancy–

Table 2. Characteristics of 22 real and simulated 2-day wolf travel paths in northeastern Alberta, Canada, 2006–2008.

Path characteristics Real Simulated P-value

Mean SD Mean SD

Path length (km) 15.49 10.61 18.75 5.89 0.21

No. survey units intersected

36 km2 grid 2.55 1.47 3.18 1.59 0.13

144 km2 grid 1.82 1.14 1.73 0.94 0.72

400 km2 grid 1.32 0.57 1.36 0.73 0.67

576 km2 grid 1.27 0.63 1.27 0.63 1.00

No. road and/or pipeline intersections 2.95 4.45 5.45 6.26 0.07

No. of minor river intersections 4.55 4.89 6.45 5.05 0.11

Total length (km), number of survey units (from four different grids) intersected, number of minor river crossings, and number of road and pipeline intersections were
compared used paired t-tests.
doi:10.1371/journal.pone.0102982.t002
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abundance model developed from simulated track surveys to

estimate wolf abundance in large areas of heavy forest cover where

more accepted methods of estimating abundance might be

unfeasible. Despite the obvious novelty and utility of the approach,

our results show that estimates of wolf abundance derived in this

way are highly sensitive to the size of the survey units (also see [14],

[16]), as well as to the biology and behaviour of the species being

surveyed.

We found that smaller survey units (36 km2 and 144 km2) were

more sensitive to variation in wolf movement rates than larger

survey units (400 km2 and 576 km2). As a consequence, estimates

of occupancy, and thereby wolf pack density, will vary widely

depending on distances traveled by wolf packs over the two days

post snowfall event when snow-tracking–occupancy surveys

generally occur. In our study, wolf movement rates were on

average longest in December and shortest in February, probably

reflecting responses to seasonal increases in air temperature and

decreases in snow depth [32]. However, variation in movement

rates can also occur at shorter time scales (i.e., daily as opposed to

monthly) because of differences in travel strategies, such as

intensive versus extensive territorial movements [33], [34].

Further, inter-annual variation in movement rates may also occur

in response to differences in climatic conditions. In any case, the

implication is that management decisions might differ depending

on whether an occupancy survey is completed during a bout of

long versus short distance movements.

Based on our simulations, increasing survey unit size from

36 km2 to 400 km2 or 576 km2 reduced the sensitivity of the

occupancy–abundance relationship to variation in wolf movement

rates. Large survey units are more likely to include the entirety of

long and short movements, whereas small survey units will only be

intersected by portions of a long wolf path, resulting in an

estimated occupancy rate that is biased high. Sensitivity of

occupancy–abundance relationships to the scale at which they

were developed has been reported before [16], [17], [35]. Thus, it

remains challenging to align the spatial distribution of a species

with the appropriate scale at which to sample its occupancy.

Occupancy–abundance relationships were sensitive to changes

in wolf pack cohesiveness, with occupancy rates being biased high

when wolf packs were fragmented into more than one hunting

unit. Whilst wolf packs are relatively cohesive in winter compared

to summer, they can become less cohesive in winter as the

breeding season (Feb.–Mar.) approaches [6], [36]. From a

logistical perspective, ensuring that occupancy surveys are always

conducted during the middle of winter, when packs are more likely

to move as a cohesive unit [37], [38], should control for this

potential source of bias. It should also be noted that the

discrepancy between the estimated occupancy–abundance curves

for one versus .1 hunting units was larger for surveys conducted

within the smaller survey units than within the larger units.

Movement paths created by independent hunting units from the

same wolf pack were still constrained to occur within the territory

boundaries of that pack, which in most cases fell within the same

large survey cell. This result reinforces the fact that large survey

units are less sensitive to changes in wolf pack cohesiveness.

Our final simulation showed that the presence of lone wolves

can affect the estimation of abundance based on occupancy

surveys, albeit small survey units were more sensitive to this factor

than larger ones. This occurred because more independent wolf

units moving throughout the survey grid resulted in an increased

Figure 1. Effects of variation in wolf movement rate on occupancy–abundance relationships. Occupancy–abundance relationships were
estimated from the proportion of survey units in which wolf tracks were detected during simulated aerial surveys as a function of wolf pack density
(No. packs/1,000 km2). Wolf movements were based on February (short movements) or December (long movements) step length and turn angle
distributions from 2-hour GPS locations from 11 wolves, northeastern Alberta, Canada, 2006–2008. Simulations were run for four grids: (a) 36 km2, (b)
144 km2, (c) 400 km2, and (d) 576 km2.
doi:10.1371/journal.pone.0102982.g001
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likelihood of wolf track–survey cell intersections. This effect was

similar to that observed for pack cohesiveness; however, in this

instance lone wolf movements were not restricted to occur within

territory boundaries and thus were more likely to increase wolf

track–survey cell intersection rates. As Webb and Merrill [13]

state, this factor can be accounted for by using experienced

observers that are able to distinguish tracks made by lone

individuals from those made by the pack or sub-units of the pack

(also see [11]). In this case, if only the tracks of lone animal were

identified within a survey unit, the unit would be classified as

‘tracks absent’ for the estimation of occupancy rate. However, the

observations of tracks of lone animals could be used to estimate an

upper bound of wolf abundance.

The simulated occupancy–abundance relationship showed

similar behaviour in response to changes in wolf pack cohesiveness

or the presence of lone wolves regardless of whether long (Dec.) or

short (Feb.) movement rates were used. This suggests that these

factors affect the estimated relationship independently, as opposed

to having interacting effects, and that each source of bias can be

addressed separately. Further, it also shows that the model

performs similarly regardless of the monthly data used to develop

it, suggesting that abundance estimates would be comparable

across surveys so long as they are derived consistently.

In our simulations, the occupancy–abundance relationship most

robust to changes in wolf movement behaviour was that developed

using the largest grid size (576 km2). We chose this size because it

corresponded to the size of an average wolf territory in our area

[8]. Other studies have also used estimated territory size of the

species of interest to define occupancy survey unit size [39], [40].

The rationale behind this approach is that it complies with the

assumption that there should be no (or negligible) movement of

individuals between sampling units, at least during the period

surveyed. In our study area, only three wolf pack territories fell

completely within a single 576 km2 cell, whilst the remaining five

territories overlapped 2–4 cells. Thus, although the entirety of the

wolf territory might not fall within one single cell, the territory

boundary still constrains the simulated wolf movements to occur

within a single or a small number of cells; this was not be the case

for the smaller-cell grids (e.g. wolf territory–cell intersections

ranged from 4 to 26 for the 36 km2 grid). However, variation in

wolf territory size is not uncommon, particularly between study

areas [6], [21], which might complicate the task of determining the

most appropriate scale at which occupancy should be measured.

Conversely, Gopalaswamy et al. [35] showed that using a survey

unit size sufficiently large to circumscribe expected daily move-

ment of the study species provided good estimates of abundance.

Wolves in our study area moved an average of 10 km per day

during snow-covered months, a scale which corresponds to the

144 km2 grid. However, occupancy estimates from this survey grid

were still very sensitive to wolf movement behaviour, probably

reflecting the fact that daily wolf movements can range from 1 to

47 km and thus a large number of movements can still intersect

more than one cell of this grid. Conversely, 97.5% of daily wolf

movements were # 25 km, i.e. approx. the scale of our 576 km2

grid, suggesting that most wolf movements were contained within

a single cell and that is why the larger grid was robust to the

changes in wolf movement behaviour that we simulated. Thus, as

stressed by Gopalaswamy et al. [35], the importance of using

reasonably accurate estimates of daily movement ranges to inform

the design of occupancy–abundance surveys cannot be overstated.

Figure 2. Effects of variation in wolf pack cohesion on occupancy–abundance relationships. Occupancy–abundance relationships were
estimated from the proportion of survey units in which wolf tracks were detected during simulated aerial surveys as a function of wolf pack density
(No. packs/1,000 km2). Movements of one, two, or four wolf hunting units (HU) were simulated using December or February step length and turn
angle distributions from 2-hour GPS locations from 11 wolves, northeastern Alberta, Canada, 2006–2008. Simulations were run for four grids: (a)
36 km2, (b) 144 km2, (c) 400 km2, and (d) 576 km2.
doi:10.1371/journal.pone.0102982.g002
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Our simulations assumed that detection of wolf tracks in snow

was 100% and that it was constant irrespective of survey unit size.

Although it is likely that individual large units will need to be

surveyed along longer flight paths than individual small units, we

believe that other factors such as the amount of closed versus open

habitat or weather conditions will influence detection probabilities

to a larger extent than size [20]. Thus, the approach described

here would greatly benefit from the explicit incorporation of

variable detection rates based on cell size as well as other

influential factors. Further, the length of the flight path per survey

unit will need to be determined before conducting field surveys.

This can be achieved using simulations (as described by Webb and

Merrill [13]) and will likely be a trade-off between maximizing

probability of detecting wolf tracks at an acceptable cost. In cases

where funding is limited, the approach described by Karanth et al.

[41], whereby survey efforts are reduced in cells with low

proportion of habitat for the species of interest, can help alleviate

this trade-off. Other alternative sampling protocols that could be

adapted to the occupancy survey are illustrated in [42].

Occupancy–abundance relationships developed from larger

survey units were more robust to changes in wolf movement

rates, pack cohesion and the presence of lone wolves than those

developed from smaller units. However, larger units showed a

change from a somewhat linear occupancy–abundance relation-

ship to an asymptotic one at high wolf pack densities. Asymptotes

occurred when survey unit size was substantially larger than

territory size, meaning that individual survey cells were likely to

contain multiple packs and their movements. Consequently, the

potential to obtain different wolf densities from similar occupancy

rates arises, and thus the large survey unit model is incapable of

accurately estimating wolf density at high occupancy rates. We

suggest this model will reliably estimate wolf density at occupancy

rates of approx. #0.8, but at higher occupancy rates this model

should only be used to infer that the surveyed region has high wolf

densities (in our example this would be .2 wolf packs/1,000 km2

or .15 wolves/1,000 km2). This information may be adequate for

some management decisions such as reductions in wolf numbers

for threatened woodland caribou conservation [43]–[45]. For

example, wolf densities vary across their distributional range [6],

with densities within woodland caribou distribution generally

being low [30]. In this instance, Webb and Merrill’s [13]

approach, adjusted to an appropriate survey unit size, might

allow managers to infer that wolves are at a density similar to that

reported by Fuller and Keith [30], that they are above this

threshold but below approx. 15 wolves/1,000 km2, or that

densities are .15 wolves/1,000 km2. In the last instance, the

need for wolf control – if this is the management objective – will be

obvious despite the inability of the model to provide accurate wolf

density estimates at high occupancy rates.

Conclusions

Field occupancy surveys based on tracks seen in snow,

combined with occupancy–abundance relationships developed

from simulated wolf paths [13], can be a useful method to monitor

wolves if biological knowledge of the species is incorporated in the

design of such a sign survey. In particular, survey unit size should

be increased to the approx. size of a wolf pack territory, the

presence of lone wolves should be identified by experienced snow-

Figure 3. Effects of the presence of lone wolves on occupancy–abundance relationships. Occupancy-abundance relationships were
estimated from the proportion of survey units in which wolf tracks were detected during simulated aerial surveys as a function of wolf pack density
(No. packs/1,000 km2). Wolf movements were simulated using December or February step length and turn angle distributions from 2-hour GPS
locations from 11 wolves, northeastern Alberta, Canada, 2006–2008. Lone wolves movements were simulated using the empirical distributions from
December or February but without constraining travel paths to occur within territory boundaries. Simulations were run for four grids: (a) 36 km2, (b)
144 km2, (c) 400 km2, and (d) 576 km2.
doi:10.1371/journal.pone.0102982.g003
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trackers, and field surveys should be conducted at approx. the

same time during mid-winter. Of these three requisites, obtaining

accurate estimates of territory size will be most difficult. If an

average territory size for the region of interest is unknown, then we

recommend that wolf density estimates should be considered

coarse (low, medium or high) and best suited for broad

management purposes. Ideally, virtually-derived occupancy–

abundance relationships should be empirically tested; however,

this may be difficult and probably beyond most research budgets.

Further, because the model described here is sensitive to variation

in territory size at high occupancy rates, caution should be given to

generalizing results to other study areas. In this instance, the most

prudent course of action might be to restrict the approach to

estimates of occupancy; that is, using occupancy rates to track

changes in relative abundance. If surveys are designed to

incorporate detectability, error associated with occupancy rates

can be generated, further increasing the interpretative power

associated with using occupancy as an index of long-term

population trends. As is the case with any model that attempts

to recreate the real-world, we showed that the approach suggested

by Webb and Merrill [13] is sensitive to violations of its

assumptions. Thus, we caution practitioners to be cognizant of

the range of conditions under which the model is most likely to

provide reliable measures of abundance. To broaden its applica-

bility and reliability of the estimates, further modelling work could

formally incorporate some of the biological factors into the model

framework itself. Although occupancy surveys will remain

susceptible to logistical factors such as tracking conditions and

observer expertise, we suggest that carefully designed surveys

coupled with virtually-derived occupancy–abundance relation-

ships have the potential to provide cost-effective estimates of wolf

abundance for broad regions.
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