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Abstract

treatment of T2DM.

Diabetes has become one of the major noninfectious diseases that seriously endanger public health. The formation of
islet amyloid polypeptide (IAPP) affects the normal physiological functions of the body, such as glucose metabolism
and lipid metabolism. The mature human IAPP protein (hIAPP) has a strong tendency to misfold and is considered to
be one of the major causes of amyloid changes in islets. Deposition of hIAPP is considered to be one of the leading
causes of type 2 diabetes mellitus (T2DM). Miniature pigs are experimental animal models that are well suited for

research on gene function and human diabetes. In our study, we obtained IAPP gene-humanized miniature pigs via
the CRISPR/Cas9 system and somatic cell nuclear transfer (SCNT) technology. The hIAPP pigs can be used to further
study the pathogenesis and related complications of T2DM and to lay a solid foundation for the prevention and

Introduction

Diabetes mellitus (DM) is one of the most widespread
chronic diseases worldwide. Diabetes causes frequent
urination, thirst, hunger, and weight loss, which are the
most common features of diabetes'. Polyuria, polydipsia,
polyphagia, and weight loss are the most common clinical
symptoms in diabetic patients®>. In 2010, 285 million
adults suffered from diabetes, and the world prevalence of
diabetes was 6.4%, and the prevalence is predicted to
increase to 7.7% (439 million adults) by 2030°. According
to reports, the mortality rate of diabetes, including all age
groups, is approximately 3.96 million people per year*.
According to the WHO-approved classification method,
diabetes can be broadly divided into four categories: type
1 DM, type 2 diabetes mellitus T2DM), gestational DM,
and other special types of diabetes’.

In diabetics, 90% of patients with diabetes are diagnosed
with T2DM?. T2DM, described as a silent disease, is
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characterized by insufficient insulin secretion and insulin
resistance®. The main symptoms of T2DM include dysli-
pidemia, hyperglycemia, hypertension, and athero-
sclerosis’. As of 2015, approximately 392 million people
were diagnosed with the disease, compared with
approximately 30 million people in 1985° According to
reports, the aging of the global population, reduced
exercise, and increased obesity are the main reasons for
the increase in diabetes’. Previous studies have shown
that T2DM is an adult disease, but it has been increasingly
diagnosed in obese children in recent years'. It is
believed that by 2030, T2DM will be the seventh leading
cause of death in the world"".

Islet amyloid polypeptide (IAPP, amylin) was dis-
covered, extracted and named from islet tumor cells and
is a polypeptide hormone containing 37 amino acid resi-
dues; IAPP is secreted by islet beta cells'”. It is mainly
stored in the halo of the secretory granule, secreted in a
pulsed manner under the action of glucose and other
secretagogues'®. Studies have shown that IAPP has a
physiological role in glucose metabolism'* and lipid
metabolism'®. In addition, it also has a toxic effect on
B cells'®. In brief, IAPP forms oligomers that cause beta
cell apoptosis, thereby promoting islet amyloidosis, which
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ultimately leads to the progressive failure of insulin
secretion'”. In the process of glucose metabolism, the role
of IAPP is mainly reflected in the inhibition of glycogen
synthesis, glucose transport, glucose uptake in muscle
tissue and the utilization of glucose by hepatocytes'®,
Moreover, it also increases the output of hepatic glyco-
gen'?, Its effects on lipid metabolism are still unclear™.
The IAPP protein is soluble, and its single subunit state is
unfolded. It can synergize with blood glucose-regulating
hormones, such as insulin, to more precisely regulate
human blood sugar21. However, the mature human IAPP
protein (hIAPP) has a strong tendency to misfold and can
form amyloid aggregates. hIAPP is one of the most highly
aggregated polypeptides of 20 amyloid aggregated pep-
tides that have been discovered thus far*>. Some studies
have reported that islet amyloid deposition was found in
islets of T2DM patients. hIAPP amyloidosis is considered
to be a potentially important cause of T2DM?>.

Pigs are model animals that are closest to humans
except for nonhuman primates®*. Pigs and humans are
very similar in terms of anatomy, physiology and bio-
chemical metabolism®®. Pigs have the advantages of early
sexual maturity, short timespan between generations, high
number of litters, and highly precise genetic modifica-
tion”®, Pigs can be used to study surgical and standard
diagnostic techniques in human medicine; in turn, new
diagnostic methods that have proven effective in pigs can
also be used directly in humans®’. Similar to humans, pigs
are omnivores, and have similar dietary needs and nutri-
tional balance requirements®. The time required for
intestinal food digestion and transformation is also closest
to that in humans®.

At present, there is no recognized ideal animal model
that is completely consistent with the characteristics of
human T2DM>’. Worldwide, studies have shown that
miniature pigs are ideal animal models for studying
human obesity and metabolic-related diseases®'. New
animal models are needed, especially large animal models,
to bridge the gap. Therefore, the establishment of the
hIAPP miniature pig model is of great significance for the
study of the pathogenesis and complications of T2DM.

Results
Amino acid sequence homology analysis of IAPP mature
peptides of various species

The human IAPP gene is located on the short arm of
chromosome 12 and belongs to the calcitonin family. The
89-residue IAPP precursor (PreprolAPP) was first syn-
thesized in islet B cells. Then, PreprolAPP is hydrolyzed
by signal peptidase in the endoplasmic reticulum to form
a 67-residue ProlAPP, which is digested by the pro-
hormone convertase enzyme 1/3 and PC2 in the Golgi.
After entering the secretory vesicle, it is further decom-
posed by carboxypeptidase E (CPE) and amidated
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monooxygenase (PAM) to form a mature IAPP consisting
of 37 amino acids®* (Fig. 1a). The mature IAPP peptides
between different species have high homology. The amino
acid sequence of the IAPP mature peptide between
humans and other species differs mainly at positions 18,
23, 29, and 31 (Fig. 1b). Subsequently, the amino acid
sequence alignment results revealed that the mature
porcine IAPP peptide (95%) was more homologous to the
human peptide (Fig. 1c).

Alignment of pig-to-human mature IAPP peptide sequence
and construction of the IAPP-humanized CRISPR/
Cas9 system

Mature human and porcine IAPP peptide nucleotide
sequences were amplified and sequenced, and the
sequences of differences between hIAPP and pIAPP
were confirmed by alignment (Fig. 2a). The results of the
analysis indicated that the divergence in the nucleotide
sequence of the IAPP mature peptide (33.64%) was higher
than that of the amino acid sequence (15.32%) (Fig. 2b, c).
We designed three sgRNAs targeting exon 3 of pIAPP
(Fig. 2d). Subsequently, the cutting efficiency was detec-
ted, and two sgRNAs had high efficiency (Fig. 2e).
Moreover, off-target detection was performed, and
sequencing results showed that no cutting occurred at
other sites (Fig. 2f, Supplementary Table 1).

The construction process of the mature humanized IAPP
peptide in miniature pigs

Figure 3a is a flow diagram of the construction of the
mature humanized IAPP peptide miniature pigs (hIAPP
pigs). First, four hIAPP-positive cell clones were identified
by cell monoclonal techniques, Sanger sequencing, and
Haell digestion (Fig. 3b, c). Subsequently, the ability of the
four positive cloned cells to develop blastocysts was tes-
ted. After 8.5 days of nuclear transfer, the number of cells
that developed to the blastocyst stage was counted and
stained (Table 1, Fig. 3d, e). Statistical analysis showed
that there was no significant difference in the blastocyst
development rate compared with that of the control
group, and all of them could develop normally.

Growth and development monitoring of hlIAPP pigs
Large white pigs were selected as surrogate sows, the
number of embryos transplanted per surrogate sow was
300, and a total of 5 were transplanted. Four of the sows
were pregnant, and after approximately 120 days of
gestation, 28 piglets were eventually obtained (Table 2).
After Sanger sequencing and Haell digestion, 24 hIAPP-
positive pigs were finally identified (Fig. 4a). Piglets with
similar birth weights were selected for late weight mon-
itoring. The hIAPP pigs and the control littermates were
weighed weekly, and the data showed that the weight gain
of the hIAPP pigs was slower than that of the control pigs
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Fig. 1 Process of human IAPP precursor processing to form mature IAPP and homology comparison of IAPP mature proteins in different
species. a Human IAPP was processed to form mature IAPP. The signal peptide consisting of 22 amino acid residues is represented by blue, the
flanking regions of the original N-terminal and C-terminal regions of IAPP are indicated by green, and the mature peptide sequences are indicated by
red. b Comparison and analysis of amino acid sequence homology of mature IAPP proteins between different species. ¢ Unrooted tree of IAPP
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(Fig. 4b). Approximately 33.3% of the hIAPP pigs died
within the first 2 weeks after birth, and half (50%) died by
6 weeks of age (Fig. 4c).

Phenotypic analysis of hIAPP pigs

The model pigs have good growth and development
(Fig. 5a). The expression of the hIAPP protein at the
transcriptional and translational levels was tested in the
pancreas of hIAPP pigs. Real-time quantitative poly-
merase chain reaction (PCR) results showed that the
expression of hIAPP mRNA was detected in model pigs,
and no expression of hJAPP mRNA was detected in the
littermate control group. Moreover, the expression levels
of hIAPP mRNA were different in model pigs of different
ages; the expression level in older model pigs was higher
than that in younger pigs (Fig. 5b). This conclusion was
also verified by Western blotting. The expression of the
hIAPP protein in 3-month-old model pigs was higher
than that in 3-day-old model pigs (Fig. 5¢). Subsequently,
we performed a pathological analysis of the hIAPP model
pigs. Hematoxylin and eosin (H&E) staining showed that
compared to the control group, the model pig group had
no lesions in the pancreas (Fig. 5d). Blood samples from
hIAPP pigs and wild-type pigs were collected every two
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weeks to determine the relevant physicochemical indexes
of the blood. Statistical significance was observed in the
level of fasting blood glucose when pigs reached 10 weeks
of age, and hIAPP pigs had increased fasting blood glu-
cose with an increasing trend and reached 8.95+
0.55mmol/L at 6 months, showing the symptom of
hyperglycemia (Fig. 5e). However, no significant differ-
ence was discovered in fasting insulin (Supplementary
Fig. S1). Moreover, the results of the glucose tolerance
test at 3 months and 6 months are shown in Fig. 5f.
Compared with that of the control pigs, the glucose uti-
lization rate of the hIAPP pigs decreased significantly (P <
0.05, n=6). Moreover, the results of the homeostatic
model assessment for insulin resistance (HOMA-IR)
showed that from the age of 3 months, the IR index of
hIAPP pigs was significantly higher than that of the wild-
type pigs, indicating that the hIAPP pigs had reduced
insulin sensitivity and increased insulin resistance (P <
0 05, n=6) (Fig. 5g). Taken together, the 3-month-old
hIAPP pigs showed hyperglycemia, decreased glucose
utilization, and increased insulin tolerance, indicating
successful T2DM modeling in hIAPP pigs. Although the
hIAPP model pigs are now 6 months old, since diabetes is
a chronic disease, most of which occurs during old age, it
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Fig. 2 Sequence analysis of mature pig-to-human IAPP protein and construction of the humanized IAPP gene CRISPR/Cas9 system.

a Sequence homology comparison between pig and human IAPP mature protein. The red box marks the different nucleotide sequences of the
porcine and human IAPP mature proteins. The blue box marks the nucleotide sequence that does not cause amino acid changes. b A pie chart of
amino acid differences between the pig and human mature IAPP proteins. The red part indicates the percentage of differential amino acids (33.64%);
the black part indicates the percentage of the same amino acids. ¢ A nucleotide difference pie chart corresponding to the mature IAPP protein of
pigs and humans. The red part indicates the percentage of differential nucleotides (15.32%); the black part indicates the percentage of the same
nucleotides (84.68%). d Schematic representation of sgRNAs to porcine IAPP exon 3. sgRNA targeting sequences are shown, and PAMs are
highlighted in blue. e Genomic sequences of CRISPR target regions in wild-type PFFs and transfected PFFs, as indicated. Cleavage sites are labeled

with red arrows. f Off-target detection. The sequencing peaks showed that both sgRNAs were not cleaved at other sites

is necessary to spend more time monitoring the develop-
ment and changes in their phenotype and the emergence
of complications.

Overall, we successfully constructed and identified the
hIAPP model pigs of T2DM.

Discussion

Studies have reported that IAPP can act on the brain
and exert physiological functions, such as inhibiting gas-
tric emptying and suppressing the appetite®’, and IAPP
can promote insulin and other blood glucose-regulating
hormones to synergize to more precisely regulate the
blood sugar of the human body*. It has been reported
that the oligomer of hIAPP is mainly composed of o-
helical structures and can penetrate the cell membrane
through the membrane and anchor to form a hollow
tubular structure on the membrane, which leads to the
formation of voids and nonselective ion channels in the
cell membrane®. It leads to the leakage of electrolytes,
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such as Na+ and Ca2-+, inside and outside the membrane,
and the osmotic pressure is unbalanced®®. At the same
time, the structure can also cause the formation of vesi-
cles, tubules or membrane defects in the cell membrane,
destroying the coupling between cells, and eventually
leading to cell apoptosis®. In addition, the mature IAPP
fibers in the cells can also induce oxidative stress, which in
turn can promote the production of amyloid deposits,
forming a vicious circle, and can cause apoptosis, even-
tually causing T2DM?®,

Studies have shown that nonhuman primates and cats
can form islet amyloid deposits®’; no islet amyloid
deposits are found in cattle?, rodents*!, or dogs42, and
although amyloid deposits are found in degu, it comes
from insulin formation rather than IAPP aggregation®.
IAPP in ferrets and pigs can form islet amyloid pre-
cipitates, but the IAPP amyloidogenic ability is much
lower in ferrets and pigs than in humans**; rabbits and
hares have only a partial IAPP sequence®™. Although
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that could develop normally into blastocysts, and the results of nuclear staining also prove this conclusion. e Statistical analysis of the blastocyst
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Table 1 Statistical results of the blastocyst development rate

Repeat times of SCNT Type of donor Cell Nuclear donor cell number

Blastocyst number

Blastocyst development rate (%)

1 al 100
2 100
a3 100
C4 100
WT 100
2 @ 100
2 100
3 100
c4 100
WT 100
3 @ 100
2 100
a3 100
Cc4 100
WT 100

17 17
20 20
19 19
21 21
23 23
19 19
22 22
18 18
23 23
18 18
20 20
20 20
19 19
20 20
20 20

many mouse models of diabetes research have been
established using forward genetic and reverse genetic
methods, a number of murine animal models have been
used to study the pathogenesis of human diabetes and its
complications*>. However, the use of model mice does not
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address all phenotypes (such as insulin resistance, obesity,
hyperinsulinemia, and hypercholesterolemia) that tend to
cause a decrease in glucose tolerance and T2DM.
Therefore, the use of rodent models to study the occur-
rence of complications in T2DM is not sufficient. New
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Fig. 4 Generation and identification of hIAPP pigs. a hIAPP-positive pigs were identified by a restriction enzyme digestion assay and verified by
Sanger sequencing. b Kaplan—-Meier survival curves for the hIAPP pigs (n = 6) and WT pigs (n = 6). ¢ Body mass comparison of hIAPP pigs (n = 6) and
WT pigs (n = 6) from birth to 16 weeks of age. *P < 0.05, **P < 0.01, ***P < 0.001

\.

animal models need to be explored, especially large ani-
mal models, to bridge the gap between mouse models and
human patients.

Pigs are the model animals that are the closest to
humans except for nonhuman primates. In many ways,
pigs are attractive model species that mimic human
physiology and pathology™. Global studies have shown
that a miniature pig is an ideal animal model for studying
human obesity and metabolic-related diseases™’. In terms
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of anatomy, physiology, and biochemical metabolism, pigs
are very close to humans, and similar to humans, diabetic
pigs ultimately develop atherosclerosis, which does not
occur in rodents and other animals*®. The anatomical
analysis revealed that there was a difference in the output
of the pancreatic duct system between pigs and humans,
but the pancreatic exocrine and endocrine glands of pigs
were similar to humans in terms of size, shape, body
position and blood supply®. In both human and porcine
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.

species, endocrine cells are mainly found in Langerhans
island, or as a single cell or small cell, as clusters dis-
tributed throughout the exocrine pancreas’. It should be
emphasized that these two species have more uncertain
islet structures than rodents, and humans and pigs are very
similar in terms of the size and composition of islets and
the distribution characteristics of different endocrine
cells’’. Pig and human insulin differ in only the 30th
amino acid of the B-strand, and porcine insulin has been
used to treat human diabetes for decades®. In addition,
the amino acid sequences of incretin, glucose-dependent
insulinotropic polypeptide and glucagon-like peptide-1 are
highly conserved in humans and pigs. These hormones
promote insulin secretion after nutrient dlgestlon53

So far, there is no recognized ideal animal model that is
fully consistent with the characteristics of human T2DM.
There is an urgent need to use modern biotechnology to
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establish a genetically modified miniature pig diabetes
model to study the pathogenesis and preventive measures
of diabetes and its complications. In our study, we
obtained a model of the humanized IAPP gene from the
CRISPR/Cas9 system, providing a new model for studying
human T2DM and its complications, which can be used
to elucidate the genetic phenotype of pathogenesis and
the characteristics.

Materials and methods
Ethics statement

All animal studies were approved by the Animal Wel-
fare and Research Ethics Committee at Jilin University,
and all procedures were conducted strictly in accordance
with the Guide for the Care and Use of Laboratory Ani-
mals. All surgeries were performed under anesthesia, and
every effort was made to miniaturize animal suffering.



Zou et al. Cell Death and Disease (2019)10:823

Construction of CRISPR/Cas9 gene-editing system

The vector backbone, including U6-sgRNA and Cas9
expression elements, was purchased from Addgene
(Plasmid #42230). First, complementary sgRNA oligonu-
cleotides were synthesized, annealed and ligated to the
BbsI sites of the backbone vector to construct the intact
plasmid confirmed by Sanger sequencing analysis.

Isolation and culture of porcine fetal fibroblasts (PFFs)

Thirty-three-day-old fetuses were separated from Bama
miniature sows, and primary PFFs were isolated from
these fetuses. After removing the head, tail, limb bones,
and viscera, these fetuses were cut into small pieces. Then,
small pieces were digested with a sterile collagenase
solution and cultured in DMEM (GIBCO) supplemented
with 15% fetal bovine serum (FBS) at 39 °C and 5% CO, in
a humidified incubator. Isolated PFFs were digested from
the culture dishes with 0.1% (w/v) trypsin in Dulbecco
PBS (GIBCO) and centrifuged at 1000 rpm for 5 min.
Then, after removing the supernatant, PFFs were re-
suspended and cultured in new culture dishes with 15%
FBS in a humidified incubator. Cells at passage 1 were
frozen in FBS containing 10% dimethyl sulfoxide
(DMSO).

Construction of hIAPP donor vector plasmid

The donor vector contained a 500 bp left homologous
arm and a 500 bp right homologous arm. The HAs were
amplified by genomic PCR of Bama miniature pigs and
cloned into the PLB vector (Beijing, China). The hIAPP
gene was synthesized by GENEWIZ (Suzhou, China) and
inserted between the left and right arms.

Electrotransfection and detection of CRISPR/Cas9 system
editing efficiency

Electrotransfection was carried out according to the
previous research®®. First, 3x106 PFFs were electro-
porated with 200 uL of Opti-MEM (GIBCO) and 30 pg
plasmids using 2 mm gap cuvettes of BTX ECM 2001. The
parameters for electrotransfection were as follows: 3
pulses of 340V for 1ms repeated once. After 36 h of
electrotransfection, the cells were digested with 0.25%
trypsin, and the genome was extracted as a template for
the detection of the cutting efficiency of the CRISPR/Cas9
gene-editing systems by PCR.

Positive single-cell-colony selection

After determining the editing efficiency of the CRISPR/
Cas9 system, high efficiency sgRNAs were selected for
electrotransfection. During electrotransfection, 15 pug
hIAPP donor plasmids and 15 pg CRISPR-sgRNA plas-
mids with 200 pL Opti-MEM were added. After 36 h of
electrotransfection, the cells were plated into 20 dishes of
10 cm at a density of 5 x 103 cells per dish. After 8-9 days
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of culture, single-cell colonies were picked and cultured in
24-well plates. Twenty percent of each colony was lysed
using 10 pL of lysis buffer (0.45% NP40 plus 0.6% pro-
teinase K) for 60 min at 56 °C and then 10 min at 95 °C.
The lysate was used to detect cells from positive clones
by PCR. The forward primer was 5'-CAGCTAAACA-
GAGTAAAGAG-3', and the reverse primer was 5'-
GATTTCCCTAGAGTCCACTT-3'. The PCR conditions
were 94 °C for 5min; 94°C for 30s, 55°C for 30s, and
72 °C for 40s for 35 cycles; 72 °C for 5 min; and a hold at
16 °C. The PCR products were ligated into the PLB vector
(Tiangen, Beijing, China) for sequencing. Cells from
positive colonies were expanded and cryopreserved.

Somatic cell nuclear transfer (SCNT) and embryo transfer
(ET)

SCNT and ET were performed according to previous
research®. Four positive colonies were screened and
selected as donor cells for SCNT. The positive cell clones
were injected into the perivitelline cytoplasms of enu-
cleated oocytes. The reconstructed embryos were acti-
vated and cultured to develop into blastocysts. Blastocysts
were stained with Hoechst 33342 for detection of cyto-
toxicity. High-quality blastocysts were transferred into
synchronized recipient pigs.

Genotyping of hlAPP piglets

To confirm the humanized IAPP gene, genomic DNA
was extracted from the ears of piglets and used as the
template for PCR using the 1F/1R primer pairs, as
described above. Partial PCR products were subjected to
electrophoresis and sequencing. Moreover, the rest of the
PCR products were purified using a Normal DNA Pur-
ification Kit (DP204, Tiangen, China), and 2 pg of purified
products were digested with Haea for 2h at 37°C and
identified by electrophoresis.

Off-target assay

Highly similar sequences in the porcine genome were
detected by BLAST, and potential off-target sites (OTS)
were selected for each gRNA. All OTS were PCR ampli-
fied using the genomic DNA of the IAPP-humanized
piglets as templates. Sanger sequencing was performed to
examine off-target mutagenesis.

Body weight and survival curve

The body weights of age- and sex-matched WT and
hIAPP pigs were measured biweekly. A minimum of three
individual animals of each genotype was used in all
experiments.

Quantitative real-time PCR
For the detection of the relative mRNA levels of the
hIAPP gene, total RNA was isolated from pancreas
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samples. The reaction reagents were added following the
manufacturer’s recommendations. The reaction condi-
tions were 95 °C for 15 min; 95 °C for 10s; 60 °C for 20,
and 72°C for 30s for 40 cycles and 95-55°C for 30s
(melting curve). The fluorescence intensity and amplifi-
cation plots were analyzed by BIO-RAD iCycler Thermal
Cycler w/ iQ5 Optical Module for RT-PCR (Bio-Rad, ABI
7500, iQ5). GAPDH was utilized as a reference gene. The
primers used in RT-PCR are shown in the following table.

RT-hIAPP-F (5'-3") CTGGAGCGTGGAGGAGAAC
RT-hIAPP-R (5'-3) TGGCACCAAAGTTGTTGCTG
RT-GAPDH-F (5'-3') ATCCTGGGCTACACTGAGGA
RT-GAPDH-R (5’-3') TGTCGTACCAGGAAATGAGCT

Western blotting

Frozen pancreas samples were ground in liquid nitro-
gen, and the resultant powder was solubilized in lysis
buffer. The extracts were incubated on ice for 50 min and
centrifuged at 12,000 rpm for 10 min at 4°C. Protein
concentrations were calculated using a BCA Protein
Assay Kit (Beyotime, Haimen, China). Equal amounts
(40 ug) of proteins were separated by sodium dodecyl
sulfate polyacrylamide gel electrophoresis on a 4%
separating gel, and the protein bands were electro-
phoretically transferred to a nitrocellulose membrane and
blocked in 5% skim milk powder for 2h at room tem-
perature. The membrane was subsequently incubated
with a primary antibody (Amylin-sc-377530-Santa Cruz
Biotech., Santa Cruz, CA, 1:100) overnight at 4 °C. The
membrane was washed 3 times for 10 min with TBST
buffer. Then, the membrane was incubated for 1 h with
the secondary antibody diluted 1:2000 with TBST bulffer.
Finally, the membrane was visualized with the ECL-Plus
Western Blotting Kit (Beyotime, Haimen, China).

H&E staining

Fresh pancreatic tissue was fixed in 4% PFA, embedded
in paraffin, and sectioned at 5um. The procedure was
followed according to the standard method of H&E
staining.

Detection of fasting blood glucose and insulin levels

Blood was collected from the anterior vena cava of the
experimental group and the control group every 2 weeks.
The animals were strictly fasted for more than 16 h before
blood collection. After the blood samples were collected,
they were taken back to the laboratory and centrifuged at
3°C for 3000 rpm for 10 min. The serum was collected,
and the levels of fasting blood glucose and fasting insulin
in the serum were measured.
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Intravenous glucose tolerance test

After the experimental animals were fasted for 16 h,
50% glucose was injected intravenously at 1.2 mL/kg, and
the injection was completed within 3 min. Blood glucose
levels were measured at 0, 30, 60, 90, and 120 min.

Calculation of insulin resistance index (HOMA-IR)
HOMA-IR is an internationally used indicator for
assessing an individual's insulin resistance level. The cal-
culation method is as follows:
HOMA-IR = fasting blood glucose (FBG, mmol/L) x
fasting insulin (FINS, mU/L)/22.5

Statistical analysis
All data were expressed as the means + SEMs, and
Student’s ¢ test was used for statistical analysis.
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