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Abstract: Severe obesity is associated with an increased risk of admission to intensive care units and
need for invasive mechanical ventilation in patients with COVID-19. The association of obesity and
COVID-19 prognosis may be related to many different factors, such as chronic systemic inflammation,
the predisposition to severe respiratory conditions and viral infections. The ketogenic diet is an
approach that can be extremely effective in reducing body weight and visceral fat in the short term,
preserving the lean mass and reducing systemic inflammation. Therefore, it is a precious preventive
measure for severely obese people and may be considered as an adjuvant therapy for patients with
respiratory compromise.

Keywords: SARS-CoV-2; COVID-19; obesity; ketogenic diet; VLCKD; inflammation; viral infections;
respiratory failure

1. Introduction

Coronavirus 2019 disease (COVID-19), caused by SARS-CoV-2 virus, has spread world-
wide causing a pandemic since March 2020, now leading to new waves of infection. Overall
fatality rate reached 2.3% [1] and, to date, 2,343,069 cases of COVID-19 and 80,253 (3.4%)
deaths have been registered in Italy [2].

In most cases the clinical presentation is characterized by fever, dry cough, fatigue
and mild pneumonia, although critical forms with desaturation and respiratory failure,
septic shock, and/or multiple organ dysfunction can also occur; it has been estimated that
moderate and severe forms can affect 14% and 5% of patients, respectively [1]. COVID-
19 management consists of supportive therapy and preventing respiratory insufficiency
through oxygen therapy or positive ventilation. The most widely adopted therapeutic
protocol is based on the use of antibiotic prophylaxis, steroids and anticoagulant therapy,
although there is no conclusive evidence supporting their role [3]. In order to limit the
typical coagulative hyperactivation and the well-known condition of thrombosis suscepti-
bility [4,5], heparin is now used in early stage COVID-19 patients; however, intensive care
units are gradually filling up again, fearing the national health system collapse.

COVID-19 mortality is highly correlated to the severity of the inflammation-related
cytokine storm and to the presence of multiple comorbidities (obesity, type 2 diabetes, hy-
pertension, chronic obstructive pulmonary disease) increasing the risk of developing critical
forms of infection [6]. In light of these considerations, it is therefore mandatory to pursue
new strategies to reduce risk factors and to limit the development of the cytokine storm
syndrome (CSS) in order to prevent patients’ worsening and access to emergency rooms.

The nutritional approach to COVID-19 patients is extremely important to ensure the
correct amount of nutrients, necessary to face the infection and the body’s capacity to
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face and fight the virus. Current European Society for Clinical Nutrition and Metabolism
(ESPEN) expert statements for COVID-19 patients recommend considering energy needs
of 27–30 kcal per kg body weight and day, and 1–1.3 g per Kg of proteins, depending on
disease status. Fat and carbohydrate ratio are currently suggested to be 30:70 for patients
without respiratory deficiency and 50:50 for ventilated patients [7].

The ketogenic diet (KD), reducing carbohydrates oral intake, allows the hepatic pro-
duction of ketone bodies and the onset of nutritional ketosis as a result of an increased
utilization of fat as metabolic fuel when the availability of glucose is low. Ketone bod-
ies are attracting more and more attention for their anti-inflammatory role and immune
metabolism modulation [8]. Besides the well-known metabolic advantages (better hyper-
glycemia control, reduction of insulin resistance, improvement of hepatic steatosis), several
“non-classical” beneficial effects have been attributed to KDs, including growth factors,
leptin or IGF-1 modulation [9], together with the protection of renal, brain function and
anti-viral effects [10].

KDs provide for a deprivation of carbohydrate content equal to 5–10% of total kcal
daily intake, although the specific macronutrient composition may vary. As reported by
Watanabe et al. [11], ketogenic diets differ mainly in calorie intake and protein content.
High Fat Ketogenic Diets (HFKD) are characterized by a restriction of carbohydrates
(CHO) < 50 g per day with unrestricted intake of fat, a relative increase of protein (0.8–1.2 g
per day), and ad libitum caloric intake; very low-calorie ketogenic diets (VLCKD) are
characterized by approximately the same amount of CHO and protein as in HFKDs, but
significantly lower fat and therefore calorie intake, which goes as low as 600 kcal/daily.
Very low-calorie diets (VLCD), providing a marked restriction of daily calorie intake, are
characterized instead by a variable amount of carbohydrate intake which may or may not
be able to induce ketosis [12] (Table 1).

Table 1. Main differences between ketogenic and low-carbohydrate diets (with the kind permission
of Watanabe et al. [11]).

Kcal/Day CHO/Day Fat/Day Ketosis

High fat ketogenic
diet (HFKD)

Usually
unrestricted <20–50 g Unrestricted Yes

Very low-calorie
ketogenic diet

(VLCKD)
<800 kcal <20–50 g Low Yes

Very low-calorie diet
(VLCD) <800 kcal <20–50 g Low Usually not

Low carbohydrate
diet (LCD) Variable <130 g Low No

While HFKDs are still used in refractory epilepsy in children, VLCKD are now rec-
ommended in severe or sarcopenic obesity, prior to bariatric surgery, to improve glycemic
control, dyslipidemia and for a rapid reduction of cardiovascular risk factors in obese
patients, not responsive to standard diets [12].

Current contraindications to the VLCKD include type 1 diabetes mellitus, kidney
or liver failure, heart failure, cardiac arrhythmias, recent stroke, myocardial infarction,
pregnancy and breastfeeding. Of note, active/severe infections and respiratory failure are
currently among the conditions not recommended for implementing a VLCKD regimen
for a hypothesized immunosuppression and acidosis risk, respectively [13]. Nevertheless,
studies conducted in the past have reported good results, also highlighting some benefits
derived from ketosis [13]. As per HFKDs, patients with CVD, heart, liver or kidney
disease need close medical supervision in order to safely undergo such regimen, and those
with severe dyslipidemia or a history of hypertriglyceridemia associated pancreatitis are
recommended against undergoing this dietary regimen [14].
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The aim of this work is to highlight the potential role of KDs in the management and
prevention of COVID-19, focusing on the beneficial effects that may exert on inflammation,
immune system and respiratory function.

2. Low Chronic Inflammation, COVID-19 and Ketogenic Diet

As described above, severe forms of COVID-19 are characterized by an ineffective
adaptive immune response that leads to a persistence in C-reactive protein (CRP) and
interleukin (IL) -6 elevation [15]. This pattern falls within the so-called chronic low-grade
inflammatory phenotype (CLIP), a phenomenon that underlies many of the diseases asso-
ciated with more critical forms of COVID-19, such as diabetes, obesity, insulin-resistance,
hypertension and atherosclerosis [16]. All these metabolic derangements are closely related
to inflammation triggered by the abnormal expansion of visceral adipose tissue, which
has been shown to predict poor COVID-19 prognosis as well as respiratory indicators [17].
Specifically, the white adipose tissue M1 macrophages secretion of pro-inflammatory cy-
tokines including tumor necrosis factor (TNF) alpha, IL-6, CRP, IL-1, is increased, whereas
a steep decline occurs in the production of anti-inflammatory cytokines like IL-10, the
interleukin-1 receptor antagonist (IL-1RA), and adiponectin. Not only the adipose tissue,
but also the immune cells, liver, brain, muscles and pancreas suffer from the inflammatory
insult in subjects with obesity. Macrophage-like Kupffer cells initiate the inflammatory
process in the liver preceding the inflammatory signals produced by the white adipose
tissue, which may further lead to hepatic-necro-inflammation [18]. Moreover, role of P-loop
domain belonging to the STAND class of NTPases with homology to the oligomerization
module found in AAA+ ATPases (NACHT), Leucine-rich repeat (LRR), and NOD-like
receptors (NLRs) Pyrin Domain-Containing 3 Protein (NLRP3) for maintenance of chronic
inflammation is crucial. In fact, in response to activation of innate immune receptors by
stimuli such as microbial ligands, transcription of pro-inflammatory genes, including those
encoding NLRP3 and pro-IL1β, is induced [19].

KDs inhibit aerobic glycolysis, which has been proven to occur following inflam-
matory activation of cells from both myeloid and lymphoid lineage; in particular, KDs
prevent the differentiation and effector functions of inflammatory cells, while promoting
the differentiation of regulatory subsets. Moreover, the ketone body β- hydroxybutyrate
blocks NLRP3 inflammasome activation [20].

3. Immune System, COVID-19 and Ketogenic Diet

SARS-CoV-2 infects lung cells and enters host epithelial cells through Transmembrane
Serine Protease 2 (TMPRSS2) action and spike protein binding Angiotensin Converting
Enzyme 2 (ACE-2) receptor. After alveolar epithelial cells pyroptosis-induced death and
damage-associated molecular patterns (DAMPs) release, macrophages and monocytes are
recruited and cytokines secreted. More specifically, in case of a dysfunctional immune
response, we observe an abnormal monocytes, macrophages and T-cells infiltration favored
by vascular permeability, a systemic cytokine storm (IL-6, IFN gamma, IL-2, IL-10, Granu-
locyte colony-stimulating factor G-CSF, TNF), clinical worsening (pulmonary oedema and
pneumonia) and widespread inflammation and/or multiorgan damage due to excessive
TNF and reactive oxygen species (ROS) production. On the contrary, in a healthy immune
system, initial inflammation attracts virus specific T-cells to the site of infection, where
they can eliminate the infected cells before the virus spreads. Neutralizing antibodies in
these individuals can block viral infection resulting in early recovery [15]. Noteworthy,
viral infection can also result in an aberrant cytokine production by the immune cells such
as monocytes and macrophages. Elderly people seem to be more susceptible to critical
forms of COVID-19 due to an ageing lung microenvironment causing altered dendritic cell
maturation and migration to the lymphoid organs and to an inefficient IFN response [21].

Karagiannis et al. [22] demonstrated that restricting dietary glucose by feeding mice a
HFKD (72% fat, 2.4% sugar) largely ablates lung-resident type 2 Innate Lymphoid Cells
(ILC-2) and reduces airway inflammation by impairing fatty acid metabolism and the
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formation of lipid droplets. Chronic activation of ILCs, typical of allergenic airway in-
flammation, needs exogenous fatty acids which are transiently stored in lipid droplets
and therefore converted into phospholipids to promote ILCs proliferation. This metabolic
program, imprinted by IL-33 and regulated by the genes Peroxisome proliferator-activated
receptor gamma (PPAR-γ) and Diacylglycerol O-Acyltransferase 1 (Dgat1), is controlled by
glucose availability as well as mammalian target of rapamycin (mTOR) signaling. Moreover,
Goldberg et al. reported that a HFKD allows for better survival and increased protective
IL-17-secreting γδ T cells in the lungs of mice with influenza virus [10], while Ryu et al.
have recently provided preclinical evidence that a HFKD is capable of providing a protec-
tive effect against the animal equivalent of COVID-19 in aged mice, with the maintenance
of a better oxygen saturation and an increase in γδ T cells [23].

4. Obesity, Viral Infections and Respiratory Function

Weight excess is associated with a higher susceptibility to viral infections [3], as
seasonal and H1N1 influenza [24,25], and a higher risk of hospitalization for these con-
ditions [26–29]. In recent years, during the H1N1 influenza pandemic, obesity has been
shown to be associated with hospitalization and death [29] and critically ill patients were
frequently morbidly obese [25]. Similarly to other viral infections, severe obesity is asso-
ciated with a high risk of COVID-19 complications [30]. Among obesity comorbidities,
hypertension, dyslipidemia, prediabetes and insulin resistance might predispose individu-
als to cardiovascular events and increased susceptibility to infection via atherosclerosis.
Resulting cardiac dysfunction and kidney failure can more easily lead to pneumonia-
associated organ failures [31]. Moreover, visceral adipose tissue—a reliable and specific
marker of insulin resistance—has been independently associated with the need of intensive
care unit (ICU) resulting as the strongest predictor of worse prognosis in patients with
COVID-19 [17]. Considered this, a nutritional approach that can break down insulin re-
sistance such a HFKD, might have beneficial implications in COVID-19 prognosis likely
without any detrimental effects.

Obese patients are predisposed to the development of chronic and acute respiratory
illnesses [32,33], including respiratory tract infections [34]. The reasons for this suscepti-
bility to respiratory disease are many and not completely elucidated yet [35,36]. Obese
people have alterations in respiratory physiology [37] and immune response [24,33] and,
consequently, develop a lower response to antiviral therapies and vaccinations [24]. The
alterations in respiratory physiology consist in a decreased functional residual capacity
and reduced expiratory reserve volume, hypoxemia and ventilation perfusion abnormali-
ties [28,37]. The presence of Obstructive Sleep Apnea Syndrome (OSAS), which is common
in obese people, may predispose the patients to COVID-19 complications [38].

Obesity is characterized by low-grade systemic inflammation, that may be related
to the pathogenesis of respiratory conditions [33]. Fat tissue may accumulate within the
lungs, as observed in the airways of obese humans [39] and in the alveolar interstitium of
obese diabetic rats [40]. Adipose tissue accumulation in the outer wall of large airways
positively correlated with inflammatory infiltrate of eosinophils and neutrophils in patients
with fatal asthma [39].

Animal models of obesity showed that during influenza infection there is increased
lung permeability, leading to protein leakage into the bronchoalveolar lavage fluid. For
the resolution of the infection, the repair of the damaged epithelial surface is required, but
wound repair is impaired. Increased lung oedema and oxidative stress have been observed
as well [24].

There is evidence that immune system functioning is altered in obesity. T-cells diversity
is reduced and this may be related to the T-cells poor response to influenza virus [24].
CD8+ T memory cells has been shown to be impaired, with consequent exacerbates lung
complications and mortality [33]. These cells are responsible for an efficient immune
response to vaccination [33], with consequent reduced response to vaccination in obese
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people [24]. Moreover, obesity may be a factor that exacerbates the aging of the immune
system [24].

In addition, the high ACE-2 expression in adipose tissue may play a role in obese
patients’ susceptibility to COVID-19 infection, since SARS-CoV-2 shows high affinity for
this enzyme [41].

Therefore, interventions aimed to weight loss in obese patients are warranted to pre-
vent viral infection susceptibility and their complications and theoretically may ameliorate
respiratory function.

5. Low-Carbohydrate Ketogenic Diets and Respiratory Function

VLCKDs are, to date, contraindicated for obese patients with respiratory failure [12].
However, some studies reported some beneficial effects from high-fat low-carbohydrate
diets and detrimental effects of carbohydrate loads on respiratory parameters. These
studies, anyway, often did not specify if patients were in ketosis, but used low amount of
CHO, possibly leading to ketosis.

Two studies on a total of 40 healthy patients [42,43] reported that a VLCKD
(848 kcal/day; protein: carbohydrate: fat = 43:14:43%) and a HFKD (10% calories from
carbohydrate) diet reduced CO2 output without modifying oxygen uptake. Moreover, Ru-
bini et al. compared a VLCKD regimen to a hypocaloric Mediterranean diet showing that
only the VLCKD significantly decreased respiratory exchange ratio (p < 0.05) in addition to
higher fat mass loss in healthy patients. Therefore, these diets may be helpful in respiratory
patients for reducing CO2 body stores levels and dyspnea at rest. On the other hand, a
study on 17 healthy women who were administered a HFKD (2400 kcal/day), reported
earlier muscle fatigue during daily life activities [44].

Chronic Obstructive Pulmonary Disease (COPD) is often accompanied with hypercap-
nia and hypoxemia. A reduction in carbon dioxide production would reduce the workload
of respiratory muscles and therefore be beneficial for these patients. Some studies focused
on the administration of HFKD in COPD patients, and beneficial or, at least, neutral results
were observed.

In twelve clinically stable COPD patients, the administration of a high-fat meal had
a small effect on gas exchange parameters compared to 12 healthy controls, whereas a
high-carbohydrate diet was detrimental on gas exchange parameters, especially in COPD
patients [45]. No differences in pulmonary function were detected in 36 COPD patients
comparing the administration of a moderate-fat meal with a high-fat meal [46]. On the other
hand, the administration of a HFKD in COPD patients with hypercapnia led to an amelio-
ration of respiratory parameters in an overall sample of 74 underweight patients [47,48].

In patients with respiratory failure, providing an adequate protein intake is extremely
important to preserve skeletal muscle mass and function [7]. A high-fat low-carbohydrate
diet has been reported as a potential useful tool to ameliorate respiratory failure [49–51].

In the literature, there are some evidences of a beneficial effect of a high-fat low-
carbohydrate diet in mechanically ventilated patients [52–54], since it was able to reduce
PaCO2 levels [52,53,55] and the time of mechanical ventilation [52,53].

6. COVID-19, Lockdown and KDs

Both HFKD and VLCKD represent valuable treatments despite being characterized by
the presence of contraindications and capable of causing side effects. Therefore, they should
be followed under strict medical supervision and be considered similar to pharmacologic
treatment. A concern may be that during the isolation imposed during the pandemic, it is
difficult to monitor a patient on the ketogenic diet undergoing rehabilitation. Just a few
studies reporting the administration of a ketogenic diet during this pandemic have been
published, and to the best of our knowledge none published results on its use in COVID-19
infected and/or respiratory patients yet.

Kossof et al. [56] administered a HFKD to patients with uncontrolled seizures, mainly
children, during the pandemic, using a combined approach with in person meetings and
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telemedicine. The authors and the other members of the International Ketogenic Diet Study
Group, pediatric consensus group, reported no issues regarding the maintenance of ketosis
and seizure control in their group, and raised no questions about the safety of the ketogenic
diet in case of respiratory infection. A similar approach in similar setting was used by
Ferraris et al. [57] and no major issues were reported, but they did not specify if any of
their patients was infected by COVID-19.

Soliman et al. [58] proposed the use of a ketogenic diet and intermittent fasting,
with administration of medium-chain triglycerides, as a prophylactic measure and an
adjuvant therapy for COVID-19. In fact many viruses, as the varicella-zoster [59], the
cytomegalovirus [60] and the hepatitis C [61], need the fatty acid metabolism pathway for
their replication, therefore the diet-induced metabolic switch leading to a reduction in the
fatty acid synthesis pathways may help in reducing viral replication [58].

7. Conclusion and Future Perspective
7.1. KDs in COVID-19 Prevention

Obesity, and in particular visceral abdominal fat, has been indicated as an indepen-
dent risk factor for worse prognosis in COVID-19, often associated with the need for
intensive care [17,30,41,62]. These may be due to the impaired respiratory mechanics, in-
creased airway resistance and impaired gas exchange [25,28,54], as well as obesity-related
comorbidities [63], which appear to be directly related to the onset of complications and
severe course of COVID-19. In particular, OSAS [38], metabolic syndrome, hypertension,
Non-Alcoholic Fatty Liver Disease (NAFLD) and diabetes or insulin resistance have all
shown to affect COVID-19 outcome negatively [55–58]. Finally, it should not be overlooked
that obesity is associated with low chronic inflammation within a state of immunological
dysfunction that can lead to increased risk of allergies [64] or ineffective response against
infections [35] and vaccines [65].

KDs, and specifically VLCKDs, demonstrated to induce weight loss and diabetes
remission. VLCKDs are currently used in bariatric surgery preparation [12] thanks to
the ability in reducing hepatic volume [11] with a subsequent improvement in intra and
post-operative care. Recent findings underlined immune advantages derived from ketone
bodies, such as blockage NLRP3 inflammasome [20], reduction in chronic activation of
ILCs and induction of protective γδ T-cells against infections [10]. Taken together, in
addition to the benefit of airway inflammation prevention by impairing the formation of
lipid droplets [22], KDs could be an excellent tool to prevent the infection and stem the
damage induced by COVID-19 in the fragile population affected from obesity.

7.2. KDs in Supportive Care of COVID-19

Studies conducted in mice highlighted the beneficial effect of HFD- induced ketone
bodies in COVID-19 models [10,23]. In humans, HFKDs has been experimented in Inten-
sive Care Units (ICU) and good results have been reported in mechanically ventilated
patients [52,55]. Moreover, telemedicine achieved good results in pediatric epileptic pa-
tients under HFKDs, either for safety and compliance, proving that it can be a valid tool to
be adopted even in the event of quarantine and fiduciary isolation. On the basis of these
considerations, several authors proposed KDs in COVID-19 management and some clinical
trials are ongoing [66,67].

7.3. KDs during Rehabilitation Post SARS-CoV-2 Infection

Patients affected from COVID-19, especially elderly ones, often require ICU for a
longer period (up to 20 days) than other more typical uses of ICU. Among Post Inten-
sive Care Syndrome (PICS), impaired exercise tolerance, neuropathies, muscle weak-
ness/paresis, severe fatigue are responsible for decreased exercise capacity, disability
and compromised quality of life for months, even years after intensive care [68]. Mus-
cle atrophy, as well as obesity and immune dysregulation, is associated with Growth
Hormone/Insulin-like Growth Factor 1 (GH/IGF-1) impaired axis and might be a link
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between IGF-1 downregulation and COVID-19 severity [69]. Preserving muscle mass is
essential in order to improve rehabilitation and to reduce costs for recovering people.

VLCKDs preserved muscle mass in obese patients [70,71] when a protein intake of
at least 1.2 gr of protein/Kg was ensured; the same results have been confirmed when
isocaloric KDs have been used in patients affected from multiple sclerosis, reporting a
superiority compared to Mediterranean diet [72]. Furthermore, HFKD (75–80% calories
from fat, carbohydrates <50 g per day and <10 g per meal) improves quality of life,
lean mass and metabolic parameters (included IGF-1) in oncologic patients, compared to
standard diet [73].

In conclusion, VLCKDs administration might be considered in severely obese patients
as an effective adjuvant therapy for COVID-19, first of all as a preventive measure, to
achieve a fast weight loss [67], and secondly as an adjuvant therapy during rehabilitation
(see Figure 1). More challenging is the hypothesis of administering HFKD during hospital-
ization or even more in delicate settings such as an intensive care unit or during positive
ventilation; although several data support the evidence that limiting carbohydrate intake
and promoting ketone formation may be helpful in ameliorating respiratory parameters.
Furthermore, as extensively discussed, HFKDs show a strong anti-inflammatory effect and
some data suggest that they may be useful for reducing viral replication. However, many
studies are old, the samples small, and the ketosis not specifically addressed, therefore new
clinical trials are needed. Hoping that the promising results observed in animal studies can
be passed on to humans, we herein suggest considering KDs as an option to be considered
for COVID-19 management within the current indications.
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