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Somatostatin receptors (SSTRs) are widely distributed throughout the human body and play crucial roles in 
various physiological processes. They are recognized as key targets for both radiotherapy and radiodiagnosis 
due to their overexpression in several cancer types. However, the discovery and design of selective drugs for 
each of the five isoforms have been significantly hindered by the lack of complete structural information. In 
this study, we conducted a systematic computational analysis of all five SSTRs in complex with the endogenous 
ligand somatostatin to elucidate their structural and dynamic features. We thoroughly characterized each isoform 
using available experimental structures for SSTR2 and SSTR4, as well as AlphaFold2 models for SSTR1, SSTR3, 
and SSTR5. By performing multi-copy μs-long molecular dynamics simulations, we examined the differences 
and similarities in dynamical behavior and somatostatin binding among all SSTRs. Our analysis focused on 
understanding the opening and closing movements of the extracellular loop 2, which are crucial for ligand 
binding and recognition. Interestingly, we observed a unique conformation of somatostatin within the binding 
pocket of SSTR5 in which the loop can partially close, as compared to the other isoforms. Fingerprint analyses 
provided distinct interaction patterns of somatostatin with all receptors, thus enabling precise guidelines for the 
discovery and development of more selective somatostatin-based pharmaceuticals tailored for precision medicine 
therapies.
1. Introduction

Precision medicine aims to tailor therapeutical approaches to match 
“the right drug for the right patient at the right time” [1]. This approach 
considers individual genetic, phenotypic, and psychosocial characteris-
tics [2–5], offering several advantages such as considerable off-target 
effects reduction [6]. However, the effectiveness of precision medicine 
depends significantly on the availability of drugs tailored to their tar-
gets [7,8].

One effective strategy involves targeting different isoforms of pro-
teins that serve as good biomarkers for certain diseases [9]. Somato-
statin receptors (SSTRs) are a prime example in this context. Belonging 
to the class A G-protein-coupled receptors (GPCRs), SSTRs exist in five 
isoforms: SSTR1, SSTR2, SSTR3, SSTR4, and SSTR5, sharing common 
structural features with sequence identities ranging approximately in 
the range 40–60% (see Table 1) [10]. Phylogenetic analysis groups 
SSTRs into two sub-families: SRIF1 (SSTR2, 3, 5) and SRIF2 (SSTR1, 4) 
[10]. The endogenous agonist for SSTRs is somatostatin [11], a cyclic 

* Corresponding authors.

peptide hormone that exists in 14-residues (SST14) or 28-residues ac-
tive forms (Fig. S1A) [10].

SSTRs are widely expressed throughout the human body (Fig. 1), 
regulating a variety of physiological functions [10]. However, they are 
also known to be generally involved in the progression of neuroen-
docrine tumors [13]. For this reason, several compounds have been 
developed to specifically target each isoform. More specifically:

• SSTR1 primarily affects prolactin and calcitonin secretion [14] and 
is predominantly expressed in prostate cancer [15]. While some 
somatostatin analogs are known to preferably bind this receptor 
[16], such as pasireotide (Fig. S1D) [17], at present there are no 
pharmaceuticals approved specifically for SSTR1.

• SSTR2 is the most prevalent isoform, regulating processes like 
growth hormone, insulin, glucagon, and stomach acid secretion 
[18]. It is overexpressed in various cancers, especially gastroen-
teropancreatic neuroendocrine tumors [19]. As to date, a few phar-
maceutical compounds targeting SSTR2 have been approved (see 
below).
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Fig. 1. Bio-distribution of the five SSTR isoforms in the human body (image generated with BioRender).
Table 1

Sequence identity matrix (percentages com-
puted with ClustalOmega [12]).

SSTR2 SSTR3 SSTR4 SSTR5

SSTR1 60 46 45 48
SSTR2 – 44 45 51
SSTR3 – – 49 52
SSTR4 – – – 56

• SSTR3 inhibits cell proliferation and induces apoptosis [14], serv-
ing as a biomarker for non-functioning pituitary adenomas [20]. 
While there are no approved drugs specific for this isoform, 
a promising cyclic hexapeptide pan-SSTR agonist with high affinity 
for SSTR3 has been recently identified (ITF2984) [20].

• SSTR4 is the least expressed in cancer [21], but uniquely medi-
ates analgesic and anti-inflammatory effects of somatostatin [22]. 
SSTR4 agonists like J-2156 (not yet approved) offer a potential al-
ternative to opioids for chronic pain reduction, being expressed in 
the central and peripheral nervous system [23].

• SSTR5, similar to SSTR2, is mainly found in the brain, pituitary 
glands, pancreas, and gastrointestinal tract [14]. It is often co-
expressed with SSTR2 in neuroendocrine breast cancer [24]. A po-
tential antagonist for the control of glycemia, named S5A1, shows 
a subnormal affinity for SSTR5 [25].

Approved FDA drugs targeting SSTRs are either peptides (e.g., oc-
treotide [26], lanreotide [27], pasireotide [28]), or non-peptides (e.g., 
paltusotine [29], see Fig. S1B-E), sharing a 𝛽-sheet portion featuring an 
aromatic group (typically tryptophan) and a basic positively charged 
moiety (for example, a lysine) accommodated in the deepest part of the 
binding pocket (Fig. 2A) [30]. These structural features are exploited in 
developing radiopharmaceutical drugs for cancer therapy and diagnosis 
[18,31].

Knowledge of the 3D structure of SSTRs is crucial in the devel-
opment of compounds targeting specifically each isoform. Computa-
tional approaches combining homology modeling and molecular dock-
ing have provided insights into ligand binding to different SSTR iso-
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forms [33–37]. Recent experimental structures of SSTR2 and SSTR4 
Fig. 2. Somatostatin (black sticks) bound to the binding pocket of SSTR2 (gray
cartoon). The aromatic group (tryptophan) and the positively charged moiety 
(lysine) are highlighted in orange. The ECL2 is highlighted in warmpink. Exper-
imental structure taken from PDB ID 7T10 [32].

[32,38] (see Table S1 for the complete list of available structures) have 
shed light on key structural features of somatostatin binding and its ago-
nists or antagonists. The extracellular loop 2 (ECL2) was found to play a 
significant role in ligand binding and stabilization. In the case of SST14 
and peptide analogues, the difference in the orientation of the disulfide 
bridge was reported to be peculiar for each receptor-ligand complex 
[30]. Molecular insights into the coupling with the G-protein, ligand 
selectivity and receptor activation were additionally provided [32].

Despite these precious insights, a comprehensive structural and dy-
namic characterization of all five isoforms is lacking. Leveraging avail-
able structural data, we previously conducted molecular dynamics (MD) 
simulations of SSTR2 with somatostatin analogs [39] and radiopharma-
ceutical compounds [31]. In this study, we systematically investigated 

the dynamics of all SSTR isoforms interacting with the endogenous ag-
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Fig. 3. Scatter plot of the active region for SSTRs. The gray area represents the active (agonist-bound) region (16–22 Å, 48–77°), the blue area is the inactive 
(antagonist-bound) region (19–25 Å, 34–48°) and the red area is the apo region (22–28 Å, 30–47°) [43].
onist SST14. Using experimental co-structures of SSTR2 and SSTR4 and 
AlphaFold2 [40] models for the others, we characterized receptor struc-
tures and their binding pocket compositions as well as major somato-
statin binding modes. Our simulations revealed a unique behavior for 
the complex with SSTR5 in which somatostatin assumes a rotated con-
formation within the binding pocket, as compared to the other isoforms. 
This leads to the complete closure of the ECL2 and the establishment of 
distinct ligand-protein interactions, as further revealed by fingerprint 
analysis. Although further experimental validation is needed, overall, 
our findings offer detailed structural insights for the rational design of 
somatostatin-based drugs, particularly targeting SSTR5.

2. Results and discussion

To set-up the structures of all isoforms for our investigation, we took 
the experimental structures of SSTR2 and SSTR4 and AlphaFold2 mod-
els of SSTR1, SSTR3, and SSTR4 (see Methods for details). All SSTRs 
exhibit the typical class A GPCR structure, comprising seven trans-
membrane helices (TMs) alternated by three intracellular loops (ICLs) 
and three extracellular loops (ECLs) (Fig. S2). The primary sequence 
length varies from 364 residues in SSTR5 to 418 residues in SSTR3 [10]
(Fig. S3). By superposing the five conformations we could discern how 
these differences in primary sequence translate into structural varia-
tions among isoforms. Notably: (1) SSTR2 has the shortest TM5 (36 
residues compared to 41 in others); (2) SSTR4’s TM6 is five residues 
shorter than in SSTR1, SSTR3, and SSTR5, and four residues shorter 
than in SSTR2; (3) TM7 is shorter in the SRIF2 family (25 residues in 
both SSTR1 and SSTR4) compared to the SRIF1 family (27 residues in 
SSTR2 and 28 residues in SSTR3, SSTR5) [30].

For clarity, receptor and ligand residues are denoted using three-
letters and one-letter notations, respectively. The Ballesteros-Weinstein 
numbering scheme for class A GPCRs [41] is adopted throughout the 
paper.

To generate complexes of AlphaFold2 models of SSTR1, SSTR3, and 
SSTR5 with SST14, we employed a molecular docking protocol vali-
dated with available structural data (see Methods for details). In all 
cases, the best docking poses (Fig. S4A-E) exhibited a binding mode al-
most superimposed to the experimental structures of SSTR2 [32] and 
SSTR4 [30]. Subsequently, we conducted multi-copy all-atoms MD sim-
ulations of the five complexes, totaling 10 μs each. Hereafter, we discuss 
separately the stability of the systems during MD simulations and the 
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detailed SST14/SSTR interactions.
2.1. All systems are stable during molecular dynamics simulations

As depicted in Fig. S5A-E, all complexes exhibit considerable sta-
bility throughout the MD simulations, with average root-mean-square 
deviation (RMSD) values of the backbone C𝛼 below 2.5 Å. Similarly, the 
root-mean-square-fluctuation (RMSF) of the backbone C𝛼 (Fig. S6A-E) 
indicates higher flexibility in the intra- and extracellular loops com-
pared to the transmembrane helices, which remain highly stable. In-
terestingly, although the extracellular loop 2 (ECL2) is the longest one 
in each isoform (SSTR1, 4: 20 residues, SSTR2: 22 residues, SSTR3: 17 
residues, SSTR5: 16 residues), it is not always the most flexible por-
tion of the receptor. In SSTR3 and SSTR5, both the intracellular loop 2 
(ICL2) and ECL2 exhibit fluctuations of about 2.0–2.5 Å. However, the 
RMSF of ECL2 is approximately 4.5 Å, while the corresponding value 
of ICL2 remains around 2–2.5 Å. Fluctuations involving ICL3 may be 
attributed to the absence of the G-protein, which was not simulated 
to reduce computational costs [31]. Fluctuations of the ligand heavy 
atoms (Fig. S7A-E) indicate its stability within the binding pocket in 
all cases, following the order SSTR2=SSTR3 (3.1 ± 0.6 Å) < SSTR4 
(3.5 ± 0.7 Å) < SSTR1 (4.0 ± 1.0 Å) < SSTR5 (4.8 ± 1.0 Å). Despite 
minor deviations, the RMSD of all replicas always reaches a plateau, 
demonstrating overall ligand stability. Notably, SST14 fluctuations pri-
marily occur at the terminal portions, while residues W8 and K9 remain 
stably bound in the deepest part of the pocket (Fig. S8A-E) [30,32,39].

For subsequent analyses, the five MD replicas of each complex were 
concatenated. To further assess system stability, we monitored two ge-
ometric variables along the MD trajectories that discriminate between 
active and inactive forms of class A GPCRs [42,39]. These variables de-
scribe the outward displacement of TM5 and TM6 (distance 𝛿 between 
C𝛼 atoms of residues in positions 5.55 and 7.46), the inward move-
ment of TM7 at the intracellular side, and the inward shift of TM5 and 
TM7 at the extracellular side (angle 𝜃 between C𝛼 atoms of positions 
6.34, 6.47, and 2.41) [43–46]. As depicted in Fig. 3, all systems explore 
the active region of the plot (agonist-bound), with distance 𝛿 and angle 
𝜃 spanning approximate ranges of 16–22 Å and 48–77°, respectively. 
These results further validate the overall stability and reliability of the 
AlphaFold2 models used for SSTR1, 3, and 5 isoforms.

2.2. ECL2 closes upon somatostatin in SSTR5 but not in the other isoforms

The ECL2 is known for its significant role in facilitating the bind-
ing and recognition processes of somatostatin receptors, impacting the 

stability of ligand binding [32,38,39,47–49]. In previous analyses, we 
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Fig. 4. Scatter plot of the ECL2 opening and closing movements. Each point of the plot refers to a frame of the MD trajectories. The results for SSTR1, 2, 3, 4, 5 are 
colored in green, yellow, blue, purple and red respectively. The gray box includes the frames in which the ECL2 is in the closed conformation. The distance values 
range from 27 to 41 Å, the angle values from 22 to 178° [39].
identified two geometric descriptors characterizing ECL2 movements: 
(1) the distance 𝛿 from the center of mass (COM) of the C𝛼 atoms at the 
tip of ECL2 to the COM of all TMs, and (2) the angle 𝛽 formed by the C𝛼
atoms of the residue at the top of ECL2 and the COM of residues at the 
base of ECL2 and ECL3 (see Methods, and Table S2 for the complete list 
of residues) [39]. In this study, we retained these metrics but refined 
angle 𝛽 to account for differences in ECL2 length among isoforms (see 
Methods). We maintained the 𝛿 threshold for the closed conformation 
in the range 24 < 𝛿 < 33 Å and updated the one for 𝛽 to 20 < 𝛽 < 60 
degrees. These quantities were computed for the entire MD trajectory 
of each complex and depicted in the scatter plot shown in Fig. 4.

Consistently with previous observations for SSTR2 [39], we found 
that in SSTR1 and SSTR3 the loop predominantly remained in the open 
configuration for nearly 100% and ∼90% of the simulation time, respec-
tively, likely due to steric hindrance imposed by SST14. Interestingly, 
in SSTR5 the loop closed approximately 29% of the total simulation 
time. This discrepancy, partially attributable to varying loop lengths, 
suggested a possible role of specific interactions between somatostatin 
and each isoform. Further investigation into detailed ligand-receptor 
interactions was thus conducted using complementary computational 
techniques.

2.3. Characterization of somatostatin main binding modes

To elucidate the dominant binding modes of somatostatin in differ-
ent isoforms, the full MD trajectories of each complex underwent cluster 
analysis (see Methods). This analysis identified three significantly popu-
lated conformational clusters of SST14 for each system. Across all cases, 
a dominant cluster emerged (populations of 86%, 72%, 63%, 55%, and 
49% for SSTR1–5, respectively) that did not substantially differ from 
the others, exhibiting RMSDs ranging from 0.7 Å to 3.6 Å (Table S3), 
reaffirming once more the overall ligand’s stability. Notably, the most 
populated clusters of SSTR2 and SSTR4 closely resembled their respec-
tive experimental structures, with RMSD values of 0.6 Å and 1.1 Å, 
respectively. The structural comparison between representatives of the 
most populated clusters is depicted in Fig. 5, while comparisons for the 
second and third clusters are provided in Fig. S10A-E.

Interestingly, the major binding modes exhibited striking similarity 
across all isoforms, with the only exception of SSTR5. In this case, the 
ligand showed an average rotation of its middle and upper segments 
by approximately 90°. Furthermore, residue W8 appeared rotated by 
∼180° compared to other isoforms (Fig. S11). Consequently, the orien-
1314

tation of the SST14 disulfide bridge was different (Fig. 5), positioning 
Fig. 5. Representatives of the most populated cluster of SST14 in complex with 
SSTR1 (84.6%), SSTR2 (71.7%), SSTR3 (63.3%), SSTR4 (55.1%), and SSTR5 
(49.4%) all represented in dark gray sticks. The peculiar pose for SSTR5 is high-
lighted in red sticks. The yellow and cyan ball-and-sticks represent the disulfide 
bridge for SSTR5 and all the other isoforms, respectively.

the ligand towards TM1 and TM7 rather than TM5-6-7, as observed for 
SSTR1–4 (Fig. S12). This rotation of SST14 created enough room for 
ECL2 insertion, partially explaining its closure exclusively in the com-
plex with SSTR5.

2.4. Detailed interactions with somatostatin

We conducted a detailed analysis of protein-ligand interactions char-
acterizing each complex by performing an interaction fingerprint analy-
sis on the entire MD trajectories (see Methods). Consistent with previous 
findings for SSTR2 [39], this analysis revealed that the central part of 
the ligand (residues F6 to T10) was predominantly involved in inter-
actions with all SSTRs. This observation was expected as this portion 
of somatostatin deeply penetrates the binding pocket (see Fig. 4 and 
Fig. 5). Detailed heat maps illustrating protein residues ordered by their 
spatial distribution along the binding pocket and their corresponding 
persistence of interaction (𝑃𝑖𝑛𝑡) are depicted in Fig. 6. The complete list 
of residues is provided in Table S4.

In the top region of the binding pocket, we generally observed 

low 𝑃𝑖𝑛𝑡 values, likely due to higher solvent exposure in this region 
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Fig. 6. Heat maps of the fingerprints analysis of (A) SSTR1 in green, (B) SSTR2 in orange, (C) SSTR3 in blue, (D) SSTR4 in purple and (E) SSTR5 in red. The values 
refer to the persistence of the interaction (in percentage) between the residues of SST14 (columns) and those of the receptors (rows). The cyan, mustard and light 
pink boxes include the top, middle and bottom regions respectively. Computed with ProLiF python library [50].
[39]. However, several residues exhibited notable interaction persis-
tence (values of 𝑃𝑖𝑛𝑡 ≥ 70%, Table S5), particularly in SSTR2, SSTR3, 
and SSTR4. For instance, Pro286𝐸𝐶𝐿3 of SSTR2 played a crucial role 
in SST14 interaction, whereas residues in the same position of other 
isoforms exhibited comparatively weaker interactions.

The middle region of the binding pocket is known to host a quadru-
plet of residues, spanning from position 7.35 to 7.38, that is believed 
to be crucial for ligand recognition and selectivity (SSTR1: Ser-Gln-
Leu-Ser, SSTR2: Phe-Asp-Phe-Val, SSTR3: Tyr-Phe-Leu-Val, SSTR4: Asn-
His-Val-Ser, SSTR5: Tyr-Phe-Phe-Val) [51]. An important interaction 
stabilizing SST14 is the one involving residue F6 and residue 7.35 of 
the receptor [43,52]. This defines a hydrophobic sub-pocket hosting 
F6 [43], which is present only in the SRIF1 family due to the dif-
ferent nature of residue 7.35 (Phe294, Tyr295, Tyr286 for SSTR2, 3, 
5 and Ser305, Asn293 for SSTR1, 4). Notably, residue F6 interaction, 
particularly important for ligand stabilization, exhibited high 𝑃𝑖𝑛𝑡 val-
ues across all isoforms (ranging from 41% to 88%). Interestingly, in 
SSTR3 the interaction with F6 is further stabilized by another aromatic 
residue at position 7.32 (residue Phe292, 𝑃𝑖𝑛𝑡=81%) suggesting a possi-
ble knob for tuning the selectivity. Furthermore, interactions involving 
F7 of somatostatin and adjacent residues differed between isoforms, un-
derscoring their potential role in isoform selectivity [31]. The same 
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residue F7, together with W8, makes a hydrophobic interaction with 
residue Phe5.38 (∼ 50–70% for F7 and ∼ 70–80% for W8) in all cases, 
with the only notable exception of SSTR5. Interestingly, residues such as 
Asn2766.55

𝑆𝑆𝑇𝑅2 (Asn2776.55
𝑆𝑆𝑇𝑅3), or Gln2916.55

𝑆𝑆𝑇𝑅1 (Gln2796.55
𝑆𝑆𝑇𝑅4) that ap-

pear generally crucial for receptor-ligand binding, seem to be marginal 
for SSTR5. Additionally, we observe a persistent hydrophobic interac-
tion between Phe2876.26 of SSTR5 and F11 (𝑃𝑖𝑛𝑡 = 73%) that can also 
be found only in SSTR3 (Phe2966.26, 79%). Moreover, according to Ta-
ble S5, we found multiple unique interactions in the middle region: 
Phe2756.54 in SSTR2, Try2746.52 in SSTR3, and Phe2877.36, Val1153.28, 
Met1163.29 in SSTR5.

In the bottom region of the pocket, interactions involving Asp3.32

and Gln/Met3.36 (SRIF1/SRIF2) with W8 and K9 were consistent with 
previous experimental observations [38,32,30,53–56,52]. The finger-
print analysis in the bottom region for SSTR5 confirms once more its 
peculiar behavior among all isoforms. In this case, the pattern of in-
teractions involving the key residues W8 and K9 changes considerably, 
with a predominant role played by Asp3.32 (𝑃𝑖𝑛𝑡 78% and 85% with W8 
and K9, respectively) and a minor role of Gln3.36 that slightly interacts 
only with K9 (30%). Moreover, the hydrophobic interaction between 
W8 and Thr5.42 (𝑃𝑖𝑛𝑡 in the range ∼60%/70%) is totally missing in 
SSTR5. Instead, Phe6.51 interacting with both W8 and K9 in SSTR1, 
2, 3, 4 (at least 37%), in SSTR5 interacts only with K9 (∼50%). Over-

all, these data suggest that, while in SSTR1, 2, 3, 4 residues W8 and K9 
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Fig. 6. (continued)
participate equally in the stabilization of SST14, in the case of SSTR5 
the major role in keeping the ligand anchored to the bottom part of 
the pocket is played by K9. Notably, the fingerprint analysis revealed 
unique interactions characterizing each isoform in this region, suggest-
ing isoform-specific mechanisms for ligand binding and stabilization 
(i.e., residue Tyr3037.43 for SSTR3 and Thr2155.42 for SSTR4).

Taken together, the analyses presented in this study can be exploited 
for discovery and development of isoform-specific ligands. By carefully 
analyzing our results we can speculate that: (1) The SSTR5-SST14 com-
plex displayed distinct dynamics (e.g., ECL2) and protein-ligand inter-
actions, as compared to the other isoforms. As a result, (2) maximizing 
interactions at TM1–TM7, instead of TM5–TM6, may enhance selectiv-
ity for SSTR5. (3) For SSTR1 we could not find any particular key of 
selectivity, which however is consistent with the lack of any specific 
ligands for this target. (4) For SSTR2 the selectivity can be improved 
by facilitating the interactions with ECL3 (Pro286) and Phe2756.54 at 
TM6. Since this region is characterized by the presence of a hydropho-
bic sub-pocket, the inclusion of an aromatic ring (such as F6 of SST14) 
can further increase the binding affinity. (5) In SSTR3 we found two 
Tyr residues (Tyr2746.52, Tyr3037.43) specifically interacting with the 
bottom part of SST14. Therefore, the introduction of aromatic moieties 
with hydrogen bond acceptor groups in the bottom part of putative lig-
ands can improve the selectivity towards this isoform. One example is 
represented by the only SSTR3 selective ligand ITF2984 that presents 
1316

aromatic rings before and after the lysine residue, suggesting their lo-
calization at the bottom region of the pocket. (6) In SSTR4, Thr2155.42

seems unique and important for the interaction with W8 of SST14. As 
a result, the modification of W8 with the inclusion of a hydrogen bond 
acceptor group (e.g., 5- or 6-azaindole) can improve the specificity to-
wards this isoform.

3. Conclusions

Somatostatin receptors represent crucial targets for precision medi-
cine. Despite the significance of all five isoforms, specific drugs cur-
rently exist only for SSTR2. In this study, we used both experimental 
structures (SSTR2, 4) and AlphaFold2 models (SSTR1, 3, 5) to conduct 
a comprehensive computational investigation of SSTRs in complex with 
the endogenous ligand somatostatin. We thoroughly characterized the 
structure of each receptor and explored the dynamic behavior of all 
complexes. Notably, we observed a distinctive binding mode of somato-
statin in SSTR5 compared to other isoforms. This unique configuration 
is primarily characterized by the rotation of somatostatin W8 residues, 
which also leads to the closure of the extracellular loop 2. Additionally, 
our fingerprint analysis of protein-ligand interactions revealed a dis-
tinct interaction pattern in SSTR5, while retaining key pharmacophore 
features in the bottom part of the binding pocket. Although further 
experimental studies are needed to validate our findings, we propose 
guidelines that can be exploited in the discovery and development of 

novel somatostatin-based pharmaceuticals for precision medicine.
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Fig. 6. (continued)

4. Methods

4.1. Preparation of the protein structures

The starting 3D structures of SSTR2 and SSTR4 were retrieved 
from the PDB [57] IDs 7T10 [32] and 7XMS [30]. Missing atoms 
were included via structure refinement with Modeller10.2 [58]. Missing 
sidechains of somatostatin from 7XMS were completed using the Vega 
suite [59]. The AlphaFold2 [60] models of the SSTR1, SSTR3 and SSTR5 
in the active conformation were retrieved from GPCRdb [61] and first 
validated through ERRAT (Fig. S13) [62] and Ramachandran analyses 
(Fig. S14). ERRAT plots were computed with the SAVES web server and 
showed an overall quality factor of at least 96.8%. Ramachandran plots, 
generated with MolProbity [63], revealed percentages of residues start-
ing from 97.5% in the favored region and from 99.7% in the allowed 
one. Models validation was further performed through the analysis of 
MD simulations (see Results and discussion). Structural characterization 
and figure preparation were done with Pymol [17].

4.2. Molecular docking and MD simulations

For the docking of somatostatin to SSTR1, 3, 5 (Fig. S4C-E), we used 
the HADDOCK2.4 software [64] adopting the protocol for complexes in-
volving cyclic peptides [65]. To validate the adopted protocol we first 
re-docked the experimental structures of SSTR2 and SSTR4 (Fig. S4A-B) 
1317

obtaining average RMSD from the experimental complexes of 1.70 Å in 
Computational and Structural Biotechnology Journal 23 (2024) 1311–1319

both cases. For the docking with SSTR3 and SSTR5, we used the bound 
conformation of somatostatin extracted from the experimental struc-
ture of SSTR2 (PDB ID 7T10) belonging to the subfamily SRIF1. For 
the docking with SSTR1, we employed a conformation of SST14 bound 
to SSTR4, belonging to the same subfamily SRIF2. We started from the 
co-structure of SSTR4 with PDB ID 7XMS, manually added the two miss-
ing N-terminal residues A1 and G2, and then minimized and optimized 
the reconstructed bond. We then extracted the ligand from the last step 
of the minimization and used this conformation for the docking with 
SSTR1 to mitigate potential issues or occurrence of artificial poses dur-
ing the docking process. In all cases, the ligand was considered fully 
flexible during docking, thus encompassing all 25 rotatable bonds de-
tected by the docking program.

In MD simulations, to reduce computational cost, we did not include 
the G-protein in the structures. The allosteric effect of the G-protein is 
supposed to have an role on major conformational rearrangements, so it 
is safe to assume that the lack of the G-protein in our plain μs-long MD 
simulations did not have an impact on the system structural features un-
der investigation. The ionization state of the residue sidechains and the 
tautomeric states of histidine residues were checked by the PDB2PQR 
web tool [66]. The CHARMM-GUI server [67] was used to embed the 
complexes into a double layer of phosphatidylcholine (POPC, 70%) and 
cholesterol (30%) [68]. The systems were inserted in an OPC water box 
[69] and neutralized by adding K+ and Cl− ions, reaching a 0.15 M 
concentration. The ff19SB force field [70] was assigned to the receptors 
and SST14 and the lipid21 force field [71] to the POPC and cholesterol. 
The MD simulations were performed using Amber18 software [72].

Each system underwent an energy minimization using a combina-
tion of the steepest-descent and conjugated gradient algorithms, each 
comprising 2500 steps. During the minimization, positional restraints 
were applied to the protein-ligand complexes at a force constant of 
10.0 kcalmol−1 Å−2 and to the cholesterol and phosphate groups of 
phosphatidylcholine molecules at a force constant of 2.5 kcalmol−1 Å−2. 
NVT and NPT equilibrations followed the minimization, in which the 
positional restraints were incrementally reduced. The NVT equilibra-
tion consisted of two steps, with the first one lasting 125 ps and 
maintaining the same positional restraints used in the minimization. 
The second step, also lasting 125 ps, involved reducing the restraint 
strength to 5.0 kcalmol−1 Å−2 for the protein and ligands, while keep-
ing it at 2.5 kcalmol−1 Å−2 for cholesterol and the phosphate groups of 
phosphatidylcholine molecules. The total NVT equilibration time was 
250 ps. The following NPT equilibration was carried out in four steps: 
(1) 125 ps long using positional restraints of 2.5 kcalmol−1 Å−2 for 
the protein-ligand, and 1.0 kcalmol−1 Å−2 for the membrane compo-
nents; (2) 500 ps long, with positional restraints of 1.0 kcalmol−1 Å−2

for the protein-ligand, and 0.5 kcalmol−1 Å−2 for the membrane com-
ponents; (3) 500 ps long, but with positional restraints reduced to 
0.5 kcalmol−1 Å−2 for the protein-ligand and to 0.1 kcalmol−1 Å−2 for 
the membrane; (4) the last one lasted 500 ps using 0.1 kcalmol−1 Å−2

for the protein-ligand and leaving the membrane unrestricted. The 
Langevin thermostat was utilized with a collision frequency of 1 ps−1

and a temperature of 310 K. The Berendsen barostat was used to main-
tain the pressure at 1 atm. A cut-off of 9 Å was applied, and the time 
step was incremented from 1 to 2 fs using the SHAKE algorithm [73]. 
The Particle Mesh Ewald method was employed for handling long-range 
electrostatic interactions [74]. The production runs were conducted for 
2 μs, using the NPT ensemble and a time step of 4 fs, adopting the hy-
drogen mass repartition scheme [75]. To increase the sampling, five 
replicas were generated for each system, resulting in a total simulation 
time of 10 μs. The MD simulations were performed using the PMEMD 
module of Amber18 [72], and the trajectory frames were written every 
100 ps.

MD replicas were concatenated and the CPPTRAJ software [76] was 
employed to perform a cluster analysis using a hierarchical algorithm 
[77] to group all frames into conformational clusters, according to the 

RMSD of somatostatin heavy atoms. In all cases, we found out that three 
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clusters sample significantly the different conformations adopted by the 
ligand (see Table S3). The ligands’ RMSD values were calculated on 
heavy atoms, after aligning the receptors’ backbone in the MD trajecto-
ries with respect to the first frame of the production run. To compute the 
interaction fingerprints, the ProLIF Python library [50] was employed 
on all frames of the MD trajectories. The numbers of interactions were 
combined for all replicas and converted into persistence of interactions 
(%). For the description of the ECL2’s movements, we redefined the pa-
rameter 𝛽 considering the COM of the residues at the beginning of the 
most flexible part of the loop instead of the ones at the base of it as 
done in our previous work [39]. These residues were selected by super-
imposing the structures retrieved by the conformational clusters (see 
Fig. S15A-C for better clarity).
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