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Abstract
There continue to be increasing occurrences of both atomistic structure models in the PDB

(possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-

electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous

molecule or molecular assembly, deposited in the EMDB. To obtain the best possible struc-

tural model of the molecule at the best achievable resolution, and without any missing gaps,

one typically aligns (match and fits) the atomistic structure model with the 3D EMmap. We

discuss a new algorithm and generalized framework, named PF2 fit (Polar Fast Fourier Fit-
ting) for the best possible structural alignment of atomistic structures with 3D EM. While PF2

fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on

6D X-ray structure and 3D EM alignment in multiple ways:

Scoring. PF2 fit includes a new scoring scheme that, in addition to rewarding overlaps

between the volumes occupied by the atomistic structure and 3D EMmap, rewards over-

laps between the volumes complementary to them. We quantitatively demonstrate how this

new complementary scoring scheme improves upon existing approaches. PF2 fit also
includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary

structure score, and implements the scattering potential score as an alternative to traditional

Gaussian blurring.

Search. PF2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the

ability to search over uniformly and adaptively sampled subsets of the space of rigid-body

motions. PF2 fit also implements a new reranking search and scoring methodology that con-

siderably improves alignment metrics in results obtained from the initial search.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004289 October 15, 2015 1 / 27

a11111

OPEN ACCESS

Citation: Bettadapura R, Rasheed M, Vollrath A,
Bajaj C (2015) PF2 fit: Polar Fast Fourier Matched
Alignment of Atomistic Structures with 3D Electron
Microscopy Maps. PLoS Comput Biol 11(10):
e1004289. doi:10.1371/journal.pcbi.1004289

Editor: Robert B. Russell, University of Heidelberg,
GERMANY

Received: July 30, 2014

Accepted: April 14, 2015

Published: October 15, 2015

Copyright: © 2015 Bettadapura et al. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.
The PDB data is publicly available from the PDB as is
the EM data from the EMDB. All PDB, EM data links
are provided in the manuscript.

Funding: This research in part was funded by grants
NIH-R01-EB004873, NIH-R01GM117594 and NSF-
OCI-1216701, the center for computational
visualization http://cvcweb.ices.utexas.edu/ and the
Texas Advanced Computing Center TACC https://
www.tacc.utexas.edu/. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004289&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004289&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004289&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://cvcweb.ices.utexas.edu/
https://www.tacc.utexas.edu/
https://www.tacc.utexas.edu/


Author Summary

In recent years, advances in cryo-electron microscopy (cryoEM) and three-dimensional
(3D) image reconstruction have made it possible to determine the structures of molecular
complexes, to sub-nanometer resolutions. These reconstructed 3D cryoEMmaps provide
a unique challenge, since the resolutions are often sufficient to resolve a subset of the sec-
ondary structural features (e.g., long α-helices), but not high enough to unambiguously
identify others (e.g., short α-helices, β-sheets, α-helix pitch, or overall connectivity of pro-
teins). Various types of hierarchical structure refinement models of the data, including the
atomistic model match and fitting, which is the subject of this paper are crucial in helping
derive a more complete understanding of the structure and function relationships of bio-
logical complexes. Our protocol offers several advantages over existing fitting techniques.
We introduce three new scoring terms to evaluate the quality of fitting, and the optimiza-
tion of these functions lead to better predictions than existing tools like ADP-EM and Col-
ores. Furthermore, we have adopted a non-uniform FFT-based search which is not only
faster than regular FFT, but it also enables one to selectively perform more refined searches
in localized regions, which is specially useful when fitting a small molecular component
into a larger symmetric or asymmetric macromolecular structure.

This is a PLOS Computational BiologyMethods paper

Introduction
Protein structural data is available in primarily two forms. Atomistic scale structures (or atomic
structures for short), acquired through X-ray or nuclear magnetic resonance (NMR) imaging,
contain information fine enough to localize the position of most, if not all, the atoms of the
protein. However these imaging modalities do not allow a complete picture of the protein’s sol-
vent-induced state. Three dimensional (3D) electron microscopy (EM) maps, reconstructed by
single particle (SP) or electron tomography (ET), are at a lower resolution but are easier to
obtain and probably closer to the functional native state. A relevant problem of computational
structural biology is to reconcile these forms of protein structure data, producing a refined pro-
tein model that combines the finer resolution information in the former with the native-state
information at lower resolution in the latter. Different frameworks or computational pipelines
like comparative modeling, e.g. [1–5] and ab initio modeling, e.g. [6], have played an increas-
ingly important role in this kind of structure determination referred to as the fitting problem.
The fitting problem can be solved for either rigid-body (6D) or flexible motions (6D rigid body
motion + flexible dimensions) of the atomic structure. In this work, we address aspects com-
mon to both problems, and demonstrate results here only on rigid-body fitting.

Approaches to the fitting problem begin by defining a score between an orientation of the
atomic structure P and the 3D EMmapM. A majority of past work uses the cross-correlation
score (CCS) betweenM and a synthesized 3D EMmapMP generated from P. The CCS is
widely used because it is intuitive, easy to implement, and amenable to Fast Fourier transform-
based correlations, discussed below. Variants of the CCS include the core-weighted or the
Laplacian-filtered CCS [1–4, 6, 7] or normalized cross-correlation (NCC) [8, 9]. There have
also been a number of other scoring functions. For instance, the external-total ratio (ETR)
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measures the total number of atoms of P outside a given iso-contour ofM [10], the vector
matching score measures the inner product between a set of vectors representing P andM
[11], while in [12] isosurfaces are matched by comparing surface normals.

A recent review of scoring functions for cryo-EM fitting can be found in [13]. All scoring
functions depend on representing P (respectivelyM), in terms that render it mutually intelli-
gible toM (respectively P). The usual choice, and not necessarily the best choice, for the repre-
sentation involves blurring P by placing a Gaussian at each of its atomic centers. We introduce
two representations, termed non-uniform inclusion potential and scattering potential, and
show that the scattering potential results in better prediction accuracy. We discuss the details
of the terms in the next section and perform a comparative analysis in the Results section.

Once a scoring function is chosen, an algorithm searches for its optima over the space of
rigid-body transformations of the protein. Hereafter, we refer to this space as the motion group
SE(3). Search algorithms can be usefully distinguished by whether they find local or global
extrema of the scoring function. Local optimization is typically synonymous with a variant of
steepest ascent [10, 14], although more powerful techniques such as Powell optimization [15]
and quadratic programming [5] have also been used. In global optimization, the contest is
between Monte Carlo- and Fast Fourier Transform (FFT)-based algorithms. Monte Carlo-
based fitting algorithms [4, 16, 17] are able to step past local optima on their way to a close-to-
optimal solution; they are easy to implement and widely documented in the literature. Exhaus-
tive or Fourier-based approaches exploit the fact that it is beneficial if the computation of the
objective function can be done relatively fast. Fourier-based, deterministic approaches [3, 7,
18–20] guarantee that the found solution is within a user defined error margin of the optimum.
Thus they offer a compelling trade-off between accuracy and computation time especially
when combined with parallelization techniques or other hardware specific speed-ups, e.g. [9].

We adopt a variant of FFT, the non-uniform SO(3) Fourier transform (NFSOFT) [21]
which not only provides better asymptotic computational complexity, but also is specially
suited for better sampling of SE(3) and adaptive local searches.

An important aspect of the search procedure is a suitable sampling of the motion group SE
(3). Usually the product property SE(3) = R

3 × SO(3) is exploited for these samplings, where
SO(3) denotes the group of three-dimensional rotations, (cf. [22]). Crucial to sampling on SE
(3) is sampling of the rotational subgroup SO(3). There are several existing techniques that,
given an angular sampling criterion, provide a set of samples that are uniform with respect to
accepted metrics of uniformity [23–25].

The paper [7] discusses fast rotational matching, i.e., it omits the translational part of the
matching procedure which we incorporate. Hence, the series expansion of the scoring func-
tions used in their work is different, as it uses spherical harmonics but not Laguerre polynomi-
als for the radial part of the function. In contrast to that [19] considers rigid-body motion with
rotation and translation. They use a R1 × S

2 × SO(3) parameterization of the motion group
that is different from ours. Their affinity functions are expanded on terms of spherical shells of
different radii while we use a decomposition directly on R

3 using radial wavefunctions in addi-
tion to spherical harmonics only. In addition to that our fitting algorithm uses adaptive low-
discrepancy samplings, cf. [24] that better reflect the underlying geometries of sphere and rota-
tion group.

After a suitable sampling is obtained the essential mathematical tool needed is the fast calcu-
lation of the discrete Fourier transform on the rotation group SO(3) to evaluate the correlation
integral that is the objective function. There are several methods to efficiently evaluate Fourier
transforms specifically on SO(3) [21, 26, 27]. There are also works that tackle Fourier trans-
forms on the entire motion group SE(3), [28, 29]. The use of fast and efficient algorithms to
evaluate the Fourier transform on non-uniformly distributed points, cf. NFSOFT [21] is
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another improvement of our algorithm. See also Section “Rotational and Rigid-body Correla-
tions; Non-Uniform SO(3) Fourier Transforms”.

A schematic overview our algorithm package PF2 fit which solves the 3D EMmap rigid fit-
ting problem, is shown in Fig 1. It introduces the following innovations, each of which lead to
improvements over the current state of the art in terms of accuracy and speed.

1. New FFT-amenable complementary scoring scheme. The complementary scoring scheme
rewards overlaps between the volumes occupied by P andM as well as overlaps between
the volumes complementary to P andM. In this context, we introduce two scoring func-
tions: the non-uniform inclusion potential and the complementary space score, both of
which are computed on non-uniform grids. We also implement the scattering potential as
an alternative to classical Gaussian blurring. The new scoring functions compare favorably
to Gaussian-blur-based scoring across a variety of resolutions, in the presence and absence
of noise. In particular, our FFT-amenable scoring functions result in lower RMSD than
existing ones across a range of resolutions for synthesized density map fitting, and result in
lower ETRs for microscope acquired density map fitting, also across a range of resolutions.

2. Uniform and focused sampling and search with non-uniform FFT. All prior techniques
require an equispaced/uniform angular grid for rotational search, a property that results in a
highly non-uniform search of the space of rotations SO(3) which is likely to miss important
regions of motions while oversampling others. By contrast, uniform sampling the space of
rotations SO(3), requires non-uniform angular grids (cf. [24]) which is only amenable to a
non-uniform, SO(3)-FFT-based search algorithm.

Fig 1. Control flow. A typical control flow of the 3D EMmap fitting algorithm developed in this work. The first step of a fitting procedure is the inital exhaustive
search. Here one needs to define suitable scoring functions that are amenable for fast correlation computation via the chosen search scheme. Here, we are
using FFT-based algorithms for the fast computation of non-uniform rigid-body correlations. The scoring functions may account for various structural aspects
such as scattering potential or pockets in the molecular surface. The exhaustive search is followed by an information driven reranking scheme which among
others might include the mutual information score or skeleton-secondary structure score. The final output of the procedure will be the best fit between the
atomic structure and the 3D EMmap.

doi:10.1371/journal.pcbi.1004289.g001
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Furthermore, since our non-uniform FFT framework does not require uniformity of the
translational and rotational grids, it enables focused searches in both translational and rota-
tional space, thus combining the advantages of local and global fitting schemes.

3. Information driven rerank scheme. Finally, to improve the accuracy of our fitting predic-
tions, we rerank results from the search stage with respect to a scoring function based on
matching the skeleton ofM with the secondary structural elements of P. In the reranking
stage, we also include the well-known mutual information score [30].
Our reranking stage improves the rank of fitting poses obtained in the initial search stage at
resolutions< 10Å. We expect the reranking stage to become more effective as more EM
maps between 3 and 8Å are isolated.

We should also mention that, due to the improved sampling of SO(3), the time taken by PF2

fit for an average fitting exercise is comparable to most rival fitting schemes, taking 2–3 mins
on an quad-core computer per fitting procedure. In particular, non-uniform inclusion poten-
tial takes advantage of the non-uniform search scheme to provide even faster (1.3 mins) run-
times with reasonably accurate estimates of the fitting pose while guaranteeing an exhaustive
sampling of the space of available motions. Also, leveraging the focused search capability, PF2

fit can be applied to a vast range of problem types, from subunit-subunit, to subunit-assembly,
to multiple subunit fitting. We have extensively compared PF2Fit to ADP-EM (Ref. [3]) in the
experiments.

Executable programs as well as the source code for the entire software package PF2 fit and
each of its components libraries are available to all academic users for free through our website.
We made the sampling of SO(3) and SE(3), and the non-uniform FFT search libraries sepa-
rately available so that users can adapt and modify all or some of them independently.

Materials and Methods
A typical fitting procedure starts with two inputs: an atomic structure P and a 3D EMmapM,
normally at different resolutions. Let A : R3 7! C and B:R3 7! C be such scalar-valued func-
tions derived from P andM respectively. Once A(x) and B(x): are defined, the best fit of the
two molecules is obtained by maximizing the unnormalized cross-correlation score

CCSðA;BÞ ¼
Z
R3

AðRxþ tÞBðxÞdx; ð1Þ

where (R, t) is a rigid-body motion, i.e., a three-dimensional rotation R followed by a three-
dimensional translation t. Applying the rigid-body motion which produces the maximum
score will lead to the best fit.

In this paper, we shall refer to A(x) and B(x): as affinity functions. Our fitting procedure is
divided into two main stages (cf. Fig 1): the exhaustive FFT-based search, and the reranking.
We discuss each of these stages, their affinity functions and their advantages below. Detailed
comparison and empirical results are presented in the Results section.

Non-uniform FFT-amenable affinity functions
PF2 fit provides four choices for defining the affinity functions of A(x) and B(x): the Gaussian
Agc (respectively Bgc); the scattering potential Asc (respectively Bsc); the non-uniform inclusion
potential Anu(respectively Bnu); and the complementary (pocket) space potential Acs(respec-
tively Bcs). The first three are based on the space occupancy of P andM, and fourth is based
on the complementary space of P andM, denoted Anu and Bnu respectively. A typical depic-
tion of the space and complementary space can be found in Fig 2. For a description of how a
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complementary volume is computed, we refer to [31]. We now discuss each of the affinity func-
tions in detail.

Non-uniform inclusion potential cross-correlation score (NCCS). Let Ps be a chosen
subset of atoms of P, and let Xs be the union of spheres of the atoms of Ps. Then

AnuðxÞ ¼
(
1; x 2 Xs

0; otherwise:
ð2Þ

Similarly, letm 2 R be a chosen scalar intensity value. Then

BnuðxÞ ¼
(
1; MðxÞ � m

0; otherwise:
ð3Þ

For these definitions of Anu and Bnu, a reasonable definition for Ps is the set of backbone
atoms of the 3D EMmap, whilem can be defined, following [13], as that intensity that results
in an isocontour enclosing a volume equal to the volume enclosed by the molecular surface of
P. Note that the envelope score in [13] is a uniform-grid-based version of the non-uniform
inclusion potential CCS (hereafter the NCCS).

Gaussian cross-correlation score (GCCS). A classical and widely-used way to represent
the protein P is by Gaussian blurring, in which Gaussians

GiðxÞ ¼ exp b 1� k x� xi k2
r2i

� �� �
¼ exp

p2 ln 2
R2

1� k x� xi k2
r2i

� �� �
ð4Þ

corresponding to atom centers xi and radii ri, are summed at each grid point x; the parame-
ter β> 0 describes the width of the Gaussian at medium height, R is the resolution of the target
3D EMmap [32], and

AgcðxÞ ¼
X

i2atoms of P

GiðxÞ: ð5Þ

Fig 2. Schematic of representations used in our algorithms. (A) PDB schematic, showing the target volume VP and the complementary volume VP . (B)
3D EMmap schematic, showing the target volume VM and the complementary volume VM. Detailed definitions can be found in the Materials and Methods
section.

doi:10.1371/journal.pcbi.1004289.g002
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A Gaussian blur is thus a representation that reproduces the electrostatic potential of an
atom at points very close to it. This formulation indirectly includes atomic masses by modulat-
ing the decay of the Gaussian kernel based on the radii of the atoms.

Scattering potential cross-correlation score (SCCS). An elastic scattering model of the
electrostatic potential uses five parameters for each atom, thus yielding a more realistic recon-
struction of the electrostatic potential. According to the elastic scattering model [33], the
potential at each grid point x due to an atom at xi is given by a sum of five Gaussians

Vi
scðxÞ ¼

16p
5

2ℏ2

m0e

X5
j¼1

ajb
�3
2

j exp � 4p2k x� xi k2
bj þ R2

 !
ð6Þ

and

AscðxÞ ¼
X

i2atoms of P

Vi
scðxÞ ð7Þ

where 2πℏ = h is the Planck constant,m0 and e are respectively the mass of and charge on the
electron, aj and bj are empirical parameters [34] that depend on the element type of atom i, and
R is the desired resolution of the representation A of the atomic structure P. Note the functions
Bgc and Bsc are identical to the input cryo-EM density mapM or a suitably filtered version ofM.

The scattering potential is well-known [35, 36]; and has been used for fitting of high- resolu-
tion structures to cryo-EM maps in conjunction with constrained geometric simulations [37]
or molecular dynamics simulations [38]. The primary motivation behind implementing the
scattering potential in PF2 fit is to explore its value as an alternative to Gaussian blurring since
EM reconstruction is based on phase shifts and phase contrast caused by the electrostatic
potential. As we show in the Results section), there occur cases, in both acquired and synthe-
sized density map fitting, in which the scattering CCS (hereafter the SCCS) performs better
than Gaussian CCS (hereafter the GCCS).

Complementary space cross-correlation score (CCCS). Existing work on rigid-body fit-
ting focuses on representing and correlating the volumes VP and VM occupied by P andM
respectively. We introduce an addition to the fitting score, the complementary space cross-cor-
relation score (CCCS), that uses the volumes complementary to VP and VM respectively. We
define the complementary volumes as follows.

Let VP be the primal volume occupied by the Gaussian molecular surface of P, and VM �
R3 is the volume occupied by a suitably chosen molecular surface ofM. Then the complemen-

tary volumes VP � R
3 and VM, are extracted from respective pocket functions [39] that use

outward and backward propagation from the primal volumes. Note that, we also use pocket
and complementary space interchangeably in the rest of the article.

Given these representations, we can assign App and Bpp in Eq (1) as follows:

AcsðxÞ ¼
( ffiffiffiffiffiffiffi�1
p

; x 2 VP

0; otherwise:
ð8Þ

BcsðxÞ ¼
(� ffiffiffiffiffiffiffi�1

p
; x 2 VM

0; otherwise:
ð9Þ

Combining the affinity functions. All the affinity functions we introduced will result in a
high positive real CCS for large overlaps between target-target or complementary-
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complementary volumes. One can, in principle, combine all the scoring terms by taking a
weighted linear combination where the weights can be either user-specified or optimized by
well-known machine learning techniques [40–44]. However, we note that the first three affinity
functions represent and the same quantity of interest in slightly different ways and a combina-
tion of the three may be redundant. The complementary space score, however, captures a dif-
ferent aspect and should be used in conjunction with any of the first three. Hence, in this work,
we compare the predictive performace and speed for each of target-target scores independently
and in conjunction with the complementary space score.

Expected advantages of the non-uniform FFT-amenable affinity functions. Classical,
uniform FFT-based approaches require that affinity functions describing atomic structures or
features are mapped onto a uniform grid. This mapping results in either (A) a grid-size much
smaller than the average distance between atomic centers, and a resulting increase in time
spent on redundant or uninteresting points far from the actual centre of the protein, or, (B) a
grid-size much larger than the average distance between atomic centers, resulting in the oppo-
site effect.

By contrast, a feature common to all the affinity functions in PF2 fit is that they are grid-
free, i.e., they do not necessarily require affinity functions to be computed on a uniform grid.
This not only mitigates the disadvantage above but leads to ability to perform searches focused
to a particular region. The Results section details this advantage of PF2 fit.

Non-uniform SO(3) FFT-based Search
The second important ingredient of the inital search stage of rigid-body fitting, is the search
algorithm PFcorr (Polar Fast Fourier Correlation), first introduced in [29], to search over the
space of rigid-body motions SE(3) of P. PFcorr is a family of rigid-body correlation algorithms
based on non-uniform SO(3) Fourier Transforms, and it has many favorable attributes relative
to classical FFT-based search algorithms, the most salient of which we discuss here.

Multi-basis framework. PFcorr uses a framework in which scalar-valued functions A:R3

7! C are expressed in terms of basis-expansion coefficients â 2 C. Let u = (θ, ϕ), θ 2 [0, π], ϕ 2
[0, 2π], and r 2 R

+. A scalar valued function A(r, u):R+ × S
2 ! C can be expanded as

Aðr;uÞ ¼
XL
k¼1

Xk�1

l¼0

Xl

m¼�l

âklmR
‘
kðrÞYm

‘ ðuÞ ð10Þ

where R‘
kðrÞ and Ym

‘ ðuÞ are the radial and spherical basis functions respectively, and L is a finite
expansion degree. We choose weighted Laguerre radial-basis functions for R‘

kðrÞ (see [29, 45]
for the exact form of these functions), whereas Ym

‘ ðuÞ are the well-known spherical harmonic
functions.

PFcorr can also discard the radial-basis functions, following [3], and express each spherical
slice Ar(u) in terms of the spherical harmonic basis coefficients Ym

‘ :

ArðuÞ ¼
XL
l¼0

Xl

m¼�l

â lmY
m
‘ ðuÞ ð11Þ

PFcorr, and hence the algorithm package PF2 fit, thus support a multi-basis framework, in
which a user can choose between either of the two most commonly used bases for rotational
speedups. While convenient, the multi-basis framework is not central to our search scheme,
and in the interests of brevity, we restrict our discussions below to situations in which the more
general mixed bases R‘

kðrÞYm
‘ ðuÞ are used.
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All of our algorithms extend in a straightforward, if non-trivial way, to cases where the
radial basis function is absent and Eq (11) instead of Eq (10) is evaluated at a chosen set of
fixed radii r, as it is the case in [19] and even [7] where Eq (11) is evaluated for only one fixed r.

Rotational and Rigid-body Correlations; Non-Uniform SO(3) Fourier Transforms. Let

A(x) and B(x) be two scalar valued functions with basis coefficients âklm and b̂klm respectively.
We are interested in the pure rotational correlation

CðRÞ ¼
Z
R3

AðRxÞBðxÞdx

¼
X
k‘mm0

ð�1Þmb̂k‘�mð�1Þm0
âk‘�m0Dm;m0

‘ ðRÞ;
ð12Þ

and the rigid-body correlation

CðR; tÞ ¼
Z
R3

AðRxþ tÞBðxÞdx

¼
X
klmn

b̂k‘mD
n;m
‘ ðRBÞ

X
k0‘0m0

ð�1Þnâk0‘0m0D�n;m0
‘0 ðRAÞT jnj

k‘;k0‘0 ðzÞ;
ð13Þ

where (RA,RB, z) is the factorization of the rigid-body transformation (R,t) into rotations of
A and B and a single translation of A along the z-axis [29]. The effect of rotation is described by

the Wigner-D functions Dm;m0
‘ that are a set of basis functions for L2(SO(3)). The effect of this

translation is described by a translation tensor T(z) with elements T jnj
k‘;k0‘0 ðzÞ, cf. [46].

This factorization of a motion into five rotational degrees of freedon and one remaining
translational degree has been used in the field of protein matching by [19, 47] before. However,
here it will be applied in a uniform setting and a fast evaluation algorithm for the first time.

PFcorr [29] provides a pair of recipes to compute each of the above sums. The technical con-
tent of these recipes can be found in our work on non-uniform multi-dimensional correlations
[29]. For the purposes of this work, the most relevant fact is its use of the non-uniform fast SO
(3) Fourier transform (NFSOFT) [21]:

f ðRiÞ ¼
XL
l¼0

Xl

m¼�l

Xl

n¼�l

f̂ lmnD
m;n
l ðRiÞ; i 2 f1 . . .NRg ð14Þ

where f̂ lmn 2 C are the input SO(3) Fourier coefficients of f 2 L2(SO(3)). The Wigner-D
functions Dm;n

l form a orthogonal basis of L2(SO(3)), and i indexes NR non-uniformly spaced z-
y-z Euler Angles in SO(3).

This is a significant improvement over existing fitting tools. Due to the limitations of the
uniform-FFT techniques that underly them, all current rotationally efficient methods [3, 7, 47]
depend on a uniform discretization of Euler angular space. Unfortunately, because the space of
Euler angles is a non-linear parametrization of the target space of rotations SO(3), this leads to
a highly non-uniform set of samples in SO(3).

The expansion degree L embodies an aspect of the speed-accuracy tradeoff: higher degrees
result in a greater ability to capture shape information in the 3D EMmap, while causing an
obvious degradation in performance. We find that setting L anywhere between 20 and 30 suf-
fices for 3D EMmap fitting exercises. The NFSOFT can be used to compute the above sum in
O(L3 log L + NR) steps, in contrast to the generally far slower naiveO(L3 NR) approach.

Adapting PFcorr for Fitting. We can see that the above recipes can be conveniently incor-
porated into a fitting search algorithm. As a preprocessing step, we compute the basis-
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expansion coefficients âklm and b̂klm of A(x) and B(x) respectively. Then based on the two reci-
pes, one can choose either of the following search schemes.

1. Search choice 1: PF2 fit—SE(3): Compute Eq (13) inO((L6 + L4NRB + NRB NRA)T) steps over
appropriate sample sets {RA}, {RB}, and {dz} where NRB and NRA are respectively the sizes of
the sample sets {RA} and {RB}.

2. Search choice 2: PF2 fit—SO(3). For each t over a set of samples in R
3, translate A by t and

recompute b̂klm; then compute Eq (12) inO(L4) steps over a set of samples in SO(3).

While PF2 fit—SE(3) can be used along with any sampling technique, we use the sets {RA},
{RB}, along with equispaced grid values for {dz} for the first fitting stage in order to avoid over-
seeing important regions of motions while oversampling others. This low dispersion and low
discrepancy sampling of SO(3) [24, 29] is highly advantageous in the first stage of fitting as
explained in the next paragraph.

PF2 fit—SO(3) maximizes rotational scanning at the expense of translational scanning, an
approach also adopted in [19] and [3]. Note that both these methods use a framework that
excludes the radial basis function R‘

k, e.g. due to the consideration of star-shaped molecules and
discretizations of the radial parts respectively.

Expected advantages of the non-uniform SO(3) FFT-based search. Like the NFSOFT,
PF2 fit scales gracefully under non-uniform discretizations of the space of z-y-z Euler Angles.
This is a significant improvement over existing fitting tools [3, 7, 47] that depend on a uniform
discretization of Euler angular space. Hence, for a given angular step size, these methods will
always generate sample sets in SO(3) that examine parts of that space very finely while leaving
others undiscovered. By contrast, an advantage of PF2 fit is its ability to work efficiently with
an arbitrary set of samples in Euler angular space, using a sampling technique such as in [24].
This is the primary advantage of PF2 fit as a search algorithm. The consequences of this advan-
tage extend naturally to all results obtained by PF2 fit.

The Reranking Scheme
In the second stage, results obtained in the correlation-amenable search stage are reranked with
respect to scores that exhibit the following features: (A) They cannot be expressed in the general
form of Eq (1). (B) The information they capture about a particular fitting orientation is addi-
tional to, or, ideally, independent of, each of the affinity functions maximized in the search stage.

Skeleton-secondary structure score. We introduce a reranking score that depends on the
detection of secondary structural features fromM. This has been a vigorous area of research in
the past decade; for a recent review, see, for instance [48]. We use the skeletonization technique
in [20, 48] to detect secondary structures fromM, and the publicly available Stride [49] to
detect the secondary structures of P. LetHM andHP respectively be the set of helices detected

fromM and P. Each helix consists of an axis r, with krkℓ2 = 1, and a midpoint p. Let hM
i be a

helix inHM, and let hP
j be a helix inHP. Let d(.,.) be the Euclidean distance function, h.,.i be

the dot product, and w1 2 R
−, w2 2 R

+ be respectively negative and positive weights. Then the
per-helix score and the secondary structural score are respectively given by

SSShP
j
¼ max

i
w1dðpM

i ;pP
j Þ þ w2jhrMi ; rPj ij ð15Þ

SSS ¼
X

j

SSShPj : ð16Þ
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In this work, we set w1 = −1, w2 = 1, in which case the theoretical range of the per-helix
score SSShPj is (−1,1]. The best possible per-helix score corresponds to the situation where the

helices are perfectly aligned and have the same mid point, and SSShPj ¼ 1. In most practical sce-

narios, SSShPj is typically between 0.25 and 0.7.

Mutual information score. The second reranking function we use is the mutual informa-
tion score (see, for instance, [13, 30]), given by

MIS ¼
X
x2B

X
y2A

pðx; yÞ log pðx; yÞ
pðxÞpðyÞ
� �

; ð17Þ

where p(x) and p(y) are the percentage of voxels in B and A that take on intensities equal to
x and y respectively and p(x, y) is the percentage of voxels in B with intensity x that are aligned
with voxels in A with intensity y. In PF2 fit, A and B correspond respectively to the target vol-
umes VP and VM respectively, with the former computed by the Gaussian blurring scheme.

Expected advantages of the reranking scheme. The reranking stage serves two purposes.
The first is to identify spurious results. Any fitting method that depends purely on a set of cor-
relation-amenable affinity functions has the potential to yield high-scoring results that are nev-
ertheless obviously incorrect. The second, related, goal of the reranking stage is to bring the
process of rigid-body fitting closer to automation. We see fitting as a single stage in the elucida-
tion of structure from biological data. The elucidation process comprises several data process-
ing stages, and it is critical that the output of each stage is as accurate as it can be. One very
popular way to measure the accuracy of a fitting algorithm is to perform a simple visual check;
however, it may be time-consuming or otherwise impractical to visually check every single fit-
ting pose generated by an automated fitting algorithm such as the one presented here. In these
situations, the reranking procedure will either provide additional guarantees that the top result
is in fact the one that fits the best, or will flag results whose scores do not agree about the qual-
ity of the fit.

Experimental Setup
We carried out experiments to compare different scoring and reranking functions imple-
mented in PF2 fit as well as to compare PF2 fit with other publicly available fitting software,
namely the Colores tool in Situs [18] and ADP_EM [3]. In this section, we describe the bench-
mark dataset, the experiment protocol and the metric used in measuring and comparing accu-
racy of fitting. The results and their implications are presented in the next section (Results and
Discussion).

Dataset. For experiments involving synthesized 3D EMmaps, we used a variety of atomic
structures from the PDB. Many of these atomic structures overlap with those in the docking
benchmark [50]; they were chosen mainly for their diversity in size and shape (average TM-
score [51] between the structures is 0.27165, which indicates very low structural similarity).
The PDB IDs of the 53 atomic structures we used are: 1QG4a, 1OUNab, 1D6Oa, 1IASa, 2TGT,
1K9Ba, 1MH1, 1HH8a, 1FPZf, 1B39a, 2CGAb, 1EGL, 1AY1hl, 1CMWa, 1BJ1hl, 2VPFgh,
1A6Zab, 1C68ab, 1GJRa, 1CZPa, 1TNDc, 1FQIa, 1FGNlh, 1TFHa, 1HCL, 1DKSa, 1GJRa,
1CZPa, 2CLRde, 1CD8ab, 1FSKbc, 1BV1, 1IJJb, 3DNI, 1BVLba, 3LZT, 9RSAb, 2BNH,
1TRMa, 1ECZab, 1FSKbc, 1BV1, 1E1Na, 1CJEd, 4PEP, 1F32a, 1BDD, 1FC1ab, 1QHDa,
1OELg, 1AONa, 1CTS, 2CTS and 1Q3Qa. We generated synthesized 3D EMmaps for each
model P of this benchmark, by first blurring it at a fixed resolution R to produce a synthesized
map B which mimics an EM; and then a random transformation is applied to the original
model P to generate P0. Now, the task is to find the best fit between P0 and the map B.

Polar Fast Fourier Alignment of Structures with 3D Electron Microscopy
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For acquired 3D EMmap experiments, we used a selection of datasets from the CryoEM
Challenge [20]. The resolutions for these cryoEM 3D EMmaps range between 3.8Å to 20Å and
is hence lower than for the synthesized data.

Experiments. We performed the following experiments to validate PF2 fit. Each of the
experiments inherently validates the search scheme introduced in this work. Additionally, they
validate, compare and highlight aspects of one or more of our affinity functions and scores.

• Validating different scoring terms using synthesized 3D EMmap and comparison with other
software. We applied our PF2 fit—SE(3) and PF2 fit—SO(3) algorithms using each of our tar-
get-target scores GCCS, NCCS and SCCS, independently, to predict the orientation of P0

that produces a good fit to B. Examples of this experiment are visualized in Figs 3 and 4.
We repeated the experiments with the complementary scoring term (CCCS) added in and
compared our obtained results to the results reported in [3] on similar experiments carried
out with colores [18] and ADP_EM [3]. We also compared the performance of PF2 fit with
other software in fitting electron microscope acquired data for subunit-subunit and subunit-
assembly cases. Details are presented in the Discussions Section. See also [20].

• Analyzing resolution robustness of scoring and search using synthesized 3D EMmaps. In real-
ity, the EMmaps come in many different resolutions. To verify that our scoring models and
search scheme preserves their applicability across a wide range of resolutions, while making
fitting predictions with high accuracies, we progressively coarsened the resolution R of the
target blurred 3D EMmap B, and repeated the above experiments for each level of coarsen-
ing. Finally, the experiments were repeated with random Gaussian additive noise added to B.

• Analyzing the effect of reranking using synthesized 3D EMmap. To measure the efficacy of
the reranking metrics, we examined the 53 PDBs in our synthesized dataset with resolutions
between 5 and 15Å, with a step size of two, thus conducting 318 fitting experiments.

• Analyzing the effect of various samplings using synthesized 3D EMmap. To evaluate the
speed-vs-accuracy tradeoff for PF2 fit, we applied PF2 fit on the synthesized dataset while
varying the density of the sampling of SO(3) used in the search. For each of the structures,
we used 1854, 4392, 8580, 14868, 29025, 68760, and 232020 samples on SO(3) corresponding
to, respectively, rotational separations of 20, 15, 12, 10, 8, 6 and 4 degrees between samples.
Additionally for the NCCS, we ran the same experiments while varying the expansion degree
(L).

• Performance on acquired 3D EMmap Fitting. We applied PF2 fit to acquired cryoEM data,
which is more challenging than synthesized map fitting since it may contain non-random
noise, differences in conformations of the molecule, and possibly more than one molecule in
a complex. We performed three types of fitting with acquired EMmaps. First, we used PF2 fit
—SE(3) and—SO(3) to fit PDB subunits to subunits segmented from the 3D EMmap (sub-
unit-subunit). Segmentation was performed using the methods reported in [52, 53]. Second,
we used PF2 fit—SE(3) to fit a single PDB subunit into a larger 3D EMmap (subunit-assem-
bly). And third, we used PF2 fit—SE(3) to fit multiple PDB subunits into a larger 3D EM
map.

Validation Metrics. For the experiments involving synthesized maps, the true position or
true fitting is simply the original position of the PDB model P. After a randomly oriented copy
P0 of the model is fitted using PF2 fit, it produces a new position and orientation, P00. For per-
fectly accurate fitting, P00 should perfectly coincide with P. We simply compute the root mean
square distance (RMSD) based on the positions of the atoms in P00 and P, as a measure of the
accuracy such that lower RMSD indicates a better fitting prediction.

Polar Fast Fourier Alignment of Structures with 3D Electron Microscopy
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For both synthesized and acquired EMmaps, we additionally use the external total ratio
(ETR) as a metric of fitting quality. ETR is the ratio of the number of atoms outside a suitably
picked isocontour of the 3D EMmap to the total number of atoms in the PDB. We term this
score the external-total ratio (ETR) [20]. ETR is a very subjective measure as it depends on the
choice of the isocontour and hence should only be used when a better metric (e.g. RMSD) can-
not be computed.

Finally, as a measure of the confidence on the prediction, we use Z-score. The Z-score [54]
of a fitting result is given by z ¼ x�m

s , where x is the score of the fitting result, and μ and σ are

respectively the average and the standard deviation of the population. The Z-score measures
the degree to which a scoring function can discriminate between two different candidate solu-
tions, with higher scores indicating better discriminatory ability.

Results and Discussion
In this section, we discuss the relative performance of the different Cross Correlation Scoring
(CCS) terms introduced in PF2 fit, in terms of the results obtained from the experiments on
both synthesized and electron microscope acquired data and compare the performance of PF2

fit with Colores and ADP_EM [3]. We also discuss the effect of reranking shemes, skeleton-

Fig 3. Comparison of PF2 fitwith other software in synthesized EM fitting at 3Å. Amolecule is fitted into the synthetically generated EMmap B with
resolution 3Å(transparent green). The top-ranked result P1 (red/yellow) is compared to the original PDBmolecule P (blue). (A) Top-ranked result using PF2 fit
—SE(3) with 8° uniform rotational sampling and 0.5Å translational step size. RMSD� 0.88Å. (B) Top-ranked result using the Colores package; the ‘nopowell’
option is turned on. RMSD� 3.2Å. (C) Top-ranked result using Colores with default options. RMSD� 2.3Å. The fitted PDB P1 is in yellow. (D) Top-ranked
result using the ADP_EM package, with bandwidth L = 25. RMSD� 0.94Å.

doi:10.1371/journal.pcbi.1004289.g003

Fig 4. Comparison of PF2 fitwith other software in synthesized EM fitting at 10Å. (A) The synthetically generated 3D EMmap is a Gaussian blurred
version of the PDB 7CAT (chains A and B), with resolution R = 10Å, and random noise added to obtain a signal-to-noise ratio of unity. The PDB P (inset) is
chain B of the same protein. The top-ranked result P1 (red/yellow) is compared to the original PDBmolecule P (blue). (B) Top-ranked result using PF2 fit—
SE(3) with 8° uniform rotational sampling and 0.5Å translational step size has RMSD = 0.73Å. (C) Top-ranked result using Colores with default options has
RMSD = 1.096Å. (D) Top-ranked result using the ADP_EM package, with bandwidth L = 25 has RMSD = 0.814Å.

doi:10.1371/journal.pcbi.1004289.g004
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secondary structure score (SSS) and the mutual information score (MIS). Finally, we discuss
some unique advantages offered by PF2 fit.

The scattering potential CCS is a valuable alternative to the Gaussian
CCS
Gaussian blurring have usually been the method of choice for fitting software. In this paper, we
introduced the scattering potential which provides a better model of the electron density than
Gaussian. In our experiments on both synthesized and acquired EM data, we found that SCCS
is a valuable alternative to the GCCS, one whose performance is similar and stable across a
range of resolutions.

On synthetized EM data. We compare the GCCS with the SCCS in Table 1, Figs 5 and 6.
When compared to the GCCS, the SCCS produced results with lower RMSD for the same reso-
lution, both in the presence and the absence of noise, cf. Figs 5 and 6. However, the average
rank of the of the best RMSD result might be lower for SCCS than GCCS as can be seen in
Table 1.

Another illuminating trend is the slope of each of the curves in Fig 5, which reveals that
results returned by the GCCS degrade more sharply than those from the SCCS. Note that both
the GCCS and the SCCS yielded better RMSDs on average than ADP_EM (see [3], Fig 1), yield-
ing on average lower RMSD results at the same synthesized EM resolution.

Table 1 gives the the average rank of the best RMSD result returned by PF2 fit—SE(3).
On acquired EM data from the cryoEM challenge. We also compared results obtained

from acquired cryo-EM 3D EMmap fitting (Experiment 3) using both the GCCS and SCCS. In
this experiment, the RMSD cannot be measured, as there is no atomic structure corresponding
toM. Instead, we use the number of atoms excluded outside a given iso-contoured molecular
surface to compare the performances of the rival CC scores. The results, in Table 2, show that
for fitting with acquired 3D EMmaps, the SC yielded on average results that exclude 2–4 fewer
residues than the GCCS. This is in keeping with the expectation that the SCCS is closer to

Table 1. Average rank, rounded to the nearest integer, of best RMSD result returned by PF2 fit—SE(3)
in the initial search stage for synthetic maps at different resolutions. The figure in brackets in the second
and third columns denotes the rank in the presence of noise at SNR = 1. See the section on “Datasets” for a
list of PDBs used in this experiment. Note that even if the rank of the best RMSD is lower for SCCS in some
cases, the actual RMSDs are generally lower, cf. Figs 5 and 6.

Resolution (Å) Rank—GCCS Rank—SCCS

5 1 (1) 1 (1)

9 1 (1) 1 (1)

13 1 (1) 1 (2)

17 2 (2) 2 (3)

21 1 (3) 2 (5)

27 1 (3) 3 (5)

31 2 (3) 3 (5)

35 2 (5) 4 (7)

39 2 (7) 5 (7)

43 2 (7) 5 (7)

47 2 (8) 6 (7)

doi:10.1371/journal.pcbi.1004289.t001
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Fig 5. Resolution robustness and comparison of scattering potential (SCCS) and Gaussian (GCCS) scores for synthesized data.We plot the RMSD
of the top-ranked result as a function of the resolution of the EMmap used for the fit. See the section titled “Dataset” for a list of PDBs used in this experiment.
(A) Average resolution-dependent RMSD of the top-ranked result returned by PF2 fit—SE(3) in the absence and presence of noise for the GCCS and the
SCCS. (B) Average Z-Score for the ten top results in the absence of noise. Z-Scores in the presence of noise follow the same trend.

doi:10.1371/journal.pcbi.1004289.g005
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Fig 6. Effect of complementary space scoring for synthesized data. Using the complementary space scores from (A) Eq (8) and (B) Eq (9), withwcomp =
1,wtarget = 1 we plot the RMSD as a function of the resolution of the EMmap. See the section titled “Dataset” for a list of PDBs used in this experiment.

doi:10.1371/journal.pcbi.1004289.g006
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acquired 3D EMmap reconstructions than the GCCS, and is thus able to yield a better correla-
tion in situations where such 3D EMmaps are involved.

Put together, these observations imply that the SCCS is an effective alternative to the GCCS
in microscope acquired density-map fitting scenarios, since it is a more realistic representation
of a 3D EMmap. This conclusion applies not just to the problem of rigid-body fitting, consid-
ered in this work, but to the harder problem of flexible fitting, where it is critical that the repre-
sentation of P be as close to the target 3D EMmap as possible. We note that there is a tiny
overhead in computing the SCCS relative to the GCCS due to the former being a sum of five
Gaussians.

Fig 5 suggests that for lower resolutions (< 20Å), it might be sensible to use more resolution
robust scoring functions like the cross-correlation score normalized with respect to mean value
and standard deviation as proposed in [9]. These normalized scoring function could be used in
a straightforward manner in our PF2 fit software either as a preprocessing step for the EM
maps or as an additional FFT-amenable scoring function.

Complementary space cross-correlation score improves predictions
The addition of the complementary space cross-correlation score (CCCS), or the pocket score,
(Fig 6) to the scoring function resulted in tangible improvements to the quality of the obtained
fit across the range of resolutions. This was observed with the GCCS (Eq (5)), as well as the
SCCS, and both in the presence and absence of noise. The improvement in the quality of the
results obtained is most dramatic at values of R beyond 15Å.

Low Discrepancy Sampling Results in Better Speed-Accuracy Trade-off
Fitting is essentially an optimization problem in a high dimensional configuration space. In
PF2 fit, and any other existing methods, the configuration space is discretized to a small num-
ber of discrete samples where the scoring terms are evaluated and the maximum/minimum is
reported. Now, let F be the scoring term and C be the configuration space, from which N dis-
crete samples are taken. Then if the true maximum value ism�(F) =maxx2CF(X), and the sam-
pled maximum value ismS(F) =maxx2SF(X)- then it is guaranteed thatm�(F)−mS(F)�
ωC(F, dN) (see Theorem 6.4 in [55]), where dN is the dispersion of the samples in C, and ω is a
measure of the continuity of F. So, for a given F and C, the error is directly correlated with dis-
persion of the N discrete samples.

In PF2 fit, we use the low-discrepancy and low-dispersion sampling scheme for SO(3) space
described in [24]. By contrast, existing fitting software [3, 7, 47], due to their use of uniform-

Table 2. Results of applying PF2 fit—SE(3) on a selection of datasets from the cryoEMmodeling chal-
lenge (Experiment 3) using both the GCCS and SCCS. An error measure similar to ETR is provided as the
number of residues excluded outside a given iso-contoured molecular surface. The SCCS yielded on average
results that exclude 2–4 fewer residues than the GCCS.

Type of Experiment Data GCCS SCCS

subunit-subunit GroEL (P = 1AONB, M = EMD 1461 @7.7 Å) 4 0

subunit-subunit GroEL (P = 1OELG, M = EMD 5001 @4.2 Å) 3 0

subunit-assembly GroEL (P = 1WE3B, M = EMD 1180 @7.7 Å) 3 0

subunit-subunit mm-cpn (P = 1Q3QB, M = EMD 5137 @ 4.3 Å) 2 0

subunit-subunit Rotavirus (P = 1QHDA, M = EMD 1461 @ 3.8 Å) 3 0

multiple subunit-assembly SIV (P = 3DNO, M = EMD 5020 @ 20 Å) 17 10

doi:10.1371/journal.pcbi.1004289.t002
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FFT, requires uniformity in the parameters used to represent the orientations in SO(3), for
example uniform sampling of θ, ϕ and ψ Euler angles or icosahedral vertices on the sphere as
in [3]. But such uniform sampling of the parameters might lead to non-uniform set of samples
in SO(3), leaving large gaps (high-dispersion) in some places, showing high discrepancy or not
sufficiently reflecting the topological structure of the underlying domain, cf. [24]. Since, PF2 fit
uses a non-uniform polar FFT (NFSOFT [21]), it is able to handle non-uniformity in the Euler
angles (which leads to uniformity, in low-discrepancy sense, in SO(3)). As a result PF2 fit can
achieve high accuracies even with very limited number of samples.

In Fig 7(A) we report the results of applying PF2 fit on the synthesized EM dataset, with dif-
ferent number of low-discrepancy samples in SO(3). Notice that the results are stable with only
around 5k samples (corresponding to about 15 degree separation in SO(3)) which runs in
around 100 seconds in a single threaded execution. The Non-uniform inclusion potential
cross-correlation score (NCCS) highlights another advantage of non-uniform FFT. NCCS
incurs much smaller overhead than GCCS or SCCS, and the advantage becomes more pro-
nounced when the overall runtime is smaller (see Fig 7(B)). For example, at 5k samples, the
NCCS is about 20% faster than GCCS. Further advantages of NCCS, in terms of its speed-accu-
racy tradeoff is discussed in a later section.

The performance of reranking increases with resolution
We discuss the result of applying two separate reranking schemes, the skeleton-secondary
structure score (SSS) and the mutual information score (MIS) in terms of improving the ranks
of the predictions from PF2 fit’s FFT-amenable initial scoring phase which have low RMSD.

On synthetized EM data. We tested the described set of 53 models in our synthesized EM
dataset for 6 different resolutions and then counted the instances in which the reranking
replaced the top-ranked result of the initial stage with a previously lower ranked one, that has a
better RMSD and is hence a better fit.

In Table 3, we report the average rank of the lowest RMSD prediction, after applying the
reranker in absence and presence of noise dependend on the resolution. We see that MIS is
more resolution robust than the SSS and both perform better at higher resolutions.

The MIS replaced the top-ranked result of the initial stage with one that has a better RMSD
73 times, predominantly at resolutions below 10Å. These cases occured for all the PDBs listed
in the section on datasets, except 1BVLba, 1AY1hl and 2BNH.

On the other hand, we notice that the usefulness of the SSS degraded sharply with decreasing
resolution. There were only five cases out of the 318 experiments in which the SSS replaced the
top-ranked result with a result that has better RMSD; all of these cases occured at resolutions
< 10Å, and for the PDBs 1FSKbc, 1BVLba, 1BDD, 2CTS and 1OELg. However, we expect the
SSS to become a more effective gauge of fitting quality as the quality of density maps obtained
from cryo-EM increases, and more density maps at resolutions between 3–5 Å are isolated.

On acquired EM data from the cryoEM challenge. For finer resolution 3D EMmaps,
such the one corresponding to GroEL at 4.4Å, mm-cpn at 4.3Å, Rotavirus at 3.8Å, or GroEL at
7.7Å, SSS correlates with the MIS, as well as the FFT-amenable fitting metrics, about the quality
of the fitted result, generating scores that range between 0.3 and 0.8 for the top ten fitting
results. However, for 3D EMmaps such as those of GroEL at 11Å or SIV at 20Å it diverges
sharply from the MIS and the other measures introduced in this work, and yields results that
are clearly, i.e., visually, incorrect, due simply to the quality of skeleton obtained.

We expect the SSS to become a more effective gauge of fitting quality as the quality of 3D
EMmaps obtained from cryo-EM increases, and more 3D EMmaps at resolutions between
4–8Å are isolated.
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Fig 7. Speed-accuracy trade-offs in PF2 fit. (A) The plot displays the average runtime (divided by 2000) using the GCCS scoring term, and the
corresponding error (in RMSD) when PF2 fit is applied on the synthesized EM dataset. Notice that the runtime increases linearly with the number of samples
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PF2 fit compares favourably with other publicly-available software
We tested PF2 fit against the publicly available ADP_EM and Colores. Though these three pro-
gramms have correlation-based fitting schemes, the exact formulation of the affinity functions,
and just as importantly the sampling scheme are not the same. For instance the translational
step of PF2 fit is not directly comparable to the translational step of Colores. Also, the angular
sampling density as well as the expansion degree affect the outcome. So, it is almost impossible
to come up with parameters for each software which would result in the same measure of dis-
persion in the samples. Hence, we fixed the parameters of PF2 fit such that its runtime is similar
to those of ADP_EM and Colores in their default settings, and then compared the results.

Accuracy on synthetized data. In Fig 5 we report the average RMSD of the top-ranked fit-
ting predictions made by PF2 fit over the set of 53 PDBs mentioned in the Validation and data-
set section. As the PDBs were blurred, the accuracy (RMSD) of the prediction gradually got
worse, as expected. We compared these to the plot in Fig 1 of [3], where performance of
ADP_EM and Colores is reported in the same manner (i.e. RMSD vs. resolution) for a smaller
dataset. According to the data reported in [3], the average RMSD of three variants of ADP_EM
and Colores+Powell is above 1Å when the blurring is greater than 20Å, which is very similar to
PF2 fit using GCCS. However, PF2 fit with SCCS achieved average RMSDs which are less than
1Å, even when the model is blurred upto 40Å, and is hence much more robust for fitting to low
resolution maps. The lowest blurring resolution reported in [3] is 10Å. At that resolution, the
approximate average errors for Colores+Powell, the best variant of ADP_EM, PF2 fit with
GCCS and PF2 fit with SCCS are respectively 0.25, 0.7, 0.4 and 0.3 respectively, indicating that
PF2 fit performs comparatively well when better maps are available as well.

in SO(3), but the average error is quite steady between 0.4 to 0.5Å except for the case when only 2000 samples were used. We believe that such robustness
stems from the low discrepancy of the sampling. (B) We compared the average speeds of PF2 fit on the synthesized EM dataset with GCCS, SCCS and
NCCS using the same expansion degree (L = 20). The plot shows that NCCS is faster than GCCS, specially when fewer samples are used. On the other
hand SCCS is marginally slower (around 0.1%) than GCCS.

doi:10.1371/journal.pcbi.1004289.g007

Table 3. Average rank of best RMSD result returned by PF2 fit—SE(3) after reranking. In the initial stage
GCCS was used. The figures in brackets denote the rank in the presence of noise at SNR = 1. We see a
strong decrease in rank for the skeleton-secondary structure score with and without noise while the mutual
information score remains predictable across the range of resolutions. See the section on “Datasets” for a list
of PDBs used to generate the synthetic maps used in this experiment. Note that even if the ranks of the best
RMSD solution, on average across all experments, show no improvement over Table 1 (mostly because
GCCS already does an excellent job of ranking them)- the ranks actually improved for several of the experi-
ments (73/318 for MIS, and 5/318 for MIS). Please see Section ‘The performance of reranking increases with
resolution’ for details.

Resolution (Å) Rank SSS Rank MIS

5 2.91 (7.72) 1.04 (1.67)

7 2.95 (7.86) 1.05 (1.62)

9 3.79 (8.86) 1.04 (1.74)

11 8.93 (13.15) 1.06 (1.88)

13 9.97 (25.89) 1.06 (1.75)

15 15.89 (48.17) 1.08 (1.83)

doi:10.1371/journal.pcbi.1004289.t003
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For PF2 fit, the top-ranking or second-ranking pose was observed to be usually the one with
the least RMSD (Fig 5). This feature should be common to all global-optimisation-based fitting
routines in which atomic structures are rigidly fit to blurred versions of themselves. However,
we observed in our experiments that while the top ranked fitting result in Colores is usually
also the one with the least RMSD, the ones ranked 2–10 have RMSDs that can range anywhere
between 1.1 and 10 times the RMSD of the top-ranked result. We surmise that this spurious-
ness is an artifact of its Powell maximization step.

An example of how PF2 fit performs relative to Colores and ADP_EM [3] can be seen in Fig
3. This is an instance of Experiment 1 applied to a single chain atomic structure. The fitted
result using PF2 fit results in an RMSD of 0.88Å, the least of the three programs, while Colores
and ADP_EM respectively return 3.2 and 0.94Å.

Another example, a variant of Experiment 1, can be seen in Fig 4. Here a random rigid-body
transformation (R,t) is applied to a single chain Pa of a two-chain atomic structure Pab. Pa is

then fitted to a synthesized EM density map generated from Pab to generate P
fit
a , using one of

PF2 fit, Colores, or ADP_EM. The RMSD between P fit
a and Pab is then measured. Fig 4 shows

that PF2 fit obtains an RMSD of 0.73Å, while ADP_EM and Colores obtain an RMSD, respec-
tively, of 0.814Å and 1.096Å.

All in all, our experiments showed that PF2 fit can be considered as a viable alternate with
features and tradeoffs that complements those available in ADP_EM and Colores.

Performance on acquired EM data from the cryoEM challenge. An example of acquired
EM data subunit-assembly fitting is provided in Fig 8. Here a single subunit of an atomic struc-
ture is fit to a larger density map which contains three repetitions of the subunit. An ideal

Fig 8. Comparison of PF2 fitwith other software in subunit-assembly fitting. Fitting the PDBmolecule P (1GC1) to the EMmapM of SIV 20Å
(EMD5020), using the GCCS. Two different views of the molecules are given: (A) Results from PF2 fit. The ETR is 0.03. (B) Results from colores with default
options. The ETR is 0.1. (C) Results from ADP_EMwith L = 25. The ETR is 0.08.

doi:10.1371/journal.pcbi.1004289.g008

Polar Fast Fourier Alignment of Structures with 3D Electron Microscopy

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004289 October 15, 2015 21 / 27



fitting routine should be able to rank each of the symmetric positions of the fitted atomic struc-
ture above all other hypothetical positions. While PF2 fit and ADP_EM achieve this, Colores is
unable to find one of the three symmetric positions in its top ten results. Additionally, PF2 fit
attains the lowest ETR of the three fitting routines. The ETRs for PF2 fit, Colores, and
ADP_EM are, respectively, 0.03, 0.1, and 0.8.

Timing. As previously mentioned, the parameters in PF2 fit were set up to yield compara-
ble runtimes to ADP_EM [3] and Colores. An average PF2 fit fitting exercise with L = 25 and
angular sampling of 10° per rotational degree of freedom takes is around twice as much time as
ADP_EM [3] with default settings, and less time than Colores (even when Powell optimization
is not done). For example, fitting the Beef Liver Catalase (PDBID: 7CAT) on a single-threaded
2.5GhZ processor with 8 GB main memory takes about 2.5 minutes for PF2 fit, 65 seconds for
[3] (with the same value of L), and about 3.5 minutes for Colores. These reported times are
averaged over 25 executions of each. Note that, for PF2 fitmost of the performance overhead is
due to the non-uniform nature of the search algorithm, and in particular the NFFT.

Subunit-assembly benefits from the unique focusing ability of PF2 fit
Suppose an experimenter wants to refine the cryo-EM map of GroEL at 7.7Å (M = EMD
1180, 192 × 192 × 192 voxels) by fitting a single subunit of GroEL (P = 1AONa) into it. This is
the subunit-assembly problem, in which the translational uncertainty is roughly twice the size
of P, whereas the rotational uncertainty is the range of rotations from 0 to 2π. One way to effect
the refinement would be to segment fromM a 3D EM subunit of GroELMs, to which P
could be fitted using PF2 fit—SE(3) (Fig 9A).

If a good segmentation is unavailable, a software like Chimera [10] could be used to refine
an approximate placement. Another option is to use rigid-body fitting with Colores. Chimera
surveys a fixed number (=50) distinct poses in its gradient-descent-based optimisation scheme,
and the fit obtained is only locally optimal. On the other hand, Colores uses a uniform Carte-
sian grid with a default translational step equal to the voxel spacing of the map. With a default
angular fineness of about 30° on a cubical Euler Angle grid, this results in 643 = 262144 transla-
tional samples and 864 rotational samples. Of these, several positions are redundant, as they lie

Fig 9. Fitting the PDBmolecule P (1AONb) to the GroEL 3D EMmapM (EMD 1461) at 7.7Å. (A) Full 3D EMmapM with segmented subunitMs (inset,
top). The molecule P is fitted intoMs using PF2 fit (inset, bottom). (B) Initial guess for rigid-body fit intoM. (C) PF2 fit generates translational samples local to
the initial guess to find the depicted correct result. Correctness is measured by deviation from the rigid-body fit in (A). The result has an RMSD of 0.3Å from
the fitting result in (A) and is ranked at number four in a run of PF2 fit with angular resolution of 10°.

doi:10.1371/journal.pcbi.1004289.g009
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outside the region of the initial guess. In general, there is no way in Colores to confine the
translational search to a given region.

A third option is to use PF2 fit. The focusing property of PF2 fitmitigates both the above dis-
advantages (Fig 9B-9C). Since the GroEL assembly is symmetric, the experimenter could place
the subunit approximately within the 3D EMmap (Fig 9B), and then instruct PF2 fit—SE(3) to
do a comprehensive search in the local region around the 3D EMmap. In such an experiment,
translations are completely disabled, and the rotational search space is uniformly sampled.
Using the uniform SO(3) sampling technique in Mitchell [24] yields 14868 samples at 10°
angular step. The result in Fig 9C is obtained.

Using PF2 fit in such scenarios has the following advantages. First, the comprehensive
search in the local region essentially guarantees that PF2 fit—SE(3), unlike iterative gradient-
descent-based optimization techniques, is not sensitive to an initial guess. Second, unlike global
search routines, PF2 fit does not generate spurious rigid-body fits in regions that are spatially
distant from the optimal fit. Third, the time-taken for the experiment is proportional to the
number of local samples rather than for the (much larger) entire search space. PF2 fit thus com-
bines the merits of local and global search paradigms in its focused search.

Note that many rotational-FFT-based schemes, e.g. [3] share the focusing property; how-
ever, since these techniques use a cubic Euler Angle grid, they do not ensure that the space of
rotations is uniformly sampled.

The non-uniform inclusion potential (NCCS) is highly efficient
The NCCS is a non-uniform-grid-based version of the envelope score in Vasishtan and Topf
[13]. Along with PF2 fit, the non-uniformity inherent to the inclusion potential enables a very
high speed search of the space of rigid-body motions SE(3) available to P. We explain this by
first noting that since the quantity of information in Anu(x), cf. Eq (2), is exactly equal to the
number of atoms in Ps, a relatively low degree L in Eq (10) suffices to represent it. In general,
while the GCCS and SCCS each demand a degree at least equal to L = 20, with best results for
L� 25, the NCCS requires only a degree L = 5 (see Fig 10).

By itself, however, this property is of limited use. In the uniform-FFT frameworks used in
either [47] or [3], the expansion degree is keyed directly to the coarseness of rotational sam-
pling, because the underlying FFT grids are only as fine as the expansion degree allows them to
be. Using a degree L = 5 in either of these approaches would mean conducting a rigid-body
search over an angular grid with separation 360/(2 × 5) = 36°, an unacceptably coarse value for
most rigid-body fitting exercises. By contrast, PF2 fit, functioning as it does through the non-
uniform SO(3) Fourier transform, enables an arbitrarily fine scan of the space of rigid-body
motions at any expansion degree.

These advantages mean that the NCCS can play a central role in rigid-body fitting. If a
coarse estimate of a fitted position of P with respect toM is desired, then a low expansion
degree version of the NCCS can be used, whereas a more accurate estimate can be found using
the SCCS at L� 20. The typical time taken for a subunit-subunit fitting exercise on a single-
threaded Macbook Pro at 2.5 GhZ with 8GB RAM is about 1.3 minutes.

Concluding remarks
The results of this paper has contributed to existing methods and software on rigid-body fit-
ting. In particular:

• Cross Correlation scoring functions. We have introduced the non-uniform inclusion potential
CCS in Eqs (2), (3). This score has been shown to be preferable to standard fitting metrics in
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terms of speed (cf. Fig 10). We have also introduced the concept of complementary space
matching, and introduced the complementary space scoring function (CCCS). The addition
of the CCCS results in significant improvements in the prediction accuracy across a range of
resolutions, regardless of the target-target scoring function used. Finally, we have compared
the scattering potential (SCCS) with the typically used Gaussian potential (GCCS), finding
that it performs favourably in our application compared to the latter in both synthesized and
microscope acquired density map fitting scenarios and hence provides a valuable alternative.

• Search scheme. We have introduced a search scheme that is resolution-robust, capable of
local fitting, and able to quickly and comprehensively survey the space of rigid-body motions
SE(3) (cf. Results section). The search scheme we have introduced is capable of uniformly
sampling the space of rigid-body rotations SO(3), where uniformity is defined according to a
chosen metric. For instance, in the sampling technique from [24] we use throughout this
work, uniformity involves the competing notions of local separation and global coverage.
Equispaced Euler angular grids, the mainstay of all current rotationally exhaustive

Fig 10. Speed-accuracy trade-offs for NCCS.NCCS is computed on a non-uniform grid based on the atom positions. If the grid is sparse, then it is
expected that a lower degree expansion of the spherical basis functions would sufficiently represent it. We applied NCCS with the expansion degree (L)
varied between 5 to 20, on the synthesized EM dataset (blurring to 12A resolution) and using 30k samples in SO(3) space. The plot shows that the error
decreases and runtime increases with L. However, the change is runtime is more pronounced than the change in error, for example, the runtime is 35% faster
for L = 5 while the error is only 5%more than that of L = 20.

doi:10.1371/journal.pcbi.1004289.g010
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techniques, generate samples in SO(3) that possess neither of these desirable features. See
also [29] for a more detailed consideration of sampling.

• Reranking stage. We have introduced the skeleton-secondary structure score (SSS), whose
performance we expect to improve as the resolution of experimental cryo-EM 3D EMmaps
improves.

• Optional multi-basis framework. Our match and alignment (fitting) algorithms can use one
of two popular basis expansions to perform an exhaustive search. PF2 fit—SE(3) and—SO(3)
is compatible with existing FFT-based fitting schemes, while being general enough to sub-
sume the approaches that use these schemes, approaches such as those by [3, 19, 47]. Because
the NFFT is currently not as fast as the FFT, there may be situations in which the use of the
FFT-based technique, regardless of its drawbacks, might be indicated. Suitable modifications
of PF2 fit—SE(3) and PF2 fit—SO(3) would be applicable in these situations as well.

Software and Data Availability
The PF2 fit software package along with a tutorial is free for academic users and available
through our website: http://www.ices.utexas.edu/CVC/software/.
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