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Targeting innate-Like T Cells 
in Tuberculosis
Shouxiong Huang*

Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA

Peptide-specific conventional T cells have been major targets for designing most 
antimycobacterial vaccines. Immune responses mediated by conventional T cells 
exhibit a delayed onset upon primary infection and are highly variable in different 
human populations. In contrast, innate-like T cells quickly respond to pathogens and 
display effector functions without undergoing extensive clonal expansion. Specifically, 
the activation of innate-like T cells depends on the promiscuous interaction of highly 
conserved antigen-presenting molecules, non-peptidic antigens, and likely semi-
invariant T cell receptors. In antimicrobial immune responses, mucosal-associated 
invariant T cells are activated by riboflavin precursor metabolites presented by major 
histocompatibility complex-related protein I, while lipid-specific T cells including natural 
killer T cells are activated by lipid metabolites presented by CD1 proteins. Multiple innate-
like T cell subsets have been shown to be protective or responsive in mycobacterial 
infections. Through rapid cytokine secretion, innate-like T cells function in early defense 
and memory response, offering novel advantages over conventional T cells in the design 
of anti-tuberculosis strategies.

Keywords: vaccine, innate-like T cells, Mycobacterium tuberculosis, lipid, riboflavin metabolites, CD1, MR1, 
antigen presentation

Host immune responses are critical in controlling pandemic and life-threatening Mycobacterium 
tuberculosis (M. tuberculosis) infection in humans through the development of protective immunity 
in a T cell-dependent manner (1–3). An effective T cell response leads to a low lifetime risk of 
developing active tubercular diseases. In mice, the activation of CD4+ or CD8+ T cells is impor-
tant for maintaining a low bacterial load in tissues, as shown using antibody depletion and T cell 
adoptive transfer in various T cell-deficient mice (4–9). In humans, the importance of CD4+ T cell 
response is supported by the dramatically increased risk of active tuberculosis with the co-infection 
of human immunodeficiency virus (HIV), which reduces the number of CD4+ T cells in patients 
(10). Abundant circumstantial evidence also supports that the effector functions of human CD8+ 
T cells are able to suppress mycobacterial growth (3), although the activating elements for different 
CD8+ T cell populations remain elusive (3, 11, 12). Thus, therapeutic and vaccine strategies aimed 
at the development of protective T cell responses would be beneficial for minimizing the treatment 
course of antibiotics, preventing the spread of drug-resistant M. tuberculosis, and reducing lung 
inflammatory responses and injury (13).

The licensed vaccine Bacillus Calmette–Guérin (BCG) has saved many children’s lives, despite 
offering insufficient protection against pulmonary tuberculosis in adults and no evidenced effi-
cacy in controlling the prevalence of tuberculosis (14). Upon discovery of virulence-associated 
genetic complexes from M. tuberculosis, virulent factors encoded by these pathogenicity islands 
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have been shown to induce protective T cell responses (15, 16). 
Many vaccination approaches in the pipeline of development 
are based on immune response mediated by these virulent pro-
teins through antigen presentation by major histocompatibility 
complex (MHC) class I or MHC class II molecules (15, 17, 18). 
Immune responses mediated by conventional T cells feature 
highly specific and heterogeneous immune responses that are 
determined by tri-molecular interactions among highly poly-
morphic antigen-presenting molecules, diversified antigenic 
peptides, and variable T cell receptors in human populations 
(19). Meanwhile, conventional T cells require a relatively long 
priming stage allowing naïve T cells to differentiate into effec-
tor cells with antimycobacterial functions. As discussed below, 
innate-like T cells display conserved receptor interaction and 
fast-responding kinetics in antigen presentation and effector 
responses, which contribute to unique antimycobacterial 
immune defenses.

DiSCOveRieS OF UNCONveNTiONAL 
T CeLLS iN M. TUBERCULOSIS 
iNFeCTiONS

Until recently, CD8+ mucosal-associated invariant T (MAIT) 
cells in antimycobacterial responses were difficult to distinguish 
from conventional CD8+ T cells. High-frequency CD8+ T cells 
in both infected and uninfected individuals are reactive to M. 
tuberculosis, potentially challenging the notion that CD8+ T cells 
are conventional T cells activated by mycobacterial peptides 
in infected humans. Limited dilution analysis showed that a 
high percentage of these M. tuberculosis-reactive CD8+ T cells 
were not restricted by classical MHC class I molecules (12, 20). 
Surprisingly, these non-conventional T cells, which covered 80% 
of the total CD8+ T cell clones generated from individual healthy 
donors, 70% from latently infected donors, and about 35% from 
donors with active tuberculosis, were identified as MAIT cells 
in a blocking assay using an antibody against the MHC-related 
protein I (MR1) (12). This finding indicates that a high percent-
age of CD8+ T cells are not restricted by MHC class I proteins and 
do not respond to peptide antigens. In fact, they are restricted 
by MHC class I-like MR1 protein, as confirmed with functional 
blockage using an anti-MR1 antibody (12, 20). The existence of a 
high percentage of mycobacterial-reactive CD8+ T cells in unin-
fected healthy humans is also striking, as the stimulants for these 
CD8+ T cells must be shared between non-mycobacterial and 
mycobacterial organisms, and peptide antigens are least likely to 
explain this result. To date, we know MAIT cells respond to ribo-
flavin precursor metabolites produced by a variety of bacterial 
species, including M. tuberculosis (21). Concurrently, MAIT cells 
have been shown to be protective against mycobacterial infection 
using infected mouse models deficient of MR1 protein or with 
overexpression of the MAIT cell TCR (20).

The presence of antimycobacterial T cells restricted by the 
cluster of differentiation I (CD1) proteins has been reported 
along with the initial discovery of a CD1 antigen presentation 
function (22–26). The expression of an invariant TCR sequence 
likely supports a unique activation mechanism diverted from 

conventional T cells (27). Indeed, CD1-restricted T cells from 
peripheral blood can be stimulated by autologous immature 
CD1+ dendritic cells and respond at a significant magnitude 
and frequency in asymptomatic M. tuberculosis-infected donors 
(23). It appears that lipid-stimulated T cell proliferation is 
minimally detectable or absent in the blood samples from 
active tuberculosis patients and become detectable 2  weeks 
after the start of antibiotic treatment. This interesting finding 
suggests that M. tuberculosis-reactive CD4+ T cells respond to 
M. tuberculosis lipid antigens presented by CD1 proteins and 
exist abundantly in healthy individuals with previous exposure 
to M. tuberculosis (23).

A GLANCe AT UNCONveNTiONAL 
T CeLLS

Unlike conventional T cells, which are restricted by the antigen-
presenting molecules encoded by the MHC genetic complexes, 
unconventional T cells are activated by MHC class I-like mol-
ecules that are encoded by genes outside the MHC complexes. 
As shown in Table 1, unconventional T cells are mostly restricted 
by CD1 and MR1 proteins. Specifically for two major invariant T 
cell populations, MAIT cells are activated by riboflavin precursor 
metabolites presented by the MR1 protein, and natural killer 
T (NKT) cells are activated by various lipid metabolites presented 
by the CD1d protein (Table  1). CD1- and MR1-restricted T 
cell subsets are in fact abundant in human peripheral blood or 
tissues. In particular, MR1-restricted MAIT cells and CD1a- and 
CD1c-restricted T cells are highly frequent in human blood 
(12, 28, 59); MAIT cells and iNKT cells are also abundant in 
human liver tissues (29, 30). The functional uniqueness of MAIT 
and iNKT cells is mostly attributable to their invariant TCRα 
sequences, which were initially characterized in the early 1990s 
(27). The expression of invariant TCRα chains with biased usage 
of TCRβ chains is now known as a major feature in MAIT, 
iNKT, and other unconventional T cell populations (Table  1), 
contributing to the quick-responding kinetics described below.

The identification of mycobacterial antigens for uncon-
ventional T cell activation has focused on the lipid antigens 
presented by group I CD1 proteins (CD1a, CD1b, and CD1c). 
Unconventional T cells against M. tuberculosis were in fact ini-
tially discovered to respond to CD1b-restricted mycobacterial 
lipid antigen (22). Thereafter, more antimycobacterial lipid-
specific T cells were discovered to detect mycobacterial lipid 
antigens presented by group I CD1 proteins (Table 1). Subsets 
of CD1a-restricted T cells, represented by the cell line CD8-2, 
are reactive to dideoxymycobactin (DDM) (24). CD1b-restricted 
T cells are able to recognize more complex mycobacterial lipids, 
including glycerol monomycolate (64), glucose monomycolate 
(25), free mycolic acid (69), diacylated sulfoglycolipids (63), and 
phosphatidylinositol mannosides (70). Several lines of CD1c-
restricted T cells have also been derived in response to a different 
class of mycobacterial lipid, mycoketides, including the T cell 
lines CD8-1, which responds to mycobacterial β-mannosyl phos-
phomycoketide from mycobacterial lipid extracts, and DN-6, 
which recognizes phosphomycoketide (26, 67). As summarized, 
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TABLe 1 | Antigen-presenting molecules, antigens, and TCRs for unconventional T cells.

Restriction Named 
subsets

TCRα TCRβ Mammalian antigens Microbial antigens

hMR1/ 
mMR1

Mucosal-
associated 
invariant T

Invariant  
TRAV1-2

Biased 
TRBV6-1, 
TRBV20-1

Unknown Riboflavin precursor metabolites (31–37)

hCD1d/ 
mCD1d

iNKT Invariant  
TRAV10 and 
TRAV27

Biased 
TRBV25-1

iGb3 (38), ganglioside (39), ether-lysophosphatidic 
acid, plasmalogen lysophosphatidylethanolamine 
(40), lysophosphatidylcholine (41), 
phosphatidylinositol, phosphatidylglycerol, 
phosphatidylethanolamine (42),  
α-galactosylceramides (43)

α-Galactosylceramides (Agelas) (44), 
(Bacteroides) (45), Asperamide B (Aspergillus) 
(46), cholesteryl α-glycoside (Helicobacter) 
(47), α-galactosyldiacylglycerol (Borrelia) (48), 
α-glucosyldiacylglycerol (Streptococcus) 
(49), α-galacturonosylceramide, 
α-glucuronosylceramide (Sphingomonas) (50–52)

hCD1d/ 
mCD1d

dNKT Diverse or 
oligoclonal 
TRAV17,  
TRAV13 TRAV7, 
TRAV9

Biased 
TRBV12

Lysosphingomyelin, lysophosphatidyethanolamine, 
phosphatidylglycerol, phosphatidylinositol, 
phosphatidylethanolamine β-glucosphingomyelin, 
cardiolipin (42, 53), sulfatides (54), ganglioside (55)

phosphatidylglycerol, cardiolipin, 
phosphatidylinositol (56, 57)

hCD1a Diverse Diverse lysophosphatidylcholine (58) sulfatides (54) squalene, 
wax esters, triacylglycerides (59)

Dideoxymycobactina

hCD1b GEM Invariant  
TRAV1-2

Biased 
TRBV6-2

Glucose monomycolatea (25, 60)

LDN5-like T Biased  
TRAV17

Biased 
TRBV4-1

Glucose monomycolatea (25, 61)

Diverse Diverse Sulfatides (54) ganglioside (39)  
phosphotidylglycerol (61)

Sulfoglycolipidsa (62), diacylated sulfoglycolipidsa 
(63), glycerol monomycolatea (64), 
phosphotidylglycerol (61), lipoarabinomannana, 
phosphatidylinositol mannosidesa (65)

hCD1c Diverse Biased 
TRBV7-8, 
TRBV7-9

Sulfatides (54), methyl-lysophosphatidic  
acid (66)

Mannosyl-phosphomycoketidea 
phosphomycoketidea (67)

HLA-E/Qa-1 Biased Biased Major histocompatibility complex  
class I leader peptide, HSP60 peptide

GroEL mycobacteriala peptides (68)

HLA-A, B,  
C/H-2K, D, L

Diverse Diverse Various self peptides ESAT-6a, Ag85Ba, TB10.4a peptides (15, 16)

HLA, human leukocyte antigen; Qa-1, a nonclassical MHC class I protein in mice; H-2, the MHC complex in mice; dNKT, diverse natural killer T cells; GEM, germline-encoded, 
mycolyl lipid-reactive T cells; LDN5, name of a T cell line; TRAV, T cell receptor gene α chain variable region; TRBV, T cell receptor gene β chain variable region; iGb3, 
isoglobotrihexosylceramide. Mycobacterial antigens are labeled with a and identified antigens are referenced.
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these unconventional T cells exhibit different features from 
conventional T cells in antigen presentation (Table 1).

iNNATe-LiKe POSTULATe  
AND FAST-ReSPONDiNG KiNeTiCS

To consider T cell populations as being innate-like requires 
comparison of the biological features of T cells with those of cells 
from the innate and adaptive immune systems (Table  2). One 
measurable characteristic of an innate-like postulate is the quick 
activation kinetics from pathogen-unexposed precursors or naïve 
cells to effector cells in an antigen-specific manner. The activation 
of conventional naïve T cells requires prolonged antigenic prim-
ing for days and weeks following a primary infection to stimulate 
clonal expansion and effector function (71). Conventional CD8+ 
T cells have been shown with antimycobacterial responses, as 
supported by the M. tuberculosis-infected β2m−/− and TAP1−/− 
mice, which are unable to control M. tuberculosis replication in 

the lung and cause premature death (2, 72, 73). These mycobacte-
rial peptide-specific CD8+ T cells occur in the draining lymph 
node, become detectable in lung tissues within 2 weeks, and peak 
around 5–8  weeks in lung tissues after a primary infection in 
mice (Figure 1A) (3). Using a skin test, immune responses can be 
detected 5–6 weeks after M. tuberculosis infection in humans (74). 
In a drastic contrast to fast T cell responses to other intracellular 
bacteria, such as Listeria infection in mouse spleen (75), a much 
slower kinetics of T cell responses in M. tuberculosis infection 
may attribute to a slower growing curve of M. tuberculosis, bacte-
rial inhibition of migratory activity, bacterial modulation of host 
antigen-presenting cells, and relatively immunoprivileged nature 
of the healthy alveolar tissues (2, 76). The antigen stimulation for 
conventional T cell activation occurs faster in vitro than in vivo 
because sufficient antigen presentation is usually warranted 
when setting up cell culture. In cell culture, mouse naïve CD8+ 
T cells require antigen stimulation for at least a week in vitro to 
observe the cytotoxic activity to specific antigens (77). In fact, 
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FiGURe 1 | Responding kinetics of mucosal-associated invariant 
T (MAiT) and natural killer T (NKT) cells. (A) In vivo responding kinetics 
were hypothesized based on the presence of mycobacterial antigen-
specific CD8+ T cells in lung tissues (3), the ability of MAIT cells to inhibit 
Bacillus Calmette–Guérin (BCG) growth in lung tissues (80), and the ability 
of transferred iNKT to inhibit M. tuberculosis growth in lung tissues (81).  
(B) In vitro-responding kinetics were estimated according to the 
acquisition of cytolytic function by CD8+ T cells upon in vitro peptide 
stimulation (77), cytokine production by polyclonal MAIT cells upon 
stimulation with BCG-infected macrophages (80), and cytokine production 
by tetramer-isolated human polyclonal NKT cells upon antigen-specific 
activation (82).

TABLe 2 | Characteristics of innate-like T cells.

innate immune cells innate-like T cells Conventional T cells

Cell examples Macrophages, dendritic cells, 
natural killer cells, granulocytes

Mucosal-associated invariant T (MAIT) cells, invariant nature 
killer T (iNKT) cells, γδT cells, CD1-restricted T subsets, HLA-
E-restricted T cells

Conventional αβT cells, B cells

Activation elements PRR (e.g., TLR, NLR) Major histocompatibility complex (MHC) class I-like 
molecules

MHC molecules

Pre-activated Yes Yes No
Antigen-presenting molecules No Highly conserved Highly polymorphic
Antigen specificity No Low specificity High specificity
Activation kinetic in vivo Quick (hours) Quick (hours to days) Slower (days to weeks)
Receptors Highly conserved Highly conserved or less variable Highly variable
Precursor frequency High High Low
Diversity in responses Low Low in the same subset High
Memory No Pre-formed Yes

PRR, pattern recognition receptor; TLR, toll-like receptors; NLR, nucleotide-binding oligomerization domain-like receptors (NOD-like receptor); HLA, human leukocyte antigen.
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several rounds of stimulation with peptide-pulsed macrophages 
for multiple weeks are required to achieve stronger responses of 
naïve CD8+ T cells, such as the generation of anti-HIV cytolytic 
T cells (78). Distinctively, the response of macrophages and other 
innate immune cells to uptake bacterial materials for priming 

adaptive immune responses is believed in a very early stage, 
generally within hours, after infection (79).

Unlike conventional T cells, innate-like T cells, such as MAIT 
cells, are ready to respond to mycobacterial or other antigens 
within hours to days (83–85). When pathogen-unexposed 
mouse MAIT cells were cocultured with BCG-infected mac-
rophages, the production of a large amount of IFN-γ and IL-17a 
was detectable from MAIT cells within 4 days of coculture (80), 
although the time course needs to be further determined and 
the actual responding time is likely shorter. The early in vitro 
response has also been supported by the upregulation of 
CD69 expression on human and mouse MAIT cells following 
overnight incubation with E. coli- or Mycobacterium abscessus-
infected monocytes (12, 20), or M. tuberculosis-infected lung 
epithelial cells (12). The secretion of IFN-γ (12, 20) and tumor 
necrosis factor-α (TNF-α) (12, 86) upon MAIT cell activation 
can be observed as well after incubating bacterial-infected 
antigen-presenting cells and pathogen-unexposed MAIT cells 
for 16–48  h (Figure  1B). This in  vitro responding kinetics of 
MAIT cells is much faster than that of naïve conventional T cells 
stimulated with peptide antigens, which usually need 7 days or 
more to exhibit proliferation or effector function (78, 87). In 
vivo, MAIT cell accumulation in the primary infected lung tis-
sue starts less than 10 days post BCG infection, as detected by 
an MR1-tetramer for measuring the frequency of MAIT cells 
isolated from bronchoalveolar lavage fluid (BALF) and lung 
tissue (33). Taking into account the slow growing curve and 
immune-escaping mechanism mediated by M. tuberculosis as 
discussed (2, 76), the kinetics of MAIT cell responses is essen-
tially faster than the response of conventional CD8+ T cells in 
the lung infection of M. tuberculosis (Figure  1A). It appears 
that both the in vitro and in vivo kinetics of MAIT cells upon 
mycobacterial infection can be considered to resemble that of 
conventional memory T cells (33, 88).

In addition to MAIT cells, other unconventional T cells 
also exhibit quick-responding kinetics in their “primary” 
responses, including various CD1-restricted T cell subsets and 
HLA-E-restricted T cells (Table 1). NKT cells were identified in 
response to mycobacterial infection by the fact that the adop-
tive transfer of naïve splenic iNKT cells from uninfected mice 
resulted in a significantly reduced burden of M. tuberculosis 
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in the lungs of infected mice (81). This adoptive transfer assay 
provided evidence that CD1d-restricted NKT cells mediate 
protection against M.  tuberculosis in  vivo using innate-like 
responding kinetics, which allows visualization of the inhibi-
tion curve of M. tuberculosis within 3 weeks after the transfer 
of naïve iNKT cells, supporting the quick-responding kinetics 
of naïve iNKT cells (81). As characterized, the iNKT antigen 
α-galactosylceramide (α-GalCer) also ameliorated the course 
of tuberculosis in mice in the early stage of M. tuberculosis 
infection but provided no additional survival benefit for an 
extended application (89). Although the lack of long-term 
protection of α-GalCer in the mycobacterial-infected mouse 
model is difficult to explain, it is perhaps consistent with 
the observation that CD1d−/− mice are not more sensitive to 
M.  tuberculosis infection (8). Moreover, the protection pro-
vided by iNKT cells appears similar to the protection offered 
by MAIT cells for decreasing BCG growth in lung tissues 
at 10  days of infection rather than at 30  days. These initial 
results support that innate-like MAIT and iNKT cells provide 
protection against mycobacterial infection in the early stage 
of infection. Although MAIT cells produce more cytokines at 
30 days, whether innate-like T cells are able to further control 
the bacterial growth in later stages, cross-talk with innate 
immune cells, bridge the activation of conventional T cells, 
and regulate inflammatory responses in infected tissues are 
interesting topics that require further  investigations (80).

The kinetics for group I CD1-restricted T cells in responding 
to mycobacterial and other antigens remain poorly understood, 
mainly due to the lack of expression of human CD1a, CD1b, 
and CD1c homologs in mouse models. Interestingly, a recent 
study using humanized mice showed that the kinetics of primary 
activation and memory response of group I CD1-restricted 
T cells were somewhat delayed (90). The antimycobacterial 
immune responses of group I CD1-restricted T cells peaked 
at 7 days following the immunization of M. tuberculosis lipids 
and showed a bit more rapid secondary responses at 5  days 
(90). Whether naïve group I CD1-restricted T cells are able to 
quickly respond to mycobacterial infections similarly to iNKT 
cells and have an innate-like response in vitro or in vivo remains 
unknown.

The innate-like kinetics of activation for unconventional 
T  cells are correlated to highly conserved structures and 
interacting modes of three types of key molecules, antigen-
presenting molecules, antigens, and TCRs, which are variable for 
conventional T cell activation. As detailed below, the conserved 
genetic feature of each type of molecules is not restricted by 
the individual donor and will contribute to promiscuous tri-
molecular interaction in a donor-unrestricted manner, provid-
ing an immunogenetic basis for explaining innate-like responses 
in unconventional T cells (91).

HiGHLY CONSeRveD ANTiGeN-
PReSeNTiNG MOLeCULeS

In 1989, Janeway hypothesized that the innate immune system 
is able to regulate adaptive immune responses through innate 
immune recognition, such as pattern recognition (92). This 

prediction has been validated and has contributed to the under-
standing of the regulatory role of the innate immune system in 
adaptive immune responses (93). The innate immune system 
displays a remarkable homology of various innate immune 
molecules, including pattern recognition receptors (PRR) such 
as toll-like receptors (TLRs), which either recognize pathogen-
associated microbial patterns (PAMP) or endogenous damage-
associated molecular patterns (DAMP) (94–96). The common 
feature of these innate immune receptors is that they are 
germline-encoded and are considered highly conserved, with 
limited single-nucleotide polymorphisms (SNPs) in humans 
(97, 98). Innate cells with PRR expression are capable of mount-
ing rapid effector responses independently of clonal expansion. 
This strategy of early pathogen detection in the innate immune 
system contrasts with that in the adaptive immune system. The 
HLA gene complex is highly diverse, with more than 3,000 
variant alleles discovered in the HLA-A, B, or C loci, to date, 
in human populations, and it can also form 15,000–70,000 
possible α and β chain combinations for HLA-DQ, DR, and 
DP molecules (from the IMGT/HLA website: http://www.ebi.
ac.uk/ipd/imgt/hla/stats.html, September 13, 2016). This pro-
found heterogeneity confers hypervariable interaction in anti-
gen presentation for conventional T cell activation in human 
populations and is also functionally reflected in the difficulty 
of finding non-rejected graft donors for organ transplantation 
except for identical twins (99).

Similar to PRR molecules and drastically different from 
conventional HLA proteins, HLA class I-like proteins, such as 
MR1, CD1, and HLA-E, are considered to be highly conserved 
in humans (85, 91, 100, 101). Few SNPs have been identified 
by gene sequencing for HLA class I-like proteins, although 
more will likely be identified when human genome sequences 
are further available. The MR1 gene is generally considered 
invariant in humans, except for two silent mutations, one of 
which generates a STOP codon in the α2 domain for an MR1 
pseudogene (102). Different splicing variants of the MR1 gene 
have also been identified in other mammals (100, 103). The 
sequences of the ligand-binding and TCR-interacting domains 
(α1 and α2 domains) of the MR1 protein are identical between 
humans and chimpanzees, and they are highly homologous in 
mammals (100). It is difficult to imagine that human populations 
have such sequence variation, but humans and chimpanzees 
share the same sequence in the α1 and α2 domains of the MR1 
protein. In regard to CD1 genes, SNPs in the α1 domain (104, 
105) and the non-coding regions (106) of the human CD1a 
and CD1d genes have been identified, and non-synonymous 
mutations have also been deduced from exon 2 of both genes 
(107). Few identified SNPs support that MR1 and CD1 genes 
are still very conserved and appear similar to innate immune 
receptors such as TLRs in terms of sequence stability in human 
populations. Although these rare MR1 or CD1 variants may exist 
in some individuals, nearly monomorphic sequence of MHC 
class I-like molecules in humans provides an almost identical 
platform for antigen presentation and T cell activation in M. 
tuberculosis infections. Thus, a vaccination strategy designed 
based on these highly conserved structures of antigen-presenting 
molecules would be highly applicable to a broad range of the 
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human population, in contrast to vaccination strategies based 
on the classical HLA system (108, 109).

CROSS-SPeCieS CONSeRvATiON 
OF NON-PePTiDiC ANTiGeNS

Since the discovery of T cells using neonatally thymectomized 
mice in 1961 (110, 111), synthetic polypeptides have been used 
as model compounds for the elucidation of the molecular basis 
of immune responses (112), and peptide antigens have been 
shown to interact with MHC proteins for T cell activation 
(113). Peptides are probably better signatures for distinguishing 
non-self from self and fit nicely to the immunological paradigm 
in which high specificity for recognition and clearance of non-
self is a major theme. In contrast to the chemical specificity of 
peptide compounds, lipids, and other small metabolites with the 
same or similar structures at least partially shared by humans, 
mammals, and even microbes are perhaps less consistent with 
the immunological theory of “self–non-self discrimination.” 
Interestingly, these highly conserved and structurally similar 
metabolites cross organisms, similar to PAMP or DAMP, which 
bind to innate receptors, are products of the fundamental 
metabolic pathways that are critical for cellular structures and 
functions in organisms. For the development and expansion 
of MAIT cells, the molecular factors provided by commensal 
bacteria are critical because MAIT cells are less detectable in 
germ-free mice (114). The result that germ-free mice do not 
demonstrate expanded MAIT cells suggests that microbial 
factors are critical for the activation and development of MAIT 
cells. Recently, bacterial metabolites in vitamin B2 and B9 
metabolism were identified as MAIT cell antigens or ligands 
associated with the MR1 protein (31, 34). The first category of 
MR1 ligands, 6-formylpterin (6-FP) and acetyl-6-formylpterin 
(Ac-6-FP) as intermediate metabolites from vitamin B9 (folic 
acid) metabolism, has been identified from culture media. These 
two ligands function as antagonist molecules for blocking known 
MAIT cell activation (31, 35). The second category of MR1 
ligands derives from the precursor metabolites in vitamin B2 
(riboflavin) metabolism and includes three ribityllumazine spe-
cies, 7-hydroxy-6-methyl-8-d-ribityllumazine (RL-6-Me-7-OH), 
6,7-dimethyl-8-d-ribityllumazine (RL-6,7-diMe), and reduced 
6-hydroxymethyl-8-d-ribityllumazine (rRL-6-CH2OH). These 
ligands exist in bacterial culture supernatant (31, 115) and have 
a bicyclic core similar to the formyl-pterins but are functional as 
agonists for stimulating MAIT cells when presented by the MR1 
protein. The presence of a ribityl side chain from ribityllumazine 
species is critical for interacting with TCR for MAIT cell activa-
tion (31, 34, 35). A recently added third category of MR1 ligands 
includes two pyrimidine metabolites in riboflavin metabolism, 
5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU) 
and 5-(2-oxoethylideneamino)-6-d-ribitylaminouracil (5-OE-
RU) (36), which are considered to be the most potent known 
MAIT cell activators. Interesting research from Australia and 
France used bacterial strains defective in enzymes for riboflavin 
synthesis to show that mutations in the upstream genes involved 
in the synthesis of 5-amino-6-d-ribitylaminouracil (5-A-RU), the 
precursor of 5-OP-RU and 5-OE-RU, ablate MAIT cell activation 

by bacterial supernatants, whereas mutated genes involved in 
reactions downstream of 5-A-RU do not (36, 116, 117).

These precursor metabolites in riboflavin metabolism for 
MAIT cell activation provide several unique features that are 
different from those of peptide antigens for conventional T cells. 
First, the same or a similar group of riboflavin precursor metabo-
lites is produced in a wide variety of bacteria and fungi, such as 
Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, 
Staphylococcus aureus, Salmonella enterica serovar Typhimurium, 
M. tuberculosis, and Candida albicans, but not in Listeria monocy-
togenes and certain strains of Enterobacter or Streptococcus (20, 31, 
32). It appears that riboflavin biosynthesis is a canonical pathway 
for these stimulatory bacterial species and involves a number of 
enzymes essential for producing MAIT cell antigens (37). Second, 
the riboflavin pathway is essential for the survival and biological 
function of many bacteria (118–120). These metabolite antigens, 
which are generated by commensal bacteria or pathogenic micro-
organisms, are presumably pre-existing in humans unexposed to 
other pathogens, such as M. tuberculosis. If this hypothesis is true, 
MAIT cells likely have encountered the shared bacterial ribo-
flavin metabolites in individuals uninfected by M. tuberculosis. 
Thus, these metabolite antigens derived from non-mycobacterial 
species contribute to the pre-activated state of precursor MAIT 
cells. Upon the primary infection of M. tuberculosis, these pre-
activated host MAIT cells are able to quickly respond to the 
same or similar antigens derived from M. tuberculosis. Third, the 
presentation of small metabolites does not require the processing 
of proteasome or endocytic peptide digestion which is needed for 
peptide antigen presentation mediated by MHC class I and class II  
molecules (121). However, the production of bacterial and host 
small molecules connects antigen presentation to the metabolism 
of various lipid and vitamin metabolites, which are involved in 
broad biological functions. Finally, metabolite antigens will result 
in a chemically conserved interaction with antigen-presenting 
molecules and TCRs, in which TCR contact will be less depend-
ent on antigen structures, as described below.

Unlike conventional peptide antigens, lipid antigens for CD1-
restricted T cells also show some cross-species similarities that 
contribute to the innate-like responses of CD1-restricted T cells. 
Recently, lipodomic analyses have identified a broad range of lipid 
metabolites that associate with CD1a, CD1b, CD1c, and CD1d 
proteins. These lipid metabolites broadly include various spe-
cies of sphingolipids, glycosphingolipids, glycerophospholipids, 
lysophospohlipids, ether-linked phospholipids, acylglycerols, wax 
esters, and fatty acids, as reported and reviewed (41, 59, 122–125). 
Similar interesting features are usually shared by lipid metabolites 
that are identified from different bacteria or between mammals 
and bacteria (Table  1). For example, NKT cells respond to an 
exogenous α-galactosylceramide that was originally identified 
in the marine sponge Agelas mauritianus (44). Although most 
glycosyl sphingosines in mammals show a β-anomeric linkage, 
α-glycosylceramides were also recently detected in mammalian 
cells (43). Similar lipid antigens, glycosphingolipids, have been 
identified in various bacterial species, including non-pathogenic 
Sphingomonas (19, 50, 51) and Bacteroides species that are part 
of the gut microbiota (45, 126–128). Although bacterial and 
mammalian lipid antigens presented by CD1 proteins display 
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some structural similarities, Mycobacterium spp. are considered 
highly unique in lipid metabolites. Several identified CD1-
presented lipid antigens, including CD1a-presented mycobactin 
metabolites (24), CD1b-presented monomycolate, mycolic acid, 
sulfoglycolipids (25, 63, 64, 69), and CD1c-presented phosphati-
dylinositol mannosides (70), and mannosyl phosphomycoketide 
(26), have not yet been fully investigated in terms of their cross-
reactivity to a high percentage of lipid-specific T cells.

To bind to MHC class I proteins, nonamer peptides optimally 
fit to the length of the groove in MHC class I proteins and 
longer peptides (~14–20mers) extend beyond the whole length 
of the ligand-binding groove in MHC class II proteins (109, 
121, 129, 130). Dependent on the ionic and hydrogen bonding 
interactions between peptides and MHC proteins, the anchor 
residues from antigenic peptides and the corresponding bind-
ing pockets of MHC proteins can be defined (131–133). As a 
result, classical MHC proteins discriminate specific residues of 
antigenic peptides and their positions in the peptide sequence. 
This recognition is determined by the products of genetic 
codes, which are subject to mutation, genetic inheritance, and 
functional selection. However, antigen binding to an MHC class 
I-like protein uses a manner of interaction different from that of 
MHC–peptide interaction.

A CYCLiC ANCHOR AND CeNTRAL 
PORTAL FOR MR1

The MR1 ligands identified to date share one or two cyclic 
structures, which are embedded within the MR1 ligand-binding 
cleft through interactions with aromatic or basic residues of 
MR1 proteins (Figure  2). Different from the ligand-binding 
grooves of MHC class I or class II proteins, which are shallow 
and open to access by antigenic ligands, the MR1 ligand-binding 
cleft has a small open portal in the middle portion of the MR1 
protein (Figure 2). The MR1 ligand is located centrally within 
the MR1 ligand-binding cleft in a very small region, with the 
cyclic structure toward the base of the β-sheet and the ribityl 
side chain positioned upward, as shown in MR1 structure with 
ligand RL-6-Me-7-OH (Figures  2A,B). Interestingly, similar 
to ligand binding in CD1 proteins (19, 91), antigen binding to 
MR1 proteins exhibits very limited solvent accessibility and is 
largely buried within the MR1 protein. The interaction between 
RL-6-Me-7-OH and MR1 protein is dominated by hydrophobic 
interactions, with Tyr 7, Tyr 62, Trp 69, and Trp 156 forming an 
“aromatic cradle” that sequesters the ligand (Figures 2A,B) (31, 
34). The physical interaction between the MR1 ligand-binding 
cleft and the ligand is consistent with the functional result in 
a mutagenesis study that shows the mutation of Tyr 7, Arg 9, 
and Arg 94 reduces MR1 expression and MAIT cell activation 
(Figure 2A) (84). By taking a similar mode of interaction with 
the MR1 protein, both bicyclic and monocyclic moieties of MR1 
ligands occupy a small area of the MR1 ligand-binding cleft 
(Figures  2 and 3A) (36), although RL-6-Me-7-OH occupies a 
large region of the cavity, making numerous contacts within the 
cleft to correctly orient for T cell recognition in the absence of 
Schiff base bond formation (34).

HYDROPHOBiC ANCHOR AND  
RiGHT-SiDeD PORTAL FOR CD1

CD1-lipid binding also shows a very different mechanism 
from the peptide antigen loading in classical MHC proteins. 
Lipid metabolites usually consist of aliphatic hydrocarbon 
chains present in the alkyl and polyketide tails with repeating 
methylene unites and hydrophilic head group (101, 136, 137). 
A lipid metabolite usually contacts with the non-polar residues 
on the inner surface of the CD1 ligand-binding cavity through 
non-specific hydrophobic interactions (138–140). With major 
aliphatic chains buried in the CD1 proteins, head groups of lipid 
antigens protrude out from the small portals to the right side 
of the CD1 ligand-binding cleft (Figure 3). Unlike the impor-
tance of the position of anchor residues for determining the 
orientation of peptide antigen binding to MHC molecules (141), 
the hydrophobic inner surfaces in CD1 proteins interact with 
proximal, center, and distal ends of the aliphatic chains of lipids 
biochemically independently of the position of the methylene 
unites. Although the binding of lipid ligands with CD1 proteins 
uses a more promiscuous, position-independent mode, the size 
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of the clefts and individual pockets within the CD1 proteins 
places an upper limit on lipid antigen binding, as previously 
reviewed (142). However, this promiscuous interacting mode 
allows CD1 proteins to bind to a very broad spectrum of cellular 
lipids, leaving less restriction on lipid metabolite binding than on 
peptide binding to MHC molecules.

DUAL PReSeNTATiON OF SeLF AND 
NON-SeLF LiGANDS

Whereas most models of T-cell recognition emphasize TCR 
discrimination of self and foreign antigens, the innate immune 
system recognizes both self and foreign ligands. Similar to PRRs, 
which have evolved to bind pathogen-derived and stress-induced 
specific molecular patterns (94, 95), MHC class I-like molecules 
also bind both self and non-self ligands (Table 1). For example, the 
CD1a protein binds both mycobacterial DDM (24) and endog-
enous lysophosphatidylcholine (LPC) (58). CD1b autoreactive 
T cells have been shown to recognize phosphatidylglycerol (PG) 
lipids derived from mammalian cells, Salmonella, Staphylococcus, 
and other bacteria (61). Alternatively speaking, CD1b did not 
discriminate the structural differences that distinguish mam-
malian PG from bacterial PG or distinguish Salmonella PG from 
other bacterial PG, supporting the dual recognition of self and 
bacterial lipids by CD1b-restricted autoreactive T cells. The 
CD1c- and CD1d-mediated presentation of both self and non-self 
lipids has also been observed (Table 1) (51, 67, 143). Moreover, 
Qa1 protein, a mouse homolog of human HLA-E protein, binds 
signal peptides derived from self class I molecules as NK sensors 
for viral infection as well as GroEL peptides from Salmonella 
typhimurium or mycobacterial peptides to stimulate a cytotoxic 
T-lymphocyte response against infection (Table  1) (144, 145). 
Interestingly, these GroEL-specific cytotoxic T-lymphocytes 

cross-react with the stress-induced HSP60 peptide as a potential 
danger signal (144, 145). Moreover, mouse MAIT cells have been 
demonstrated to respond to both endogenous and exogenous 
antigens (84, 100, 146–148). Human MAIT cells are reactive to 
bacterial antigens in bacterial infection, which likely also induce 
endogenous antigens, similar to the activation of CD1d-restricted 
NKT cells (51). It appears very common for innate-like T cells 
to be reactive to both self and foreign antigens, supporting an 
innate-like feature of immune response.

SeMi-iNvARiANT TCR BeYOND THe 
PUBLiC TCR

TCRs of conventional T cells are expressed through rearrange-
ment of the V, D, J, and C gene fragments of the β chain and the 
V, J, and C gene fragments of the α chain upon antigen stimula-
tion. TCR gene rearrangement also accompanies T cell clonal 
expansion to proliferate a cluster of new T cells that express a 
rearranged TCR with specificity to bacterial priming antigens. 
While undergoing TCR rearrangement and clonal expansion in 
the priming stage, the primary response of conventional T cells 
is delayed, as in M. tuberculosis infection (Figure 1). However, 
public TCRs of conventional T cells can occur in small popula-
tions of donors sharing the same MHC allele in an infection of 
the same pathogen that expresses an immunodominant antigen 
(149). In  this case,  the  same microbe must infect multiple 
individuals and prime T cell responses with the same antigens. 
These individuals should share similar HLA gene sequences to 
be able to present the same set of peptides. The generation of a 
public TCR in this setting is a highly coincident scenario and a 
rare event, as HLA alleles are highly variable in general human 
populations. Even though the public TCR is expressed, it yet 
exists in a very small human population. In contrast, the V and J 
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rearrangements that define the MAIT and NKT TCRα chains are 
highly conserved in humans and mice. The invariant rearrange-
ment of V and J gene fragments possibly occurs upon the stimula-
tion of structurally conserved metabolites available prior to the 
infection of microbial pathogens. These semi-invariant TCRs are 
much more “popular” during the development and common in 
human populations than are the public TCRs (27, 150, 151). In 
addition to the public TCRs from conventional T cells, MAIT, 
NKT, GEM, and LDN5-like T cells express semi-invariant TCRs 
(Table 1). Unlike the fortuitously rearranged conventional TCRs, 
MAIT TCR is assembled by a canonical TRAV1-2-TRAJ33 
(hVα7.2-Jα33 and mVα19-Jα33) chain paired with limitedly vari-
able β chains TRBV6 and TRBV20 (114). The iNKT cell TCR is 
assembled by the TRAV10-TRAJ18 (hVα24-Jα18; mVα14-Jα18) 
chain mainly paired with TRBV25. Together with other invari-
ant or biased TCR rearrangement (Table  1), MAIT and iNKT 
cells offer semi-invariant T cell receptors for the recognition of 
antigen-presenting molecules and antigens.

LiMiTeD iNTeRFeReNCe OF 
MeTABOLiTe ANTiGeNS

The docking mode of classical MHC molecules and TCRs utilizes 
various degrees of diagonal orientation through recognition of 
both peptide antigens and MHC proteins, as defined by the 
disulfide bond between TCRα and β chains with respect to the 
α1 and α2 helixes (19, 152, 153). In the MHC–peptide–TCR 
tri-molecular interaction for the activation of conventional 
T cells, multiple complementarity-determining regions (CDRs) 
of TCR usually come into contact with residues of antigenic pep-
tides (19, 153). However, most contacting sites from the TCRs of 
MAIT cells and lipid-specific T cells interact with the surface of 
MR1 or CD1 proteins rather than the antigens (Figures 2 and 4). 
Thus, in a very different manner, the TCRs of lipid-specific T cells 
use an asymmetric mode with little interference from associ-
ated lipid metabolites to dock on the surface of the CD1-lipid 
antigen complex as reviewed (91). Briefly, the lipid metabolites 
associated with CD1 proteins are either amphipathic or purely 
hydrophobic. The amphipathic lipids, such as phospholipids 
and glycosphingolipids, typically use the hydrophobic aliphatic 
chain to crawl into the ligand-binding cleft of CD1 proteins, with 
the hydrophilic head group protruding outside of the portal of 
the ligand-binding cleft for TCR interactions (Figures 3 and 4). 
The non-amphipathic lipid metabolites, such as wax ester and 
squalene, are likely fully embedded within the ligand-binding 
cleft of CD1a protein from direct interactions with TCRs (59). 
Interestingly, upon lipid association with CD1 proteins, the 
portals of the ligand-binding cleft usually open to the right side 
and form a laterally asymmetric displaying platform. On a large 
portion of the CD1 protein surface, an “A’ roof ” forms to the 
left side to cover the A’ pocket of CD1 proteins (91). Therefore, 
the TCRs of lipid-specific T cells are able to utilize an interact-
ing mode called “limited interference” to contact CD1 surfaces 
without an exposed lipid motif (Figure 4B). For example, the BK6 
TCR binds on the left side of the CD1a platform and exclusively 
contacts the “A’ roof ” of the CD1a protein, without contact with 

the associated LPC or fatty acids within the CD1a ligand-binding 
cleft (Figure 4B) (58). Alternatively, TCR interacts with the right 
side of the CD1 antigen-displaying platform TCR recognition of 
CD1d–α-galacosyldiacylglycerol (Figure 4C) (134) or CD1d–α-
galacosylceramide (154). Both manners of interaction provide 
the major portion of TCR contacting surface with “limited 
interference” from the embedded lipid antigen underneath (91) 
(Figure 3).

Similarly, the MAIT cell TCR mainly resides on the MR1 pro-
tein surface, although the direct interaction of MAIT TCR with 
the antigen appears critical. Human MR1/RL-6-Me-7-OH/MAIT 
TCR complex shows a hydrogen bond interaction between the 
Y95 residue at the TCR CDR3α region and the ribityl side chain 
of the antigen RL-6-Me-7-OH (Figure 2D and Figure 4A). The 
other stimulatory MAIT cell antigens with a ribityl side chain, 
such as 5-OP-RU and 5-OE-RU, also form a hydrogen bond 
with the TCR CDR3α region (34, 36, 155). The tri-molecular 
interaction has been further recapitulated with two additional 
xenoreactive human MR1/antigen/bovine MAIT TCR complexes 
(155, 156). Both ternary structures and functional studies suggest 
that the ribityl side chain is critical for TCR recognition and T 
cell activation (Figure 2D), as the ribityl side chain is unavailable 
to interact with MAIT cell TCR, 6-FP and Ac-6-FP are unable to 
directly contact TCRs and activate MAIT cells (37). It also appears 
that a Schiff base bond formation strengthens the binding of 
ribitylaminouracil (5-OE-RU and 5-OP-RU) to the MR1 protein 
and the tri-molecular interaction in TCR-5-OP-RU-MR1 and 
TCR-5-OE-RU-MR1 complexes, supporting a strong potency for 
MAIT cell activation (37).

Compared to the interaction between conventional TCR 
and peptidic antigens, TCR interaction with mostly embedded 
metabolite antigens is limited in terms of the number of con-
tacting sites between TCR and antigens (Figure  4). Therefore, 
a “limited interference model” can be proposed to describe the 
degree of TCR–antigen interaction required for the activation of 
innate-like T cells. This model will not understate the importance 
of the interactions between TCR and some antigenic motifs, 
which are likely determinative for the activation of MAIT and 
iNKT cells by some antigens, such as the ribityl side chain for 
MAIT cell TCRs (37) and the galactose moiety for iNKT cell TCR 
(154). Functionally, a “limited interference model” better explains 
the quick activation kinetics in innate-like T cells, which are less 
dependent on the priming with structurally identical antigenic 
metabolites.

LOw ANTiGeN DiSCRiMiNATiON iN 
TeTRAMeR DeTeCTiON

It is known that the tetramers formulated with classical MHC 
proteins and bacterial peptide antigens usually detect antigen-
specific conventional T cells upon the infection of the correspond-
ing bacterial pathogens (3). In contrast to this highly specific 
reactivity of tetramer staining using classical MHC proteins and 
bacterial peptides, the tetramers of MHC class I-like proteins 
for detecting innate-like T cells are highly conserved and appear 
to act in an antigen non-discriminative manner. Conservation 
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of the semi-invariant TCR of innate-like T cells is reflected by 
the positive detection of MAIT or iNKT cells in uninfected 
human individuals using MR1 or CD1d tetramers with bacterial 
metabolite antigens (44, 45). Recently, hMR1-rRL-6-CH2OH 
(32), MR1-5-OPRU, and MR1-5-OE-RU tetramers (36) were 
used to efficiently detect human MAIT cells in peripheral blood 
mononuclear cells (PBMCs). The detected MAIT cells were 
considered to cover most MAIT cells in humans or mice with or 
without exposure to antigen-producing bacterial pathogens (33, 
157, 158). It has also been claimed that MR1-5-OP-RU and MR1-
5-OE-RU tetramers stain all human MAIT cells in peripheral 
blood, possibly because of the high affinity of these pyrimidine 
metabolites to interact with both MR1 protein and MAIT TCRs 
(36). Similarly, CD1d–α-GalCer tetramer also detects iNKT cells 
in healthy mice from “naïve” T cell populations (82, 159, 160). 
The tetramer recognition of innate-like T cells in both healthy 
donors and tuberculosis patients raises an interesting question 
regarding whether the tetramer-positive T cells in healthy and 
infected individuals function differently. Since the stimulatory 
antigens for eliciting MAIT cell and NKT cell responses can be 
derived from different bacterial species (32, 33, 157), the ability 
of mycobacterial metabolites to induce protective antimycobacte-
rial immune responses could feasibly be compared with that of 
other bacterial metabolites.

XeNOReACTiviTY BeYOND 
ALLOReACTiviTY

Cross-species activation confers an interesting innate-like man-
ner of reactivity that is unlikely to exist in the adaptive immune 
system. In addition to broad alloreactivity in human populations, 
MHC class I-like molecules also generate very interesting cross-
species reactivity in mammalian systems, as called xenoreactivity. 
Xenoreactivity is usually mediated by innate receptors such as NK 
cell receptors (161). These germline-encoded receptors are able 
to recognize conserved molecular motifs on targeted cells from 
different species; for example, human NK cells adhere to and 
lyse porcine cells (161). However, the activation of conventional 
T cells is determined by the recognition of both highly variable 
MHC molecules and heterogeneous peptide antigens (Figures 3D 
and 4D), which are unlikely to activate conventional T cells of 
a different species. By taking advantage of promiscuous and 
conserved tri-molecular interactions, MR1- and CD1-restricted 
T cells exhibit the interesting ability of cross-species activation. 
The xenoreactivity of T cells supports conserved structures and 
functions for antigen presentation (100). Indeed, the MR1 protein 
confers a high percentage of sequence homology among mamma-
lian species, which is higher than 80% for rodents, bovines, and 
humans for the α1 and α2 domains of MR1 (100). Mouse MR1 
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is able to activate both mouse and human MAIT cells. Human 
MR1 with a single residue mutation to the corresponding residue 
in mouse MR1 (L151Q) is able to activate human MAIT cells 
(100). Moreover, the iNKTs in mice recognize the lipid antigens 
presented by human CD1d proteins. This is also true vice versa 
(162, 163), although CD1d sequences are not as homologous as 
MR1 proteins between mice and humans. Structural analyses of 
NKT TCRs responding to mouse and human CD1d–α-GalCer 
complex reveal that a contiguous CDR3β sequence is conserved 
between humans and mice to provide structural plasticity to 
accommodate a variety of glycolipid antigens presented by CD1d 
(164). Similarly, in comparison to conventional peptide-presented 
T cells, peptides presented by human HLA-E bind to the mouse 
homolog Qa-1b molecule (165).

PROLiFeRATiON AND eXHAUSTiON

The available number of effector cells and the effectiveness 
of each effector are important criteria for estimating the final 
efficiency of immune cells in antimycobacterial immune defense. 
Conventional T cells specifically respond to bacterial peptide 
antigens and undergo clonal expansion to achieve multiple sets of 
functional capacity in immune defense, which include: (i) effec-
tor functions for cytokine production or cytolysis; (ii) memory 
functions for long-term antimicrobial immune responses; (iii) 
ability to amplify their cell number from an undetectable or 
absent state to high frequency; and (iv) ability to migrate from 
antigen-priming tissues to lesion tissues, for example, from 
lymph nodes to mycobacterial-infected alveolar tissues. A clonal 
expansion is usually required for conventional T cells to achieve 
a sufficient number of effector T cells upon antigen stimulation. 
In  the case  of aerosol infection with M. tuberculosis, mouse 
CD8+ T cells positive for the tetramer H-2Kb-TB10.3/10.4 
will proliferate from undetectable to 1 million cells/lung, peak 
around 4 weeks after primary infection, and have an 8- to 12-fold 
increase in secondary challenge with the aerosol infection in 
comparison to the unchallenged (166). Thus, the clonal expan-
sion of conventional T cells is vast upon antigen stimulation.

However, the cell frequency change of MAIT cells in M. 
tuberculosis-infected individuals is distinct from that of con-
ventional CD8+ T cells. MAIT cells dramatically decrease in 
peripheral blood and are likely increased in lung tissues, as dem-
onstrated in active M. tuberculosis-infected patients, suggesting 
the migration of activated MAIT cells to infected tissues (12). In 
Vα19iCα–/–MR1+/+ mice, MAIT cells accumulate three-fold more 
in BALF in comparison to that found in Vα19iCα–/–MR1–/– mice, 
as detected with MR1-rRL-6-Me-7-OH and MR1-5-OP-RU 
tetramers (33). With a high basal frequency of precursor MAIT 
cells prior to primary infection, the clonal expansion of MAIT 
cells upon mycobacterial infection appears much weaker than 
the clonal expansion of conventional T cells. Without undergoing 
potent clonal expansion, MAIT cells are ready to exhibit effector 
functions upon activation, although further expansion, migra-
tion, or reduction of precursor cells can occur.

Whether the lower frequency of MAIT cells in tuberculosis 
patients is attributable to MAIT cell exhaustion is an interest-
ing question. When MAIT cells are analyzed in patients with 

pulmonary tuberculosis, tuberculous pleurisy, and tuberculous 
peritonitis by flow cytometry, a dramatically reduced MAIT cell 
number is usually observed. On the one hand, patients with active 
tuberculosis have a significantly higher production of cytokines 
IFN-γ and TNF-α from MAIT cells in responding to ex vivo BCG 
stimulation but not to E. coli stimulation, as compared to healthy 
control subjects (167). On the other hand, it is interesting that 
MAIT cells in patients with active tuberculosis exhibit an elevated 
expression of programed cell death protein-1 (PD-1), and the 
blockade of PD-1 signaling results in a significantly higher fre-
quency of BCG-stimulated IFN-γ production from MAIT cells 
(167, 168). Whether the expression of PD-1 protein in MAIT cells 
indicates an exhaustion phenotype is controversial in regard to 
tuberculosis, particularly considering that PD-1–/– mice are sensi-
tive to M. tuberculosis infection (169). However, the decreased 
frequency of MAIT cells may also be due to a decreased expres-
sion of CD161 in the existing MAIT cells rather than to an actual 
reduction in the MAIT cell number. Exhaustion or apoptosis in 
NKT cells has also been observed. The poor response to α-GalCer 
in M. tuberculosis-infected patients has been found to be due to 
increased NKT cell apoptosis, reduced CD1d expression, and a 
defect in NKT cells (170). Similarly, M. tuberculosis infection is 
associated with an elevated expression of the inhibitory PD-1 
receptor on NKT cells, and the blockade of PD-1 signaling has 
been shown to enhance the response to α-GalCer.

iNNATe-LiKe T CeLLS iN BACTeRiAL 
KiLLiNG AND CYTOKiNe PRODUCTiON

Effector functions of MAIT cells contributing to protectivity 
against mycobacterial infections have been recently demon-
strated upon MAIT cell activation (Figures 5A,B). MAIT cells 
isolated from the thymus and peripheral blood have shown 
the ability to kill mycobacterial-infected antigen-presenting 
cells in vitro. Pathogen-unexposed MAIT cells respond to lung 
epithelial cells infected with M. tuberculosis and produce tumor 
necrosis factor-α (Figure  5) (12, 86). As a dominant effector 
cytokine secreted by MAIT cells in most in vitro assays, TNF-α 
is an inflammatory cytokine and plays a critical protective role 
against mycobacterial infection, at least in the early stage of 
infection. The protectivity of TNF-α is supported by the fact 
that chemical blockers of TNF-α used for treating rheumatoid 
arthritis have caused the reactivation of tuberculosis (171). 
However, TNF-α also has the potential to worsen the inflamma-
tory pathology at a later stage as a “double-edge sword.” Thus, 
maintaining an advantageous balance between TNF-α-mediated 
protective functions and pathogenic outcomes is critical in 
M. tuberculosis infections (172, 173). MAIT cells also express 
other pro-inflammatory cytokines, including IFN-γ and IL-17 
(Figure  5B) (20, 30, 83). When pathogen-unexposed mouse 
MAIT cells are cocultured with BCG-infected macrophages, 
MAIT cells are quickly activated, as reflected by the production 
of large amounts of IFN-γ and IL-17a. Cytokines IFN-γ and 
IL-17a contribute to controlling BCG growth in macrophages, 
as supported by the effect of anti-IFN-γ and anti-IL-17a anti-
bodies on impairing macrophage immunity (Figure  5B) (80). 
IFN-γ is also a critical antimycobacterial cytokine produced by 
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FiGURe 5 | Proposed priming and effector phases of innate-like T cell 
responses in tuberculosis. (A) The priming phase may occur in the lymph 
nodes of lung tissues. Naïve or precursor innate-like T cells are activated 
through interaction with MR1 and CD1 proteins and/or stimulation of 
cytokines. (B) Activated innate-like T cells migrate to infected tissues, such 
as alveolar regions, to perform cytotoxic function and secrete cytokines and 
chemokines in anti-M. tuberculosis effector response.
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conventional CD8+ T and CD4+ T cells (2) that has demonstrated 
a protective function in most stages of mycobacterial infections. 
While it is produced by MAIT cells, IL-17a is able to inhibit BCG 
growth in infected macrophages (83). However, the long-term 
impact of IL-17 in M. tuberculosis infections remains unclear 
(2). Moreover, cytotoxic reactivity allows MAIT cells to lyse 
Shigella flexneri-infected epithelial cell line HeLa cells (174) and 
M. semegmatis-infected lung epithelial A549 cells (175). MAIT 
cells upregulate the expression of perforin, granzyme B, and 
surface CD107a (LAMP1) upon the stimulation with anti-CD3 
and CD28-coated beads, supporting their cytolytic function 
(Figure 5B) (174). Similar to NK and NKT cells, a high percent-
age of MAIT cells express the CD161 molecule, which is believed 
to modulate the cytokine response, such as IFN-γ, TNF-α, 
and IL-17 cytokine secretion (174, 176). But CD161 may not 
regulate the cytotoxic activity of MAIT cells (174). This is unlike 
the inhibitory effect of the CD161 molecule previously shown 
on NK and CD8+ T cells (177, 178). Overall, MAIT cells have 
a mixed Th1/Th17-associated pattern of cytokine production, 
including TNF-α, IFN-γ, and IL-17 at a striking level similar to 
conventional memory T cells, to inhibit mycobacterial growth 
in infected macrophages (30, 83). For in  vivo mycobacterial 
infections in MR1 knockout or MAIT cell over-expressing mice, 
MAIT cells have shown the capacity to decrease bacterial loads 
(20, 33, 83, 158, 174), upregulate the Th1-, Th2-, or Th17-like 
cytokines, and enhance their cytotoxicity and frequency.

Similarly, overall observations show that NKT cells have a 
decreased frequency in peripheral blood and a weaker response 
in human M. tuberculosis infection (170) and HIV infection (179). 
When cocultured with splenocytes isolated from uninfected 
mice, M. tuberculosis-infected macrophages suppress bacterial 
replication in macrophages dependent on the function of iNKT 
cells (81), which is similar to the suppression of BCG replication 
in macrophages by MAIT cells (80). Cytotoxicity, IFN-γ, and 
GM-CSF production have been shown upon activation of iNKT 
cells (81, 180). The adoptive transfer of naïve splenic iNKT cells 
from uninfected mice significantly reduces the bacterial burden 
in the lungs of infected mice (81). This effector function and 
protectivity does not require in  vitro or in  vivo stimulation of 
iNKT cells with a strong agonist of α-GalCer as shown previously 
(89). Thus, in therapeutic development, it would be interesting to 
further understand whether endogenous or mycobacterial lipid 
antigens are critical for CD1d-mediated iNKT cell effector func-
tion. In addition to the direct effect of bacterial inhibition and 
killing, the stimulation of HLA-E-restricted T cells and CD1d-
restricted T cells is able to enhance the secretion of Th2 cytokines 
(IL-4, -5, -10, and -13), regulating B-cell activation and antibody 
production in antimycobacterial immune defense (181–183).

However, the role of lipid-specific T cells restricted by group 
I CD1 proteins in antimycobacterial effector responses is less 
understood. Several early studies showed that the frequency 
of group I CD1-restricted T cells increases in M. tuberculosis-
infected individuals, suggesting the activation and expansion 
of M.  tuberculosis-specific CD1-restricted T cells (23, 64, 184). 
The overall effector responses of lipid-specific T cells restricted 
by group I CD1 proteins are similar to those of iNKT and MAIT 
cells and are characterized by the production of cytokines IFN-γ 
and TNF-α upon stimulation with mycobacterial lipid antigens. 
Since mice do not express group I CD1 proteins, CD1a, CD1b, 
or CD1c, a study using a guinea pig model expressing human 
CD1b and CD1c homologs (185, 186) showed that immunization 
with mycobacterial lipids elicits the antigen-specific proliferation 
and cytotoxicity of group I CD1-restricted T cells (187) and 
minimizes the lung tissue damage induced by M. tuberculosis 
challenge (188). However, group I CD1 protein responses to 
M. tuberculosis infection exhibit relatively delayed kinetics in 
responding to mycobacterial lipid-pulsed mouse DCs, as shown 
using a humanized mouse model expressing human CD1a, 
CD1b, and CD1c proteins (90). This response peaks 7 days after 
immunization in unexposed mice, but it is difficult to compare 
this kinetics with those of conventional T  cells because of the 
different immunization approaches used in various experiments. 
For example, the memory responses of DO11.10 T cells in mouse 
draining lymph nodes to the OVA peptide expressed in infected 
Salmonella typhimurium take about 5 days (189). Thus, whether 
group I CD1-restricted T cells utilize fast or slow kinetics in 
primary immune response remains unclear. Further, tetramer 
staining of group I CD1-restricted T cells seems to be a promis-
ing approach to determine the frequency and antigen specificity 
of T cells. Current reports of tetramer staining in infected and 
healthy human blood samples mostly show a minimal frequency 
of CD1a and CD1b tetramer-positive T cells (67, 190–192). The 
underlying mechanism may be multi-dimensional, for example, 
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more immunodominant or conserved antigens may exist to 
detect a higher frequency of group I CD1-restricted T cells, or 
an antigen re-stimulation may be needed to expand the number 
of group I CD1-restricted T cells. However, CD1c loaded with 
phosphomycoketide lacking a carbohydrate head group is able to 
stain a high percentage of polyclonal T cells in the blood samples 
of donors with latent M.  tuberculosis infection (67), suggesting 
the potential to detect a high frequency of some group I CD1-
restricted T cells in patients.

MeMORY PHeNOTYPe

Memory T cells are T cells that can be quickly reactivated 
and become responsive to bacteria immediately after infec-
tions (193). The described relative quick kinetics for activated 
innate-like T cells in lung tissues is consistent with the memory 
phenotype of  innate-like T cells. Although the kinetics of lung 
T cell activation can be impacted by the delayed or detrimental 
growth of M. tuberculosis in infection (194, 195), the memory 
phenotype of innate-like T cells can be still reflected by the 
expression of surface memory markers. It has been shown 
that these semi-invariant MAIT cells express memory markers 
(mainly CD45RAlowCD45ROhigh) in humans without additional 
in  vitro stimulation (150). Further detailed phenotyping of 
MAIT cells using a MAIT cell over-expressing mouse model,  
Vα19+Ca−/−MR1+/+, has indicated that a high percentage of 
MAIT cells are CD44highCD45RBlowCD62LlowCD25high (196) 
upon TCR ligation with anti-CD3 and anti-CD28 antibodies. 
Recently, multiple reports further confirmed the expression 
of memory markers CD44highCD62Llow in mice (158) and 
the expression of CD45RA−CD45RO+CD95highCD62Llow, 
an effector-memory phenotype, in humans (30, 197, 198). 
Understanding the acquisition of this memory phenotype 
over the lifetime of humans is critical for determining the 
immune therapeutic strategy upon mycobacterial infection. 
In adults, MAIT cells have an effector-memory phenotype 
(largely CD45RA−CD45RO+CCR7lowCD62Llow) (199). In cord 
blood, MAIT cells express the markers of naïve cells (CD45RA+ 
CD45RO−) (200, 201). These cells are also CCR7lowCD62Llow, 
suggesting that CD45RO positive expression is obtained after 
birth, which is consistent with the stepwise MAIT cell develop-
ment facilitated by the maturation of gut microbiota (200). These 
critical observations of the acquisition of an effector-memory 
phenotype during the stepwise development of MAIT cells 
support the notion that antigen stimulation in the early lifetime 
facilitates the formation of the memory phenotype. It is likely 
that the microbial cyclic small molecules, such as riboflavin 
precursor metabolites defined at later time (31, 36), facilitate 
the process of memory formation. Similarly, NKT cells from 
the pleural fluid mononuclear cells of M. tuberculosis-infected 
patients also express CD45ROhighCD62LlowCCR7low that sup-
ports an effector memory phenotype for NKT cells (202).

The determination of whether microbial antigens are involved 
in the acquisition of the memory phenotype of MAIT cells helps 
in answering the question of whether MAIT cells are pre-activated 
by commonly distributed cross-species conserved antigens. This 

pre-activation is likely a major mechanism through which MAIT 
cells acquire an activated or memory phenotype and allows 
MAIT cells to be ready to respond to stimulation by different and 
unexposed pathogens. Similar or identical conserved antigens 
shared between gut microbiota and pathogens, such as riboflavin 
precursor metabolites, may be driving elements for the forma-
tion of memory or activated phenotypes of MAIT cells. Thus, the 
activated and memory phenotypes of MAIT cells in adults may 
have been shaped by the stimulation of microbial antigens during 
the early stage of individual development. The term “innate-like 
T cells” broadly defines the pre-activated memory phenotype of 
T cells and a quick activating kinetics upon encountering previ-
ously unexposed pathogens that potentially express metabolite 
antigens with the same or similar chemical structures to the 
“pre-activating” metabolites. The quick activation kinetics and 
memory phenotype of innate-like T cells suggest that the effector 
and regulatory functions of innate-like T cells may occur prior to 
the activation of the adaptive immune system (Figure 1).

TiSSUe TROPiSM iN eARLY DeFeNSe

In M. tuberculosis infection, a rapid and regional immune 
response is important for containing the bacteria and infected 
cells in the initial stage of infection. Upon aerosol infection 
with M. tuberculosis, the acquired cellular immune responses 
are slow to be induced and take effect within the lung (2). This 
lagged period allows the invading slow-growing M. tuberculosis 
to grow and initiate conventional T cell activation. The stimula-
tion of conventional T cells against M. tuberculosis requires the 
interaction of antigen-presenting cells, bacteria, and T cells in 
lung tissue or draining lymph nodes. Failure in this battle in 
lung tissue will lead to bacterial outgrowth, host pathology, and 
bacterial dissemination to distal tissues. In a beneficial response, 
around 8–9 days post mycobacterial infection, dendritic cells and 
macrophages will sample M. tuberculosis and migrate to draining 
lymph nodes (Figure  5A), and naïve T cells will be primed to 
proliferate and become effector cells. The activated effector cells 
will reversely migrate to the lung tissue at around 18–20  days 
post infection as a consequence of inflammatory responses to 
kill infected phagocytes and produce cytokines (2). MAIT cells 
have been shown to accumulate in lung tissues but decrease in 
peripheral blood in infected humans, indicating a mechanism 
allowing MAIT cell migration to lung tissues (12). Although the 
in  vivo kinetics of MAIT cell stimulation upon mycobacterial 
infection are not clear, an initial assay using BCG-infected mice 
suggests that MAIT cells are critical for protecting mice from 
the high bacterial burden at day 10 but not at day 30 following 
infection (80), which is consistent with the protection conferred 
by the innate-like responding kinetics. Further in vivo studies are 
needed to determine the protection and early activation kinetics 
of MAIT cell responses to mycobacterial infections. In parallel, 
the role of group I CD1-restricted T cells will likely be further 
understood using animal models expressing group I CD1 pro-
teins and having similar pathologies to mycobacterial infection 
in humans. Thus, the gap between the dissemination of bacteria 
and the onset of conventional T cell responses (2, 203, 204) is 
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ideally filled by the responses of innate-like T cells. It seems 
promising that innate-like T cells could contain M. tuberculosis 
in the early stage of infection and contribute to a reduced rate of 
active disease in humans.

THeRAPeUTiC vALUe AND ReMAiNiNG 
QUeSTiONS

Targeting innate-like T cell activation will provide novel 
therapeutics applicable to various human populations for con-
trolling the early stage of mycobacterial infection, in a manner 
complementary to conventional T cell-based therapies. Multiple 
lines of evidence support the unique therapeutic values of 
innate-like T cells in tuberculosis. First, an effective early T cell 
response likely leads to a low lifetime risk of developing active 
tuberculosis (3, 10). Second, innate-like T cell populations, 
especially MAIT and iNKT cells are ideal candidates to offer a 
protective effect in the early stage of mycobacterial infections 
(83, 180, 205). Third, previous application of α-GalCer in the 
early stage of M. tuberculosis infection was shown to protect 
mycobacterial-infected mice against a high bacterial burden 
and severe pathology (89). This protective effect is encouraging 
for further investigations of other vaccine strategies based on 
innate-like T cells. For MAIT cells, the mouse study supports 
the protection of MAIT cells in M. abscessus-infected mice (20) 
and a newly published study shows the upregulation of cytotoxic 
MAIT cells in BCG-vaccinated macaque (206). In humans, high 
frequency of MAIT cells in latent infections of tuberculosis or 
healthy donors and low frequency in active tuberculosis sup-
port the association of high MAIT cell frequency with healthy 
conditions (12). Fourth, current vaccine candidates in the 
clinical trial pipeline mostly target mycobacterial secretory 
proteins and induce dominant responses by conventional CD4+ 
and CD8+ T cells (14). To overcome the variation in generat-
ing conventional T cell responses in large human populations, 
as demonstrated in a recent clinical trial in South Africa 
(207–209), innate-like T cells with donor-unrestricted features 
are expected to be applicable in most or all human populations 

if showing effectiveness in small groups of donors. Moreover, 
in comparison to these gene-based or microorganism-based 
vaccination strategies (14), the application of small metabolite 
antigens for activating innate-like T cells is expected to be safer, 
as naturally existing small molecules are not genetic materials 
that potentially induce inheritable complications. Metabolite-
activated innate-like T cell are abundant T cell populations and 
the protein-based vaccines in clinical trial pipeline (16) will 
miss these abundant targets, demanding the need of new strate-
gies for antimycobacterial vaccine design (89).

However, it is critical to further understand the in  vivo 
responding kinetics and protectivity of innate-like T cells or 
donor-unrestricted T cells in controlling M. tuberculosis infec-
tions, especially chronic infections. Approaches are needed to 
improve the efficiency of the antimycobacterial T cell responses 
mediated by innate-like T cells, for example, reducing the fre-
quency of exhausted MAIT cells in active tuberculosis. Moreover, 
it is important to understand whether M. tuberculosis expresses 
unique small molecule antigens for inducing different MAIT 
and iNKT cell responses, similar to those induced by other 
bacterial antigens. What other conserved or unique antigens 
are able to induce the protective function of these MR1- and 
CD1-restricted T cells? Answering these questions will facilitate 
targeting candidate metabolite antigens and innate-like T cells 
for developing novel vaccination and therapeutic strategies 
against tuberculosis.
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