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For precision medicine, there is an enormous need to understand the immune evasion
mechanism of tumor development, especially when tumor heterogeneity significantly
affects the effect of immunotherapy. Recognizing the subtypes of breast cancer based
on the immune-related genes helps to understand the immune escape pathways
dominated by different subtypes, so as to implement effective treatment measures for
different subtypes. For that, we used non-negative matrix factorization and consistent
clustering algorithm on The Cancer Genome Atlas RNA-seq breast cancer data and
recognized 4 subtypes according to the curated immune-related genes. Then, we
conducted differential expression analysis between each subtype of breast cancer and
normal tissue of RNA-seq data from non-cancer individuals collected by the Genotype-
Tissue Expression to find out subtype-related immune genes. After that, we carried
out correlation analysis between copy number variants (CNV) and mRNA of immune
genes and investigated the regulatory mechanism of the immune genes, which cannot
be explained by CNV based on ATAC-seq data. The experimental results reveal that
CDH1 and PVRL2 are potential for immune evasion in all 4 subgroups. The expression
variations of CDH1 can be mainly explained by its CNV, while the expression variation of
PVRL2 is more likely regulated by transcript factors.

Keywords: data mining, data fusion, correlation analysis, complex diseases, immune evasion

INTRODUCTION

Precision medicine is an emerging strategy for cancer prevention and treatment that takes into
account individual variability of genetic basis for each patient (Ashley, 2016). With the help of
next-generation high-throughput sequencing technology, researchers have become more and more
familiar with the details of whole genome mutations, and the overall relationship between different
omics data has become more and more systematic.
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The Cancer Genome Atlas (TCGA) provides multi-omics data
for global researchers to understand the onset and development
of human cancers. For example, genomic and transcriptomic
data of bulk tumor tissue samples play an important role in
studying the tumor microenvironment (TME; Thorsson et al.,
2018), and measures of immune infiltration define molecular
subtypes of a number of different cancers. Although TCGA
also collects non-malignant adjacent normal tissue samples of
cancer patients, this kind of normal sample faces two main
limitations: the matching normal sample size is too small, and
the normal sample derived from cancer patients still cannot
completely replace the real normal tissue sample from non-
cancer individuals. Fortunately, the Genotype-Tissue Expression
(GTEx) project collected 54 non-diseased tissue sites across
nearly 1000 individuals including whole genome sequencing
(WGS), whole exome sequencing (WES), and RNA-Seq data
(GTEx Consortium, 2015). Therefore, studying the tissue-specific
differential gene expression between TCGA cases and GTEx
controls may help researchers to locate potential pathogenic
genes (Mounir et al., 2019). ATAC-seq (Assay for Transposase-
Accessible Chromatin using sequencing) can quantitatively
measure the accessibility of genome-wide chromatin. Corces
et al. (2018) generated the profile chromatin accessibility of
410 TCGA samples from 23 cancer types using ATAC-seq
technique. This study revealed that the combination of ATAC-
seq data and other omics data could help researchers find out the
transcription factors and enhancers regulating pathogenic genes
or immune genes.

Tumor heterogeneity means the molecular and cellular
difference of a single tumor between different tumor patients
(inter-tumor heterogeneity) or even different tumor formation
sites in a single patient (intra-tumor heterogeneity) (Alizadeh
et al., 2015; Jia et al., 2018). However, researchers only know
the tip of the iceberg of tumor heterogeneity, resulting in a
lack of targeted precision medical treatments. Breast cancer
also shows heterogeneity both at molecular and cellular levels,
which inhibits the effects of diagnostic, prognostic, or predictive
strategies in routine clinical practice. Turashvili et al. conducted
a comprehensive review on breast cancer both from inter-
tumor heterogeneity and intra-tumor heterogeneity aspects
(Turashvili and Brogi, 2017). Bou-Dargham et al. (2018) clustered
breast cancer samples collected from TCGA with using 1356
immune-related genes as features, finding the dominate evasion
mechanism in seven clusters. However, it is still unknown how a
large part of the mechanism of tumor cells regulate the expression
of immune genes to evade immune cell killing (Lowry and
Zehring, 2017; Anmamed and Chen, 2018).

Aiming to understand the regulatory mechanism of breast
cancer immune evasion, in this study we sought to identify
differentially expressed immune-related genes in tumor tissue
by comparing the TCGA and GTEx mRNA data. To find out
the reasons for the variations of immune gene expression, we
carried out correlation analysis between CNV and mRNA, and
we also analyzed the relationship between transcript factor (TF)
and target immune gene based on ATAC-seq data. Then, the
relationships between TFs and immune gene were validated by
common databases.

MATERIALS AND METHODS

The Multi-Source Data Fusion
Framework
In Figure 1, we depicted a proposed framework for investigating
regulatory mechanisms of tumor immune evasion. The multi-
source data fusion framework includes three main procedures:
First, NMF clustering algorithm was used to recognize subgroups
of TCGA breast cancer samples. Note that the immune-related
genes are considered as clustering features, so that the subgroups
may have different immune evasion pathways; Second, to avoid
data bias of normal tissue collected from cancer patients,
we compared the GTEx normal data with each subgroup of
TCGA breast cancer samples, identifying differentially expressed
immune-related genes. Finally, we designed a regulatory analysis
algorithm to find regulatory factors for immune-related genes
expression variations based on ATAC-seq data.

Collecting Candidate Immune Genes
To understand how these tumor cells evade damage from
immune cells (such as T cells, NK cells, and so on), we should
first compare the differences of candidate immune-related genes
in tumor tissues and normal tissues. Patel et al. (2017) conducted
a comprehensive investigation on essential genes for cancer
immunotherapy and provided gene-ranking based on sgRNA
enrichment analysis. In addition, we also manually collected
some important NK ligands. Therefore, we collected a total of
2171 candidate immune-related genes.

Gene Expression Dataset Unifying TCGA
and GTEx
Before comparing the gene expression difference between the
tumor tissue from TCGA breast cancer and normal breast tissue
from GTEx, several important issues should be addressed, such
as uniform realignment, gene expression quantification, study-
specific biases, and batch effect removal. Wang et al. (2018)
processed data from GTEx and TCGA and addressed those issues
to facilitate data comparison. They provided the normalized

FIGURE 1 | The flowchart of the multi-source data fusion framework.
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datasets on figshare (Wang et al., 2018). In this study, we
downloaded 511 breast cancer samples and 212 normal samples
for downstream analysis.

Subgrouping Tumor Samples by
Non-negative Matrix Factorization
Because of tumor heterogeneity, the molecular and cellular
characteristics of a single tumor between different tumor patients
(inter-tumor heterogeneity) may show significant differences. In
this study, focusing on the tumor cells’ behavior of immune
evasion, we clustered the 511 breast cancer samples with using
non-negative matrix factorization (NMF; Gaujoux and Seoighe,
2010). For the completeness of the demonstration, in this section
we briefly introduce NMF mathematical formulation. Formula
(1) shows an approximation of a matrix X containing n features
and p samples. Of note, all entries in X are non-negative.

X ≈WH (1)

where W is non-negative matrix containing n rows and r
columns, H is a non-negative matrix containing r rows and p
columns, and the factorization rank r is a positive integer. In
this study, r is the number of subgroups, so that W denotes
the weights of each feature contributing to each cluster and H
represents the weights of each sample affiliating to each cluster.

Estimating the approximate solutions of W and H can be
considered as an optimization problem in Formula (2).

min
W,H≥0

|F −WH| + γR(W, H) (2)

where the first component is used to measure the quality of the
approximation, namely loss function. For avoiding overfitting,
the second component uses a regularization function to ensure
sparsity or smoothness of matrices W and H. γ is a parameter for
balancing these two components.

The parameter r, namely factorization rank, represents the
number of subgroups divided. For recognizing significantly
different subgroups of breast cancer samples, a simple way is to
try different values of r and then choose the best r according
to quality measure of clustering results. For example, Frigyesi
and Höglund (2008) chose r as the minimum factorization rank
when the marginal reduction in residuals is still greater than the
reduction observed for random data. The robustness of clustering
can be evaluated the cophenetic correlation coefficient derived
from a consensus matrix (Frigyesi and Höglund, 2008).

Differential Expression Analysis
Comparing each cluster with normal samples, we can find which
genes are differentially expressed. And these differential genes are
likely to be very critical in tumor development and evolution.
With using overdispersed Poisson model and empirical Bayes
method, edgeR has shown superiority in terms of variability and
robustness and has become a widely used Bioconductor software
package for differential expression analysis (Robinson et al.,
2010). The downstream analysis of high-throughput sequencing
RNA-seq is confronted with a number of issues, such as
systematic changes across experimental conditions, discreteness,

and small replicate numbers. To address those problems, DESeq2
applied shrinkage estimation for dispersions and fold changes to
improve stability and interpretability of estimates (Love et al.,
2014). It can be found that those two methods use different
statistical models and have different specificities. Genes identified
as differentially expressed by both edgeR and DESeq2 have higher
confidence. In order to eliminate false positives, we consider
the candidate pathogenic genes as the consensus results of
edgeR and DESeq2.

Spearman’s Correlation Coefficient
Sharma et al. (2018) conducted a pan-cancer analysis on
the relationships among cancer-associated genes’ expression
variation, CNV, epigenetic changes, transcription factors, and
microRNAs using a generalized linear model. They concluded
that CNV is the most important factor contributing to the
variation of gene expression. In this study, we propose to use
Spearman’s correlation to examine the correlation between CNV
and mRNA of candidate pathogenic genes. The Spearman’s
correlation is a statistical method for measuring the strength
of a monotonic relationship between two variables. Of note, its
calculation and significance test are based on two assumptions:
the data of two variables are interval or ratio level or ordinal
and they are monotonically related. The value of Spearman’s
correlation coefficient is in [−1, +1], and the closer to +1, the
stronger the positive correlation; the closer to −1, the stronger
the negative correlation.

Regulatory Analysis Based on ATAC-seq
UCSC Xena provides the ATAC-seq peak signal for the 404
TCGA samples in Pan-cancer manner.1 In this study, all peaks
locating with 20 kb from a gene’s TSS sites are considered as
candidate regulatory region containing TF (transcription factor)
or RP (repressor protein). The raw matrix data downloaded from
UCSC Xena contains 562,710 identifiers and 404 samples and
each unit is defined as “log2([count + 5]PM)-qn.” Note that
70 breast cancer samples out of 404 samples are available for
immune gene regulatory analysis.

There are lots of peaks mapped to the target gene, so that
a multi-objective optimization strategy is proposed to rank all
peaks. Here, we use the following three evaluation criteria to
examine every peak from different angles.

Distance and score value-based criterion: The closer to the
target gene position, it indicates that the peak region has a greater
possible regulatory relationship with the gene, and the higher the
score of peak, it indicates that the RP or TF in this region is
more active, and the region is likely to have a regulatory effect
on the target gene.

Spearman’s correlation-based criterion: If there is a strong
linear relationship between the variation of gene expression and
the change of peak score value, then it can be considered that
there is a certain regulatory relationship between target gene
and TF or RP within the peak region. We apply the Spearman’s
correlation coefficient to measuring the strength of regulatory
relationship between target gene and TF or RP within the peak

1https://atacseq.xenahubs.net
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region. If the Spearman’s correlation coefficient is higher than 0.4
or lower than -0.4, there is a moderate relationship between the
two at least. In this study, we have, first, designed a framework to
analyze regulatory mechanism based on ATAC-seq data.

Regulatory analysis algorithm based on ATAC-seq:
Input: the mRNA of breast cancer samples and GTEx normal

samples; the peak matrix and peak location information.
Output: differential expression immune-related genes’ TFs and

RPs.
For each individual of breast cancer sample:
for each target gene:
Use the multi-objective evaluation criteria to select the

candidate peaks, and then extract the position information of the
chromosome where the peak locates;

Use BEDTOOLS (Quinlan and Hall, 2010) to extract the DNA
sequence corresponding to the candidate peaks on the reference
genome hg38;

Enter the DNA sequence in the PROMO website to get the
possible TFs binding to the DNA sequence;

Enter the sequence in the PROMO (Messeguer et al., 2002)
to get the candidate TFs in the sequence. Then, search in the
UNIPROT and GENECARD to determine the corresponding gene
coding the candidate TFs;

for each TF coding gene:
use the Student’s t-test to compare TF coding gene expression in

single breast cancer sample with GTEx samples;
if high expression in breast cancer sample AND high TF peak

score:
TF – target gene Positive regulation;
Endif
if low expression in breast cancer sample AND high RP peak

score:
RP – target gene Negative regulation;
Endif
Endfor
Endfor
Endfor
Regarding the above algorithm, there are three points that

need to be emphasized and further explained. First, it can be seen
from the pseudo-code that our analysis of regulatory mechanism
is at a single-sample level, which is conducive to further revealing
the heterogeneity of tumors. Regarding whether the expression
of the target gene is regulated up or down in a single sample
analysis, our method is to carry out the Student’s t-test statistical
analysis of the expression value of the gene with multiple normal
samples. Second, regardless of whether it is positive regulation
or negative regulation, only a high peak score can indicate that
the region is in an open state and that it may be regulated by
TF and RP. Last, the high expression of the gene encoding the
regulator indicates that the regulator is likely to be involved in
the regulation of the corresponding target gene. If the target gene
is highly expressed, it means that there is a positive regulation
between them; the low expression of the gene encoding the
regulator indicates that the regulator is not involved in the
regulation of the target gene. If the target gene is highly expressed
at this time, it means that the original negative regulation effect
of the regulator is inhibited.

RESULTS

Clustering Breast Cancer Samples
To study the tumor heterogeneity, we used NMF to cluster 511
breast cancer samples according to the 2171 candidate immune-
related genes. In Figure 2, the Delta area and cluster-consensus
of different factorization rank values are depicted, which can help
researchers to estimate the best rank value. We can find that when
k = 4, clustering consistency and stability are relatively optimal.
Therefore, we believe that there are 4 different immune subtypes
in these 511 breast cancer samples, and the numbers of samples
corresponding to each subtype are 199, 60, 169, and 83.

Differentially Expressed Genes Among
Subtypes
Different tumor subtypes may have different immune escape
pathways. Understanding the differences in escape mechanisms
between different subtypes is conducive to the implementation
of precise immunotherapy. In order to understand the
differences and commonalities of the dominant immune
escape pathways among different subtypes, we compared the
immune-related gene expression of each subtype with normal
samples collected from GTEx.

Actually, to avoid the damage caused by NK cells, tumor
cells have two possible strategies to suppress immune activity:
one is to lower the expression of NK activator ligands, and
the other is to increase the expression of NK inhibitor ligands.
Table 1 lists all the differentially expressed NK ligand genes of
4 subtypes derived by the consensus of edgeR and DESeq2. The
second column separately lists all these NK activator ligands
in each cluster that have significantly lower expression than
GTEx normal samples. The third column separately lists all
these NK activator ligands in each cluster that have significantly
higher expression than GTEx normal samples. The fourth
column separately lists all these NK inhibitor ligands in each
cluster that have significantly lower expression than GTEx
normal samples. Of note, since no significantly low expressed
genes were found in this case, we use the ’-’ symbol to
indicate. The fifth column lists all these NK inhibitor ligands
in each cluster that have significantly higher expression than
GTEx normal samples.

From the results of NK activator ligands expression shown in
Table 1, it can be found that the NK activator ligands among
clusters 1, 2, and 4 are quite similar. Although they are similar,
there are also some differentially expressed NK activator ligands.
These genes may be the key to different subtypes of immune
escape pathways. A possible hypothesis of tumor development is
that NK activator ligands are regulated to lowly express, which
makes it difficult for tumor cells to be destroyed. CLEC2B, HLA-
E, IL15, and VIM all appear in the 4 subtypes at the same time,
which may mean that they play a more general role in different
subtypes of breast cancer. However, it is very interesting that
the results of NK inhibitor ligands between different clusters
are very similar. Note that CDH1 and PVRL2 appear in all
clusters at the same time, which probably means that they play
a very important role in the immune evasion of breast cancer.
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FIGURE 2 | Quality measures for each value of factorization rank: Delta area (A) and cluster-consensus (B).

Therefore, it is necessary to further study how tumors regulate
CDH1 and PVRL2 to escape the destruction of NK cells.

The Correlation of CNV and mRNA on
CDH1 and PVRL2
In this section, the Spearman’s correlation coefficient is used to
measure the correlation strength between the ligand gene itself
CNV and mRNA. If the correlation strength between them is
strong, it can explain that the change in mRNA is caused by
itself CNV, otherwise it means that there may be other regulatory
factors in the change of mRNA.

For CDH1, its CNV and mRNA have moderate Spearman’s
correlation coefficient (correlation value 0.54, P-value adjusted:
3.12e-05), which means that the variation of CDH1’s expression

can be moderately explained by its CNV. However, for PVRL2,
the correlation is very weak, so that there must be other factors
regulating the gene expression of PVRL2.

The Regulatory Mechanism Analysis
Based on ATAC-seq
As mentioned above, we further explored what factors are
regulating the expression changes of PVRL2. As shown in
Figure 3, it can be found that there are about 190 peaks around
PVRL2. Some peaks have significantly negative correlation with
PVRL2, while some have positive correlation. With using our
multi-objective criterion for peak selection, three candidate
peaks (the most positive correlation peak, the most negative
peak, and the closest gene with the highest score peak) are
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TABLE 1 | Differentially expressed genes of each subtypes.

Cluster Low expressed NK activator ligands High expressed NK activator ligands Low expressed NK
inhibitor ligands

High expressed NK
inhibitor ligands

Cluster 1 CFP, CLEC2B, CSF1, CSF3, HLA-E,
IL15, TNFRSF10B, TNFRSF14, VIM

CADM1, CD48, CD70, CD80, CD86, CSF2, IL18,
MICB, PCNA, RAET1E, RAET1L, SELL, SLAMF6,
SLAMF7, ULBP1,

– PVRL2, CEACAM5,
CDH1

Cluster 2 CFP, CLEC2B, CSF1, CSF3, HLA-E,
HSPG2, IL15, IL2, MICA, RAET1G,
TNFRSF10B, TNFRSF14, ULBP3, VIM,

CADM1, CD48, CD80, CD86, CSF2, IL18, MICB,
PCNA, RAET1L, SELL, SLAMF6, SLAMF7, ULBP1

– PVRL2, CEACAM5,
CDH1

Cluster 3 CLEC2B, HLA-E, IL15, MICA,
PDCD1LG2, TNFRSF14, VIM

CADM1, CEACAM1, PCNA, RAET1E, SELL,
ULBP1

– CEACAM1, PVRL2

Cluster 4 CFP, CLEC2B, CSF1, CSF3, HLA-E,
IL15, MICA, TNFRSF10B, TNFRSF14,
ULBP3, VIM

CADM1, CD48, CD80, CD86, CSF2, IL18, MICB,
PCNA, RAET1L, SELL, SLAMF6, SLAMF7, ULBP1

– PVRL2, CEACAM5,
CDH1

FIGURE 3 | The correlations between 190 peaks with PVRL2. The text
attached to the curve indicates the ID of the peak.

TABLE 2 | The validation correlation between TFs and PVRL2.

TF JASPAR ENCODE CHEA MotifMap TRANSFAC

AR – – – – –

ESR1
√ √

– – –

FOXP3 – – – – –

GTF2I – – – – –

NR3C1 –
√

– – –

PAX5 –
√

– – –

SP1 –
√

– – –

TFAP2A
√

– – –
√

TP53 – – – – –

YY1 –
√

–
√

–

reserved for downstream analysis. Then, according to the
regulatory analysis algorithm, 10 TFs (AR, ESR1, FOXP3,
GTF2I, NR3C1, PAX5, SP1, TFAP2A, TP53, and YY1) have
been considered to potentially regulate the gene expression
of PVRL2.

TABLE 3 | The validation correlation between TFs and CDH1.

TF ASPAR ENCODE CHEA MotifMap TRANSFAC

AR – –
√

– –

GTF2I – – – – –

IRF2 – – – – –

NF1 – – – – –

NFATC2 – – – – –

XBP1 – – – – –

YY1 –
√

– – –

To verify the real existence of that regulatory relationship, we
matched 5 commonly used databases, namely JASPAR (Portales-
Casamar et al., 2010), ENCODE (Encode Project Consortium,
2011), ChEA (Achmann et al., 2010), MotifMap (Daily et al.,
2011), and TRANSFAC (Matys et al., 2003). The validation results
are listed in Table 2; the “

√
” indicates that the corresponding

TF has a regulatory relationship with PVRL2 and “–” indicates
that the database does not include the corresponding regulatory
relationship between TF and PVRL2.

From Table 2, we can find that the six TFs were confirmed by
the databases to have corresponding regulatory relationships with
PVRL2. More importantly, all these TFs show high expression
in most samples (>50%). Thirty-seven breast cancer samples,
namely more than half of the breast samples, show amplification
with CNV, which means that most of breast cancer samples’
TF coding gene are amplified by CNV, which leads to the high
expression of TF gene, thereby positively regulating the PVRL2,
so that the expression of the PVRL2 also increases, thereby
inhibiting the activity of NK cells and achieving immune escape.
But for those samples where the TF gene does not show high
expression, they may have more complex regulatory mechanisms,
or there are still some TFs that have not been confirmed.

For the CDH1, the same regulatory analysis pipeline is also
applied. TFs such as AR, GTF2I, IRF2, NF1, NFATC2, XBP1,
and YY1 show significant correlation with CDH1. Then, these
relationship between TFs and CDH1 are also searched in JASPAR,
ENCODE, ChEA, MotifMap, and TRANSFAC databases, and the
results are listed in Table 3.

The results in Table 3 show that only 2 TFs have reported
to be correlated with CDH1. At the same time, approximately
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one-third of the samples show amplification of TFs. This means
that in these one-third of the samples, it may be due to the high
expression of these TFs caused by itself CNV amplification, which
positively regulates the high expression of these target genes. For
the remaining two-thirds of the samples, the high expression of
CDH1 may be due to a more complicated mechanism, or, as
mentioned above, CDH1 is more likely to be caused by its own
CNV amplification. Consequently, combining the analysis results
of the relationship between CNV and mRNA may better explain
the variations of the CDH1 expression.

Survival Analysis of CDH1 and PVRL2
If the CDH1 and PVRL2 are essential for tumor cells avoiding
immune evasion, their expression should affect the survival of
patients. Therefore, in Figures 4, 5, the survival analysis results
of are CDH1 and PVRL2 depicted.

FIGURE 4 | The survival results of PVRL2.

FIGURE 5 | The survival results of CDH1.

In Figure 4, the blue line denotes low expression of PVRL2,
the gray line means moderate expression of PVRL2, and the red
line represents high expression of PVRL2. The P-value is 0.009,
so that PVRL2 significantly influences the breast cancer patient’s
survival quality.

For CDH1, in Figure 5, the dark blue line denotes low
expression, the light blue line means moderate expression, and
the red line represents high expression. The P-value is 0.05,
and although the results of statistical testing are not very
significant, there may be a certain relationship between CDH1
and breast cancer.

DISCUSSION AND CONCLUSION

A large number of studies have confirmed that the occurrence
and development of complex diseases such as tumors usually
involve the interaction of multiple factors such as the
environment and genetic mutations. However, it is difficult
for a single level of omics data to systematically and completely
reveal how multiple factors interact. At the same time, single-
source data sets are usually limited by factors such as the
sample population, sample size, and data type, resulting
in insufficient statistical power and difficulty in repeating
association studies. Therefore, the research in this study
provides an analysis framework that integrates multi-source
data, which can effectively enhance the biological meaning of
the research process and research results. More importantly,
the single-sample regulation analysis method of this study can
explore the heterogeneity of tumors in more depth, which
is of great significance to the practice of precision medicine.
Understanding tumor heterogeneity (inter-tumor heterogeneity
or intra-tumor heterogeneity) is an important foundation for
precision medicine. This is because different subtypes may
use completely different immune escape pathways. If the same
treatment is used, it may not only have no effect but also cause
side effects. In this study, we proposed a multi-source fusion
framework for understanding the immune evasion mechanism
of breast cancer. Our method has three main characteristics:

1. Collect immune-related genes and combine TCGA case
samples and GTEx normal samples to identify specific
immune genes associated with different subgroups of
breast cancer. Using this strategy, there are lots of potential
NK activator ligands in low expression and NK inhibitor
ligands in high expression, which may play a key role in
immune evasion are identified.

2. Design a multi-objective criterion for evaluating the
importance of peaks nearby target gene and propose
a regulatory analysis algorithm to locate TFs or RPs
regulating the expression of target immune-related genes
based on ATAC-seq data.

3. We have explained the target gene expression variations
on single sample level, which shows that the framework
designed in this study can serve precision medicine. We use
the statistical method (Student’s t-test) to identify whether
the expression of the target gene on a single sample is
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higher than its expression in normal samples (GTEx), and then
analyze the specific reasons (CNV or regulators) for the target
gene’s expression variations with a single sample manner.

In this study, we found that both CDH1 and PVRL2
show high expression in all subgroups and they are NK cell
inhibitor ligands, so that their high expression may play an
important role in immune evasion. Previous studies concluded
that CDH1 mutation contributes to the risks of breast cancer
(Shabnaz et al., 2016; Xicola et al., 2019). For CDH1, we
found that its expression variation is mainly caused by its own
CNV. In addition, CDH1 may also be positively regulated by
some TFs. Whelan et al. concluded that PVRL2 is expressed
in human cancers and the PVRIG–PVRL2 pathways are
non-redundant inhibitory signaling pathways (Whelan et al.,
2019). For PVRL2, we found that its CNV and mRNA
have very weak correlation. More than half of the samples
showed high expression of TFs, which means that the high
expression of PVRL2 may be caused by high expression of
TFs. The relationship of PVRL2 and TFs is validated in
relevant databases.

Although this study found some genes that are differentially
expressed in diseased samples, only two common differential
expression genes, namely CDH1 and PVRL2, have in-depth
discussions on their regulatory mechanism. This study aims
to clarify the practicality of the fusion analysis framework. In
future work, we will further study the regulatory mechanisms of
other important differential genes in each single breast cancer
sample and will also study the role of these immune-related

genes in the occurrence and development of tumors with a
pan-cancer manner.
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