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Understanding how the cellular niche controls the stem cell phenotype is often

hampered due to the complexity of variegated niche composition, its dynam-

ics, and nonlinear stem cell–niche interactions. Here, we propose a systems

biology view that considers stem cell–niche interactions as a many-body prob-

lem amenable to simplification by the concept of mean field approximation.

This enables approximation of the niche effect on stem cells as a constant

field that induces sustained activation/inhibition of specific stem cell signaling

pathways in all stem cells within heterogeneous populations exhibiting the

same phenotype (niche determinants). This view offers a new basis for the

development of single cell-based computational approaches for identifying

niche determinants, which has potential applications in regenerative medicine

and tissue engineering.
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Stem cells are indispensable for maintaining tissue

homeostasis due to their unique ability to generate

more specialized cell types in a well-coordinated man-

ner depending on the organismal needs. This function

depends crucially on the ability of stem cells to make

robust cell fate choices such as self-renewal or differen-

tiation. Multiple cell-intrinsic and extrinsic factors con-

trol this decision-making process. In this regard,

interactions between stem cells and their microenviron-

ment, also known as the niche, determine the stem cell

phenotypic states such as quiescent and active stem

cells [1]. The cellular niche translates information from

the neighborhood of the stem cell by transmitting

external cues to intracellular signaling events that

maintains its cellular state. Schofield in his description

of hematopoiesis, proposed the concept of stem cell

niche where, a stem cell must be associated ‘with other

cells which determine its behavior’ in order to ‘prevent

its maturation’; loss of this association was hypothe-

sized to result in differentiation [2]. This concept of

stem cell niche has evolved over time, and now

includes several different supportive stromal cell types,

anatomical localization, soluble molecules, as well as

physical factors, such as shear stress, oxygen tension,

and temperature [3]. Involvement of such disparate

and stochastically fluctuating components, in addition

to feedback regulation of the niche by stem cells, leads

to the highly dynamic nature of the niche [1,4,5]. Stem

cells are known to remodel the niche by secreting

ECM components and other diffusible factors in

response to the signals received from the niche, thus

giving rise to feedback regulation of niche–stem cell

interactions [4]. Such a bidirectional interplay between

stem cells and niche is exemplified by the fact that

daughter/progenitor cells can serve as niche cells for

their parent stem cells in different tissue types [1].

These feedback regulatory mechanisms, in addition to

the complex bio-physical characteristics of ECM, con-

tribute to nonlinear stem cell–niche interactions [6].

General physiological conditions of tissue and

organismal requirements shape the niche effect on

stem cell phenotype [7]. For instance, healthy tissues
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under homeostatic conditions are characterized by the

tight regulation of stem cell and progenitor cell turn-

over. However, this tissue-level homeostasis is often

disrupted in case of several diseases such as cancers,

neurodegenerative diseases, and cardiac dysfunction.

Furthermore, aging is known to contribute toward

progressive decline in tissue homeostasis due to degen-

erative changes in niche-mediated cues that regulate

the stem cell activity [8]. In general, complications

often arise due to a lack of proper generation of pro-

genitor cells, complete loss of stem cells, and uncon-

trolled growth of stem/progenitor cells. Deregulated

niche components are known to be responsible for sev-

eral of these defects [9]. For such cases, regenerative

medicine approaches that rely on transplanting or

modulating endogenous stem cells hold immense

potential [9]. At present, a key challenge in this area

includes the limited functional integration (or engraft-

ment) of transplanted stem cells into the target tissue.

This has been attributed to the negative regulatory

effect of diseased niche on transplanted stem cells [10].

In order to overcome this limitation, it is essential to

understand those regulatory mechanisms that normally

control stem cell functional state in response to the

niche. However, the multifactorial complexity of the

niche–stem cell interactions is a major roadblock in

this direction. Therefore, the role of the niche in main-

taining distinct stem cell phenotypic states, and how to

influence the niche effect on stem cells to induce transi-

tions among these states constitutes a fundamental

problem in stem cell research.

Recently, studies have begun to address this issue

by explicit characterization of niche components and

their interactions with stem cells [11,12]. Despite sig-

nificant progress in identifying cells that comprise

the niche, a comprehensive understanding of all

niche components is not yet obtained. This lack of

knowledge is predominantly due to the difficulty in

obtaining and studying niche cells and factors

in vivo. Furthermore, there is a lack of consensus on

what actually constitutes the niche and the precise

definition of niche components [13–15]. In addition

to experimental efforts, a few computational systems

biology approaches that model population-level

dynamics of cell–cell interactions have been proposed

to study niche regulation of stem cells [16–20]. How-

ever, a complete description of stem cell–niche inter-

actions that allows designing strategies for

controlling the effect of niche on stem cells is still

limited. This is mainly due to incomplete characteri-

zation of the niche, fluctuations of the niche compo-

nents, and a large number of nonlinear interactions

between the niche components and stem cells.

In this article, we hypothesize that stem cell–niche
interactions could be considered as a complex many-

body problem that can be simplified by the concept

of mean field approximation. Such a view allows

consideration of the net effect of all niche compo-

nents on stem cells as a constant averaged effect or

‘mean field’. Most existing models consider the niche

composition to model stem cell–niche interactions via

rate equations. Our approach does not require this

knowledge, precisely because it considers that stem

cells interact with their niches via a mean field cre-

ated by all niche components, which ultimately deter-

mines the sustained activation/inhibition of specific

stem cell-signaling pathways that maintain their phe-

notypic states. Application of our view allows the

identification of niche-mediated regulators of stem

cell phenotypes by relying on single-cell profiling

data. To support this hypothesis, we use examples of

different stem cell systems to illustrate how stem cells

maintain their phenotypic state via constant activa-

tion or inhibition of certain pathways under homeo-

static conditions. Such pathways that determine the

stem cell states can be termed as niche determinants,

and are expected to be constantly activated/inhibited

in all cells within a population sharing the same phe-

notypic state despite the variability in their molecular

profiles. Indeed, knowledge of these niche determi-

nants should enable us to identify target genes whose

perturbations can induce transitions between different

phenotypic states.

Mean field approximation: keeping it
simple

Mean field theory was initially developed by Pierre

Curie and Pierre Weiss in physics for a simplified

theory of ferromagnetism [21,22]. They considered a

lattice composed of magnetic moments interacting

with their nearest neighbors, and proposed to replace

the actual interactions experienced by each magnetic

moment with the mean interaction (provided by the

mean magnetization) by setting the fluctuations

around the mean equal to zero. Such an approxima-

tion that considers each magnetic moment to be

influenced by a mean field created by all their neigh-

boring moments enabled Curie and Weiss to effec-

tively simplify the many-body interaction problem to

a two-body problem without explicitly accounting

for each pairwise interaction. Since its initial pro-

posal, different interpretations of mean field theory

have been applied to other disciplines, such as ecol-

ogy, epidemiology, and protein structure prediction

[23–25].
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Mean field approximation applied to
the stem cell niche

Despite the existence of different mean field concepts

[24], here, we follow the definition proposed in ferro-

magnetism. In particular, we hypothesize that stem

cells and niche components within a spatial compart-

ment can be viewed as a many-body interaction system

that includes different types of interactions among

them (Fig. 1). By stem cell niche we invoke the origi-

nal concept of specialized microenvironment which

supports stem cell survival and functions [1,2]. In this

regard, even though individual components of the

niche can fluctuate, their combinatorial effect on stem

cells can be represented by a mean field, which is the

average of all the molecular and cellular signals from

the niche. A single component of the niche may be

perturbed, but it does not form a defective field unless

the perturbations spread and completely transforms

the entire niche [1]. The dynamic equilibrium between

the niche and the stem cells is resilient and robust to

small perturbations and noise in the individual niche

components. Therefore, according to our hypothesis, it

is not the interaction between stem cells and individual

niche components that determines their state, but

rather it is the constant interaction of each stem cell

with the mean field that leads to a sustained activation

or inhibition of specific stem cell intracellular signaling

pathways. This ultimately dictates stem cell function

and behavior, governing the choice between quies-

cence, proliferation, self-renewal, or differentiation. In

this way, not only are discrete fluctuations in niche

signals buffered against, but so too are the epigenetic

and gene expression heterogeneity that stem cell popu-

lations display. According to our view, a given stem

cell population (sharing a common phenotype),

although exposed to perturbations and noise due to

fluctuations in individual niche components in addition

to the presence of intrinsic molecular heterogeneity,

nonetheless should share commonly activated/inhibited

signaling pathways that determine their phenotypic

state (Fig. 2). Such pathways that determine the stem

cell state can be termed as niche determinants (Fig. 2).

As a consequence of approximating the niche com-

ponents with an effective mean field, the focus is on

identifying sustained signaling (shared within a cellular

population) responsible for maintaining the specific

stem cell phenotype instead of characterizing the niche

explicitly. The proposed approach relies on single-cell

profiling data and works by first identifying the most

conserved set of genes (based on the similarity of

expression levels at single-cell resolution) defining that

particular phenotype. Subsequently, unique signaling

pathways/networks that link the conserved receptors

and transcription factors for specific stem cell pheno-

types are inferred computationally by relying on net-

work topology and expression levels.

Case study: mean field approximation
to identify niche determinants of
NSCs

Based on a mean field approximation hypothesis, we

illustrate the applicability of this view of stem

STEM
CELL

Fig. 1. Mean field approximation of stem cell–niche interactions. The mean field approximation considers that each stem cell interacts with

its niche via a ‘mean field’ created by all molecular and cellular signals from the niche. The figure depicts the complex nature of stem cell–

niche interplay within a spatial compartment. Stem cells (red circles) are entangled in an intricate network of interactions (gray edges) with

different niche components (NC) (yellow nodes of different shapes). Analyzing the effect of each individual component on stem cell would

require consideration of a large number of interactions and fluctuations among them. In the right, the enlarged depiction of a stem cell

shows a mean field (yellow cloud) created by the niche components around a stem cell.
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cell–niche interactions in order to identify niche deter-

minants of quiescent and active neural stem cell (NSC)

phenotypes based on a recently published single-cell

RNA sequencing data [26]. The data were obtained

from Gene Expression Omnibus (GSE67833). Briefly,

these data that we used in our approach are described

as follows: mouse subventricular zone NSCs were iso-

lated from their natural environment based on the

expression of GLAST and Prom1. The transcriptome

of 104 GLAST+/Prom1+ cells were analyzed by single-

cell RNA-seq using Smartseq2 technology [27]. These

data were then subjected to principal component anal-

ysis followed by unsupervised hierarchical clustering of

genes with the highest coordinates in the first four

principal components (1844 genes) [26]. This analysis

partitioned the NSCs into two major clusters. One

NSC cluster had Egfr expression (a known marker of

active NSCs [28]) in addition to the expression of cell

cycle-related genes. Based on these attributes, this clus-

ter was defined as active NSCs. On the other hand the

cluster that lacked the activation markers were classi-

fied as quiescent NSCs. Gene ontology and pathway

enrichment analysis revealed that active NSCs were

enriched in genes for cell cycle, protein synthesis, and

mitosis, whereas glycolytic metabolism was found to

be most enriched in quiescent NSCs. Gene ontology

and pathway enrichment analysis further divided qui-

escent and active NSCs into two subpopulations each

(quiescent NSC1/2 and active NSC1/2). In our current

analysis for the sake of simplicity we considered only

quiescent and active NSC populations as a whole with-

out considering the further subpopulations.

Our strategy relies on gene expression differences

between stem cells displaying different niche-dependent

phenotypes, and aims to infer sustained signaling

pathways that are required for stably maintaining their

corresponding phenotypes. Moreover, despite the

niche-induced fluctuations in signaling, such pathways

must be shared (or conserved) within the cells sharing

a common phenotype. However, it must be mentioned

that identification of conserved pathways can also

result in housekeeping pathways that could be of gen-

eral importance to a wide variety of cell populations

(e.g., pathways that are important for both quiescent

and active NSCs) and therefore could lack cell type

specificity. In order to overcome this issue, the

approach focuses on uniquely conserved pathways

within each population and is different across the

populations.

Single-cell gene expression data offer the possibility

to identify the set of genes whose expression pattern is

conserved within a given phenotype. Such genes are

more likely to play a dominant role in phenotype

maintenance since their expression pattern is similar at

single-cell level. In the example of NSCs, we first iden-

tified the genes exhibiting similar expression pattern

within quiescent or active phenotype. For this we

employed Shannon entropy [29], which measures the

Fig. 2. Niche determinants of stem cell phenotype. Representation of stem cell signaling and gene regulatory network states of a

heterogeneous population of stem cells sharing a common phenotypic state. The figure depicts heterogeneity of gene expression at a

single-cell level (red and blue nodes) and the signaling pathways regulating the underlying gene regulatory network. According to the mean

field hypothesis, in spite of molecular heterogeneity and fluctuations of niche signals, these cells should share commonly activated/inhibited

signaling pathways (niche determinants) that determine their phenotypic state. Such pathways are depicted with red arrows, while the

other transient signaling pathway activities not common to all cells in the population are depicted with dashed arrows. The underlying gene

regulatory network that maintains the phenotype of these cells is depicted with red and blue nodes representing their expression status.
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disorder of a system, where lower values indicate simi-

lar expression pattern of a given gene. Entropy for

each gene, X, is defined by:

H Xð Þ ¼ �
Xn

i¼ 1
PðxiÞ log2 pðxiÞ

where P(xi) represents probability of gene expression

value x = xi. Entropy calculation was performed

using data binning approach and the number of bins

(k) was determined from the expression data using

Sturges’ rule [30], given by k = log2n + 1, where n is

the sample size. After data binning, the computation

of entropy was performed using maximum likelihood

implementation (entropy.empirical) of the R entropy

package. We used an entropy cutoff less than 1 and

median expression (FPKM) value greater than 10 to

classify the gene as having a conserved expression pat-

tern. Entropy calculation for each gene allowed us to

identify quiescent or active phenotype-specific genes

that showed similar expression pattern at a single-cell

level.

Next, we sought to identify those signaling pathways

that are more likely to be constantly active. For this,

we first identified the set of receptors/ligands and tran-

scription factors classified as conserved for quiescent

and active NSCs. Entropy calculation based on single-

cell expression levels allowed us to identify the genes

that shared a similar expression levels. From that list

of genes, transcription factors and transcriptional regu-

lators were identified based on annotation available at

Animal TFDB (http://www.bioguo.org/AnimalTFDB/

). In the case of receptors, since a complete database

of receptor molecules is currently unavailable, we used

Gene Ontology classification of receptor activity and

plasma membrane (GO:0004872, GO:0005886) to iden-

tify genes with possible receptor activity. For the case

of secreted ligand molecules we utilized the classifica-

tion of potential ligands reported in a recent study

[31]. About 90 and 128 receptors/ligands were identi-

fied for quiescent and active NSC phenotypes, respec-

tively. From this, identifying the ones that are most

likely to propagate the niche mediated signaling is a

challenge. We made use of literature-curated signaling

database Reactome [32] as a background raw signaling

network consisting of all reported signaling interac-

tions and employed Prize Collecting Steiner Tree

(PCST) formalism to infer the signaling pathways.

Interactions reported in the Reactome database were

used as the background network from where subse-

quent Steiner trees were inferred. Reactome consists of

curated pathways with molecular interaction data from

Reactome Functional Interaction Network and other

databases such as IntAct, BioGRID, ChEMBL,

iRefIndex, MINT, and STRING. We specifically used

Reactome Functional Interaction Network (http://

www.reactome.org/pages/download-data/) as they con-

tain information on direction and sign (positive of neg-

ative regulatory effect) of the interaction. We consider

that the conserved receptors/ligands of a given stem

cell phenotype are under the direct influence of the

niche. Since the exact mechanisms of the niche effect

on the signaling activity are not known, we represent

the net effect of the niche by introducing a dummy

niche node in the raw signaling network. The external

dummy node is incorporated as a way to capture the

topologically favorable receptors/ligands (from several

expressed ones) that can link it to the TFs specific for

quiescent and active NSCs. Furthermore, the dummy

node is used as the root node which acts as the starting

point for Steiner tree identification, consequently the

receptors/ligands will be linked to the dummy node in

the inferred Steiner trees. This dummy node is con-

nected to all conserved receptors/ligands for each phe-

notype under consideration. Therefore, signal

transduction from the niche to transcription factor must

be propagated through at least one of the conserved

receptors. The edges in the signaling interactome were

weighted using the gene expression data, where the

weights were calculated as, ce ¼ 1
xixj

, where xi and xj are

the expression levels of the interacting nodes. We specif-

ically used such a weighting scheme since the objective

of the PCST algorithm is to collect as many high prize

nodes (genes with high expression) while minimizing the

edge weights. Such an edge weighting scheme that

inversely correlates with the expression levels will enable

collecting those edges where both nodes are highly

expressed. In such a weighted raw signaling network,

that has a dummy niche node representing the net effect

of the niche, we used PCST to infer subnetworks with

the dummy niche node as the root or origin node and

the conserved transcription factors as the terminal

nodes. Steiner Tree formalism has been used earlier to

reconstruct active signaling pathways [33,34]. Formally,

the PCST problem is defined as, given a graph G = (V,

E), representing the raw signaling interactome (where,

V denotes the nodes and E denotes the edges), with

defined edge costs (weights), ce and node prizes bv find a

connected subgraph T = (V0,E0), V0 ⊆ V, E0 ⊆ E, that

minimizes the following function:

T ¼ min
ðE0;V0Þconnected

X
e2E0

ce � k
X
v2V0

bv

 !

The node prizes are computed by bv = |log fold

change (V)| from the gene expression data and ce is the

edge weights. The constant k determines the tradeoff
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of adding new proteins to the inferred network by bal-

ancing the cost of new edges and the prize gained by

adding a new protein. We chose k = 0.01 for our simu-

lations and employed a heuristic method based on a

message-passing algorithm to infer the PCSTs [33].

Basically, minimizing this function implies collecting

the largest set of high prize nodes while minimizing

the set of high cost edges in a tradeoff tuned by k that

results in a connected subgraph. Since the dummy

node is connected only to the conserved receptors of a

given cell type, the inferred subnetworks will encom-

pass only those receptors that are both topologically

favorable and maximize the expression values of the

intermediate nodes. Therefore, from several conserved

receptors, one could narrow down to the few linking

the transcription factors based on their unique net-

work topological features and expression levels.

Employing the above strategy, we identified subnet-

works that are likely to maintain the quiescent and

active phenotypes of NSCs (Fig. S1). In the case of

quiescent NSCs, we identified nine subnetworks with

receptors as origins/sources responsible for controlling

the expression status of the downstream terminal tran-

scription factors (Fig. S2). Among such identified

receptors, the role of Bmpr1b, Notch2, and S1pr1 are

known in the case of quiescent NSCs. In fact, BMP

signaling is known to maintain the NSC quiescence in

an autocrine manner, and further this signaling must

be downregulated for the subsequent activation of the

quiescent NSCs [26]. On the other hand, Notch signal-

ing is known to be involved in a paracrine manner

where Notch ligands are expressed by active NSCs and

inhibition of Notch signaling increased the active stem

cell population [26]. Role of S1pr1 in maintaining

NSC quiescence has been demonstrated in an indepen-

dent study where addition of S1pr1 agonist sphin-

gosine-1-phosphate significantly affected the activation

of quiescent NSCs [28]. In the case of active NSCs, we

identified Egfr signaling in addition to five other recep-

tor-mediated signaling pathways(Fig. S3). Moreover,

role of Egfr signaling for maintaining active NSCs is

well established and in fact Egfr is used as a marker to

isolate those cells [28]. In principle, such an approach

that focuses on sustained signaling pathways conserved

within a cellular population could enable identification

of niche-mediated regulators of stem cell phenotypes

without the knowledge of niche.

Mean field approximation: caveats and
comparisons to other models

As a result of mean field approximation, transient fluc-

tuations in signaling events that arise due to the

dynamic nature of the niche are ignored, as they do

not display any functional consequence for the mainte-

nance of stem cell states. In this context, it must be

noted that in addition to sustained signals, a cellular

niche can also propagate transient, but functionally

relevant signals induced by feedback mechanisms to

robustly maintain tissue homeostasis [35]. Other tran-

sient, yet functionally important signals could arise

due to perturbations such as cellular injury or genomic

mutations. The latter signals generally induce stem cell

phenotypic transitions (i.e., from quiescent to active/

proliferative state [5]), but are less likely to stably

maintain the existing stem cell phenotype [36,37].

Therefore, it must be emphasized here that the mean

field view of stem cell–niche interactions is valid for

identifying the signaling pathways responsible for con-

stant maintenance of cellular phenotypes and not for

transient signals that can potentially trigger phenotypic

transitions. Furthermore, identification of conserved

signaling can provide accurate descriptions of individ-

ual cellular behavior only when heterogeneity within a

defined population reflects functionally meaningless

fluctuations around a single cellular state and not

otherwise. Therefore, for the approach to yield accu-

rate results, the characterization of the cellular popula-

tions needs to be accurate.

Greater emphasis on the identification of sustained

signaling pathways that are conserved within a cellular

population exhibiting a common phenotype is a major

outcome of the mean field approximation of the niche.

Even though this outcome appears similar to pathway

enrichment analysis that has been routinely utilized

over the past decade [38] to identify deregulated (sig-

naling or metabolic) pathways, in actual practice the

idea has not been identification of sustained signaling

pathways conserved within a cellular population.

Moreover, several transient signaling pathways could

be identified as deregulated due to indirect effects (of

mutations, differences in the niche composition etc.)

and not as a cause for observed phenotypic difference.

However, those signaling pathways that are constantly

active are more likely to be the cause for stable main-

tenance of a specific cellular phenotype. Such a view

offered by our hypothesis is fundamentally different

from the prevailing view, and is often overlooked due

to its apparent simplicity. Furthermore, it must be

mentioned that computational analysis based on such

a view enhances the utility of single-cell omics data

generation and adds value to current development of

analytical methods [39] to decipher hidden patterns in

such high-resolution datasets.

Given the complexity involved in stem cell–niche
interactions, computational systems biology
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approaches have been useful in modeling their behav-

ior. In fact, computational methods have been pro-

posed to model interactions between stem cells and

niche components [16–20,40–42]. These methods could

be broadly classified into two major categories, (a)

methods that aim to capture the population level

behavior of stem cell–niche interactions by modeling

cell–cell interaction dynamics and (b) construction of

intercellular (cell–cell) interaction networks based on

gene expression data.

The first category of methods model the interaction

dynamics of stem and progenitor cells using rate equa-

tions that describe the birth and death processes of

each cell type and their interdependence on each other

[16–20,40]. Such models are most commonly employed

for studying stem cell–niche interaction dynamics and

characterizing the system steady-state properties in

order to understand tissue homeostasis, and how per-

turbations (in the form of diseases) could affect the

original steady states. A typical bottleneck in such

dynamical models is the lack of knowledge of parame-

ters or probabilities (such as, self-renewal rate, synthe-

sis rate of differentiated cells, death rates of stem and

daughter cells) that govern the system dynamics. In

addition to a lack of knowledge on parameters, even

the precise composition of the cellular niche is far

from being completely known, thereby rendering the

development of such dynamical models difficult. Fur-

thermore, these models tend to be powerful for a

descriptive analysis of the system dynamics rather than

being predictive in nature. In contrast, our proposed

approach does not require the explicit knowledge of

niche components or the parameters that govern the

stem cell–niche interactions to identify niche-mediated

regulators of stem cell phenotype.

The second category of models are based on con-

struction of intercellular interaction networks based on

gene expression data [41,42]. This approach attempts

to build cell–cell interaction networks based on sorting

of different cell populations followed by high-through-

put profiling, to define intercellular signaling between

phenotypically defined populations of stem, progeni-

tor, and mature cell types. This approach, although

not affected by a lack of knowledge on parameters,

nevertheless requires sorting and profiling of several

cell types to construct the cell–cell interaction network.

This is a major limitation since the cell types that truly

serve as niche cells in several stem cell systems is not

well characterized, and therefore cannot be sorted and

profiled easily. However, our proposed strategy

requires single-cell gene expression profiling of only

the stem cells with distinct phenotypes (like quiescent

and active) and does not require expression profiling

of the niche cells. This dramatically simplifies the isola-

tion of the cells, data generation and further down-

stream analysis since only stem cells are required to be

isolated and profiled without the necessity of profiling

the niche cells.

Although every stem cell system is unique in the

way it is regulated by its niche [3], several recent stud-

ies in different stem cell systems have observed that

stem cell states are determined by constant activation/

inhibition of specific pathways by the constitutive

influence of its niche [15,28,43]. The presence of certain

constantly activated/inhibited signaling pathways

maintained by their niche appears to be the common-

ality in different stem cell systems. This offers possibil-

ities to address the complexity of stem cell–niche
interactions without the explicit niche characterization.

Especially, the rapid advancements in single-cell profil-

ing technologies enable the dissection of cellular popu-

lations in greater detail. Moreover, the development of

computational systems biology approaches based on

the mean field approximation hypothesis finds a natu-

ral application of such increasingly available data for

identifying signaling pathways that are constantly

active in all cells within a population exhibiting the

same phenotype. Importantly, identification of such

niche determinants has several implications in regener-

ative medicine.

Potential applications for regenerative
medicine and tissue engineering

The stem cell niche contains a rich and diverse set of

cues that impinge constantly on stem cells that can be

modulated for therapeutic gain [9,10]. Understanding

and characterizing the niche determinants has potential

applications in regenerative medicine and stem cell

therapies for degenerative diseases of liver, heart, lung,

and brain. Limited functional integration of trans-

planted stem cells into the target tissue possibly due to

negative regulatory effect of diseased niche is currently

a major challenge [10]. In this regard, promoting

regeneration by harnessing the latent regenerative

potential of endogenous stem/progenitor cells has been

used as an alternative regenerative medicine strategy in

order to overcome the current translational bottlenecks

associated with cell transplantation [44]. For example,

in the case of multiple sclerosis (MS), a demyelinating

disease due to progressive failure of remyelination in

the CNS due to aging, endogenous activation of oligo-

dendrocyte precursors by mimicking a youthful

microenvironment have been proven useful to promote

remyelination in certain MS disease models [45,46]. In

order to achieve this, identification of strategies for the
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activation of endogenous repair mechanisms to pro-

mote tissue regeneration in situations in which it does

not occur normally is necessary [44]. Within this con-

text, the proposed approach for the identification of

conserved signaling pathways under diseased and

healthy niche conditions (determined by their physio-

logical cues) can enable the development of potential

strategies to modulate endogenous stem cell activity by

either counteracting the effect of diseased niche or by

mimicking the effect of healthy niche in the diseased

counterpart. Such intervention strategies would be

intended to make endogenous stem cells resistant to

the perturbed signals in the diseased state and to sus-

tain long-term function.

Another potential application where the knowledge

of niche determinants can provide useful insights is in

the area of tissue engineering. In particular, it is rele-

vant in the context of ex vivo tissue engineering, where

the main goal is to have the cells surviving and func-

tioning in an optimal environment without necessarily

having to replicate the in vivo conditions. In this

regard, our proposed approach can enable identifica-

tion of key factors that are responsible for maintaining

a given cellular phenotype in vivo can aid defining bet-

ter culture conditions for long-term phenotype mainte-

nance. For instance, long-term maintenance of

primary hepatocytes in a defined culture medium is

still a challenge [47]. Specifically, identification of a

culture system that can facilitate long-term mainte-

nance of hepatocytes is advantageous for clinical appli-

cations such as drug screening and toxicity tests.

Conclusions

In general, cellular populations with the same functional

phenotype exhibit a certain degree of heterogeneity in

their molecular profiles due to intrinsic stochasticity in

the transcriptional and translational program. Further-

more, the dynamical nature of the niche can perpetuate

noisy fluctuations in stem cell signaling pathway activi-

ties. Therefore, stem cells face an acute challenge of

robustly maintaining their state in the presence of intra-

cellular and extracellular fluctuations, while responding

precisely to developmental cues from the niche. The

existence of a common stem cell phenotype within a spa-

tial compartment of a tissue, despite the dynamic nature

of the niche, seems contradictory. Our mean field view

of stem cell–niche interactions provides an explanation

for such a seemingly contradictory observation. By

focusing on the net effect of the niche created by the

mean field after disregarding internal and external fluc-

tuations, it points to the existence of constantly acti-

vated/inhibited signaling pathways that maintains the

stem cell state in response to the niche. In fact, identifi-

cation of conserved signaling pathways that are con-

stantly activated/inhibited in all cells in a stem cell

population exhibiting the same phenotype will confirm

our hypothesis. Furthermore, the development of sin-

gle-cell data-based computational methods relying on a

mean field view of the niche can aid in identification of

niche determinants by simplifying the complexity of

stem cell–niche interactions. Importantly, the knowl-

edge of niche determinants will aid developing regenera-

tive medicine strategies to enhance/modulate stem cell

activity for the treatment of injury, disease, or age-

related dysfunctions. In addition, our approach is suit-

able for identifying factors that can facilitate long-term

maintenance of cells under culture conditions. Thus,

combining recent developments in single-cell technolo-

gies and stem cell research with the systems biology

approaches discussed here should enable us to more

accurately identify niche determinants, which in turn

could lead to the implementation of more feasible strate-

gies in regenerative medicine and tissue engineering.
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Supporting information

Additional Supporting Information may be found

online in the supporting information tab for this

article:
Fig. S1. Inferred Steiner trees for quiescent and active

NSCs. It can be seen that the dummy node in the

center is the root node that connects with all receptors/

ligands. The inverted triangles depict receptor mole-

cules, circles depict signaling intermediates, and squares

depict transcription factors.

Fig. S2. The figure shows the subnetworks of signaling

pathways identified for quiescent NSCs. The inverted

triangles depict receptor molecules, circles depict sig-

naling intermediates, and squares depict transcription

factors. The experimentally validated signaling path-

ways are highlighted.

Fig. S3. The figure shows the subnetworks of signaling

pathways identified for active NSCs. The inverted tri-

angles depict receptor molecules, circles depict signal-

ing intermediates, and squares depict transcription

factors. The experimentally validated signaling path-

ways are highlighted.
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