
antioxidants

Review

A Case for Hydrogen Sulfide Metabolism as an Oxygen
Sensing Mechanism

Kenneth R. Olson

����������
�������

Citation: Olson, K.R. A Case for

Hydrogen Sulfide Metabolism as an

Oxygen Sensing Mechanism.

Antioxidants 2021, 10, 1650. https://

doi.org/10.3390/antiox10111650

Academic Editor: Stanley Omaye

Received: 25 August 2021

Accepted: 13 October 2021

Published: 21 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Physiology, Indiana University School of Medicine—South Bend, South Bend, IN 46617, USA;
kolson@nd.edu

Abstract: The ability to detect oxygen availability is a ubiquitous attribute of aerobic organisms.
However, the mechanism(s) that transduce oxygen concentration or availability into appropriate
physiological responses is less clear and often controversial. This review will make the case for
oxygen-dependent metabolism of hydrogen sulfide (H2S) and polysulfides, collectively referred to as
reactive sulfur species (RSS) as a physiologically relevant O2 sensing mechanism. This hypothesis
is based on observations that H2S and RSS metabolism is inversely correlated with O2 tension,
exogenous H2S elicits physiological responses identical to those produced by hypoxia, factors that
affect H2S production or catabolism also affect tissue responses to hypoxia, and that RSS efficiently
regulate downstream effectors of the hypoxic response in a manner consistent with a decrease in O2.
H2S-mediated O2 sensing is then compared to the more generally accepted reactive oxygen species
(ROS) mediated O2 sensing mechanism and a number of reasons are offered to resolve some of the
confusion between the two.

Keywords: hypoxia; hypoxic vasoconstriction; hypoxic vasodilation; chemoreceptor; carotid body;
chromaffin cell; evolution; mitochondria

1. Introduction: The Need for Oxygen Sensing

A key to survival for aerobic organisms is the ability to detect oxygen availability
and make the necessary behavioral, physiological and/or metabolic adjustments to either
ensure adequate oxygen delivery or to cope with what is available. These ‘oxygen sensing’
systems operate at various levels, external, internal, tissue-specific, and intracellular. While
some form of oxygen sensing system is present in essentially all aerobic (and some anaer-
obic) organisms, in the interest of space this review is limited to those sensing systems
employed by vertebrates to ensure adequate delivery of O2 to tissues.

External chemoreceptors monitor ambient oxygen and usually initiate behavioral and
physiological responses. Ambient oxygen supply is adequate for most terrestrial organisms
but for some it may be limited by high altitude or in poorly ventilated environments such
as nests or burrows. Aquatic organisms are more susceptible to ambient hypoxia because
the content of oxygen is only 1/30 of that in air, oxygen diffusivity is 200,000 times slower,
and the medium is 60 times more viscous. While the percent of oxygen in air is a constant
21%, aquatic organisms can be subjected to wide swings in oxygen seasonally, daily and
spatially due to variations in temperature (which affects solubility), photosynthesis (ponds
can vary from oxygen saturation to near anoxia in 24 h) and convection (tidal pools, wind
mixing, etc. [1]). Additional details on hypoxia in aquatic organisms can be found in Farrell
and Brauner [2].

2. O2 Sensing Systems

Oxygen sensing systems that monitor ambient oxygen would appear to be the first
line of defense against hypoxia, but these are relatively rare. The external surfaces of fish
gills contain chemoreceptor neuroepithelial cells (NEC; [3,4]) that are anatomically and
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functionally similar to the neuroepithelial bodies (NEB) near airway bifurcations in lungs
of newborn mammals. While gill NEC may continuously monitor O2 throughout the life
of the fish, NEB appear to be more involved during and shortly after birth in the transition
from the relatively hypoxic uterine environment [5]. Surprisingly, there are relatively few
other instances of external O2 sensors in terrestrial vertebrates as these animals employ
internal O2 sensors that are better suited to regulate O2 stores in the blood and adjust O2
delivery commensurate with the needs of the tissues.

Blood-monitoring O2-sensing cells are found in all vertebrates. Mammalian neuroep-
ithelial cells and type I glomus cells in the carotid and aortic bodies are essentially identical
to NEC cells that line blood vessels in fish gills [4]. This undoubtedly stems from their
embryonic origins as the mammalian carotid body and the first gill arch arise from the third
embryonic arch and the fourth embryonic aortic arch forms second gill arch and aortic bod-
ies. Mammalian adrenal medullary cells are also homologous to chromaffin cells that line
systemic veins in fish. Both cells secrete catecholamines in response to hypoxemia [4,6,7].

Arguably, the most extensively and intensively investigated O2-sensing tissues are
the blood vessels. It has been generally accepted that hypoxia dilates systemic vessels
to match perfusion with metabolism and it constricts pulmonary vessels to match lung
perfusion and ventilation. However, this paradigm is not consistent among all vertebrates
or even within mammals [8–12]. It may also vary along the length of a single vessel as in
the case of the chick ductus arteriosus [13], or with stage of development [14,15], or even
over minutes [16]. It was these inconsistencies that led my group to develop the novel
hypothesis that the O2-dependent metabolism of hydrogen sulfide (H2S) was an effective
and efficient mechanism to both detect O2 availability and to initiate the appropriate
downstream effector responses.

3. Definition of an Oxygen Sensor

Oxygen is a requirement of all aerobic cells. How cells respond to an oxygen defi-
ciency varies with the cells themselves and with the complexity of their organization into
multicellular entities. Cells may respond to a decrease in oxygen availability by altering
their utilization of metabolic substrates or decrease their metabolism to conserve resources;
mechanisms that are usually more coupled to energy currency than to the actual detection
of oxygen per se, e.g., AMP kinase [17].

In the context of this review, an oxygen ‘sensor’ must operate within the bounds
of a classical proportional feedback control system in which the ‘sensor’ detects oxygen
availability, or tension, and then transduces this information into a signal that can be
transmitted by ‘mediators’ (or couplers; [18]) to the appropriate effectors. The strength of
the response is proportional to the strength of the stimulus (error signal) and reciprocal
mechanisms exist to restore the system as the error signal decreases. Oxygen sensing
systems have been described where the ‘sensor’ is an actual oxygen-binding receptor, e.g.,
prolyl hydroxylases [19–21], and the hypoxia-inducible factors (HIFs) serve as mediators.
Alternatively, the oxygen ‘sensor’ may be metabolically coupled to oxygen, but not directly
(at least not initially) react with it. This is the case for the reactive oxygen species (ROS)
theory of oxygen sensing as well as the H2S/reactive sulfur species, H2S/RSS theory of
oxygen sensing. In both of these mechanisms, hypoxia decreases electron flow down
the electron transport chain causing either a leak of electrons (ROS theory) or it prevents
normal H2S catabolism (H2S/RSS theory). These ‘sensors’ are unique in that they neither
possess an oxygen-binding receptor nor are they involved in general metabolism and they
may be more appropriately termed ‘oxygen-coupled sensing systems’.

4. Metabolism of H2S as an O2 Sensing Mechanism

In 2006 we observed that hypoxia and H2S produced identical mechanical responses in
systemic and respiratory vessels isolated from rats, cows and the most primitive vertebrates,
the hagfish and lamprey. We also observed that the hypoxic responses could be inhibited
or augmented by inhibitors of H2S biosynthesis or H2S donors, respectively [22]. Based on
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these observations we proposed that there was a close inverse metabolic coupling between
H2S constitutively generated through sulfur metabolism and its O2-dependent catabolism,
i.e., during hypoxia H2S oxidation can no longer keep pace with H2S production and
H2S levels rise. This inexorably couples H2S to O2 availability. Since then, there has been
considerable progress by our laboratory as well as others in developing this hypothesis and
in elucidating the many downstream effectors involved in promulgating this O2-sensing
mechanism. These are described in detail in the following sections.

4.1. H2S Production and O2-Dependent Catabolism

The canonical pathways for H2S production, mainly from cysteine, and its catabolism
are shown in Figure 1. Essentially all H2S production by these pathways is independent of
O2, whereas nearly all aspects of H2S catabolism are O2-dependent.
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Figure 1. Canonical pathways for H2S production and degradation; circled star indicates O2-sensitive reactions, circled
plus indicates reactions affected by hypoxia-induced increased reducing environment. Cytosolic enzymes, cystathionine
β-synthase (CBS) and cystathionine γ-lyase generate H2S from homocysteine (Hcy) or cysteine. In addition, cysteine
aminotransferase (CAT, also known as aspartate aminotransferase, AST, or glutamate transaminase, GOT) transfers sulfur
from cysteine to α-ketoglutarate to form 3-mercaptopyruvate (3-MP) and the sulfur is then transferred to 3-mercaptopyruvate
sulfur transferase (3-MST) to form a 3-MST persulfide (3-MST-SS). Both CAT and 3-MST are found in the cytosol and
mitochondrion. H2S can be liberated from 3-MST-SS by intracellular reductants, dihydrolipoic acid (DHLA), or reduced
thioredoxin (Trx). 3-mercaptopyruvate can also be produced from D-cysteine in the peroxisome by D-amino acid oxidase
(DAO) which is shuttled to the mitochondrion. During hypoxia CBS migrates from the cytosol to the mitochondrial matrix
and in the absence of Lon protease degradation this will generate H2S from abundant cysteine in the matrix. CBS activity is
also increased as the cell becomes more reduced. General reaction of H2S oxidation in the mitochondrion is shown in lower
left of figure, blue letters to right show specific reactions. H2S is initially oxidized by sulfide:quinone oxidoreductase (SQR)
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producing a SQR persulfide (SQR-S) and delivering two electrons to the electron transport chain at complex III (III) via
coenzyme Q10 (Q). The persulfide sulfur is then transferred to a mobile sulfide carrier, either glutathione (GSH) or sulfite
(SO3

2−) and to form glutathione persulfide (GSSH) or thiosulfate (S2O3
2−), respectively. The GSSH persulfide is oxidized to

sulfite (SO3
2−) by the mitochondrial sulfur dioxygenase (ETHE1) and the sulfur may be further oxidized to sulfate (SO4

2−)
by sulfite oxidase (SO). Rhodanese (Rhd, thiosulfate sulfur transferase) reversibly transfers sulfur between thiosulfate and
GSSH. Under reducing conditions, H2S may be regenerated from thiosulfate by dihydrolipoic acid (DHLA) or reduced
thioredoxin (Trx). Reproduced with permission from [23], copyright 2017 Elsevier.

4.1.1. H2S Production from Cysteine and Methionine

Four enzymes, cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE aka CGL),
cysteine aminotransferase (CAT) and 3-mercaptopyruvate sulfurtransferase (3-MST), and
two substrates, L-cysteine (Cys) and L-homocysteine (Hcys), are generally assumed to be
the major contributors to cellular H2S production. In the transsulfuration pathway, CBS
catalyzes the β-replacement of homocysteine with serine which forms cystathionine and
commits sulfur metabolism to this pathway [24]. CSE then catalyzes the α-elimination
of cystathionine to form Cys, α-ketobutyrate and ammonia (NH3). Both CBS and CSE
can then generate H2S from Cys via β-elimination reactions. CBS and CSE are relatively
promiscuous and H2S can also be produced through a variety of reactions involving various
combinations of Cys and Hcys [25–28]. CAT and 3-MST operate in tandem. CAT transfers
the amine group from Cys to α-ketoglutarate producing 3-mercaptopyruvate (3-MP) and
the sulfur is then transferred to 3-MST forming a persulfide on the enzyme. This sulfur
may be then transferred to Cys or glutathione (GSH) forming Cys or GSH persulfides
(Cys-S or GSH-S), or the 3-MST-persulfide may be reduced by endogenous reductants such
as thioredoxin (Trx) or dihydrolipoic acid (DHLA), thereby liberating H2S [29–31]. H2S
can also be derived from D-cysteine in peroxisomes. Here, D-amino acid oxidase (DAO)
oxidizes D-cysteine to 3-MP which is then delivered to the mitochondrion by vesicular
transport for further metabolism by 3-MST [32]. However, D-cysteine metabolism appears
to be limited to the brain and kidney where it protects them from oxidative stress or
re-perfusion injury, respectively [32,33].

CBS is predominantly identified in the brain and CSE in the cardiovascular system,
although they may be found in other tissues including plasma [10,34,35]. CBS and CSE
are generally considered to be cytosolic enzymes, however, CBS may be translocated to
the mitochondrion by hypoxia [36] and CSE by stress [37]. CBS also contains two redox-
sensitive vicinal Cys (Cys272 and Cys275) that oscillate between the disulfide and free thiols;
reduction of the disulfide increases CBS activity 2-3-fold and increases H2S production
in HEK293 cells [38]. The redox potential of these Cys (314 mV) are similar to that of
cytosolic glutathione (300-320 mV; [38]). This would appear to provide another mechanism
to increase H2S generation as the intracellular environment becomes more reduced during
hypoxia. CBS contains a heme group that when exposed to carbon monoxide (CO) results
in inhibition of the enzyme, whereas both nitric oxide (NO) and O2 do not appear to be
effective at physiological concentrations [39]. Calcium inhibits CSE as well as cytosolic and
mitochondrial CAT and this is independent of calmodulin [30,40].

CAT and 3-MST are found in both the cytosol and mitochondria with 3-MST being
especially abundant in the mitochondrial matrix [30,41]. The mitochondrial disposition of
these enzymes comports well with the presumed mitochondrial locus of an oxygen sensor
and the observation that the Cys concentration in the mitochondrion is three-fold greater
than that in the cytosol [37] provides additional support for an effective H2S-mediated
sensing system. In addition, a recent study found that approximately 20% of complex I
of the yeast, Yarrowia lipolytica, contained an accessory sulfur transferase unit, ST1, whose
amino acid sequence was consistent with 3-MST [42]. This subunit also generated H2S from
3-MST and the authors suggest its close association with sulfur:quinone oxidoreductase
(SQR), the enzyme catalyzing the initial step in H2S catabolism (see below), allows for
rapid H2S detoxification. This would also provide tight coupling between H2S and O2
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in an oxygen sensing system. However, to the author’s knowledge ST1 has not yet been
identified in vertebrates.

4.1.2. H2S Production from Thiosulfate and Polysulfides

There are a number of mechanisms capable of generating H2S independent of Cys,
Hcy or methionine, where H2S is derived from thiosulfate (Figure 1) and polysulfides
(Figure 2; reviewed in [23]). Thiosulfate produced as an intermediate in H2S oxidation may
also release H2S when exposed to reductants such as dihydrolipoic acid (DHLA) and this
may be catalyzed by thioredoxin (Trx), rhodanese (Rhd), thiosulfate sulfur transferase (TST)
or thiosulfate reductase [30,41,43–47]. H2S release from thiosulfate has been suggested to
serve as an additional source of H2S during hypoxia [45].
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Figure 2. Additional redox-dependent mechanisms for H2S production from polysulfides (A,B) and catabolism by antioxi-
dant enzymes (C–F). (A) Cystine (CysSSCys) is transported into cells by the cystine/glutamate antiporter, system, Xc- or
sodium-coupled neutral amino acid transporter (AT2). CSE and CBS then catalyze sulfur transfer to produce multiple
polysulfides (RSSnSR) and H2S can be regenerated from these by intracellular reductants (redu) that are expected to increase
under hypoxic conditions; the Xc- antiporter is also up-regulated by preconditioning with hypoxia. (B) Mitochondrial
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and cytoplasmic cysteinyl-tRNA synthetase (CARS2 and CARS1) catalyze sulfrur transfer from one cysteine to another
producing cysteine per- and polysulfides (CysSSn; n = 1–3). CARS1 also catalyzes attachment of these persulfides to
tRNA for subsequent incorporation into nascent proteins. H2S can be regenerated from any of these by reductants (redu).
(C,D) Superoxide dismutase (SOD) dismutes superoxide (O2

•−) to peroxide (H2O2) and water and catalase (Cat) then
dismutes peroxide to oxygen and water. Both enzymes oxidize H2S to persulfide (H2S2) and thiosulfate (H2S2O3) in
the presence of O2. In the absence of O2 Cat catalyzes the release of H2S from thioredoxin (Trx) or sulfite (SO3

2–) while
consuming NADPH. (E) The switch of Cat from an oxidase to a reductase is O2-dependent with a P50 similar to the
oxyhemoglobin dissociation curve. (F) Mitochondrial origin of H2S in HEK293 cells. H2S was monitored with the H2S-
sensitive fluorophore, MeRho-Az and fluorescence co-localized with mitochondria (Reproduced with permission from [48],
copyright 2019 John Wiley & Sons Ltd).

H2S may also be released from persulfides (RSSH; where R may be H, Cys, GSH or
a protein thiol) or polysulfides (RSSnR; n typically equals 2–5) by DHLA, Trx, GSH and
Cys [30,49,50], however, neither NADPH, NADH, GSH, cysteine nor CoA release H2S from
a 3-MST persulfide [30]. Obviously, these per- and polysulfides could have initially been
produced by oxidation of H2S, which would serve as a storage or recycling mechanism,
but they could also be derived from other sources such as cystine (CysSSCys) or cysteine
persulfide (CysSSH; where SH indicates the additional sulfur moiety).

Plasma is relatively more oxidized than cells [51] and most Cys circulates in the
bloodstream as oxidized CSSC [52,53]. CSSC is taken up by cells by the cystine/glutamate
antiporter, system Xc- [54] or by a sodium-coupled neutral amino acid transporter (AT2; [55];
Figure 2A). While conventionally thought of as a source of intracellular Cys, both CSE
and CBS catalyze CSSC to multiple polysulfides such as Cys-SnH and Cys-Sn-Cys (where
n = 1–4); these sulfane sulfur atoms may also be transferred to GSH forming GSH persul-
fides, e.g., GS-SnG ((n = 1–3); [55]). These, in turn can be reduced by glutathione reductase
(GSR) to generate GS-SnH (n-1-3) in µM concentrations [55]. H2S can be regenerated from
any one of these compounds, especially under reducing conditions. Perhaps as no coin-
cidence, the Xc- antiporter is up-regulated in murine stem cells by preconditioning with
hypoxia [56], suggestive of an O2-sensing process.

Akaike et al. [57], have shown that sulfur can be directly transferred from one Cys to
another in a reaction catalyzed by cysteinyl-tRNA synthetase, an enzyme found mainly
in the mitochondrion (CARS2) or to a lesser extent in the cytoplasm (CARS1; Figure 2B).
This can produce Cys-SnH (n = 1–3). Cys-SnH can be exported from the mitochondria to
the cytosol where CARS1 catalyzes its attachment to tRNA resulting in polysulfidation
of nascent proteins. This can directly incorporate a redox-sensitive signaling element in
a number of regulatory proteins. H2S can be released from either the Cys persulfides
or persulfidated proteins by cellular reductant processes, as described above. Akaike
et al. [57] also propose that electrons leaking from the electron transport chain (ETC) reduce
mitochondrial cysteine persulfides thereby liberating H2S. This may provide an additional
O2-sensitive process when O2 is low and electrons ‘back up’ in the ETC, although this has
not been confirmed.

4.2. H2S Metabolism (Inactivation)
4.2.1. Conventional Pathways

H2S freely diffuses through cell membranes [58,59], and although diffusion out of
cells could theoretically contribute to H2S inactivation, mitochondrial oxidation is far more
efficient, it can be regulated, and it is O2-dependent [60]. There is a general consensus that
H2S is oxidized in the mitochondrion [61]. The initial step in H2S oxidation is catalyzed
by the flavoprotein, sulfide:quinone oxidoreductase (SQR), whose crystal structure and
catalytic activity in humans has recently been identified [62].

SQR is a monomeric integral protein in the internal mitochondrial membrane, facing
the matrix, and conveniently situated between complexes II and III of the ETC [62,63].
SQR contains two redox-active cysteines (Cys201 and Cys379) that are normally present as a
disulfide. When H2S binds to SQR it is oxidized to sulfane (S0) forming a SQR-SH persulfide
(SQR-S-SH). Two electrons are transferred via the flavin to ubiquinone (coenzyme Q10;
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CoQ10) and subsequently delivered to complex III and shuttled down the ETC. The oxygen-
dependency of this process is evident; it inexorably links H2S catabolism to O2 availability
and it can serve as a rapid O2 sensing system whose response is proportional to the degree
of hypoxia.

The sulfane sulfur of SQR persulfide is then transferred to a mobile carrier, either
GSH [64] forming GSH-persulfide (GSSH), or sulfite forming thiosulfate [43], the com-
paratively higher GSH concentrations favoring the former. GSSH is then oxidized by the
persulfide dioxygenase, ETHE1, to sulfite (another O2-dependent reaction) and further
oxidized to sulfate by sulfite oxidase (SO) or another sulfane sulfur from GSSH is trans-
ferred to sulfite by rhodanese (thiosulfate sulfur transferase) to form thiosulfate. With
sulfite as the mobile carrier, rhodanese transfers the sulfane sulfur to GSH and many of
the subsequent reactions are carried out as above. Electrons produced by the oxidation-
reduction reaction of water and sulfite, catalyzed by SO, are also delivered to the ETC via
cytochrome C, providing yet another pathway that is potentially affected by, and sensitive
to, O2 availability. Reportedly, human SQR can also form H2S2 from H2S in the absence of
a sulfane sulfur carrier [43].

SQR may also catalyze H2S oxidation by reverse electron transfer (RET). RET is
normally thought to occur when the pool of coenzyme Q (CoQ) becomes over-reduced
with electrons from respiratory complex II [65]. These electrons are then transferred
retrograde to complex I where some then leak from complex I and reduce oxygen to super-
oxide which is then dismuted to peroxide thereby signaling elevated ROS and oxidative
stress. Electrons from SQR-catalyzed H2S oxidation may also be delivered to complex I by
RET [66,67]. This has also been proposed to induce superoxide-dependent mitochondrial
uncoupling and downstream activation of adenosine monophosphate–activated protein
kinase (AMPK; [66]). It also has the potential to increase polysulfide production from H2S.

4.2.2. Unconventional Pathways

There are a number of other mechanisms for H2S metabolism in addition to the
‘conventional’ pathways described above that could impart O2- or redox-sensing attributes.
Both the cytoplasmic (Cu-Zn) and mitochondrial (Mn) superoxide dismutases (SOD1 and
SOD2, respectively) as well as catalase (Cat) oxidize H2S to persulfide (H2S2) and thiosulfate
(H2S2O3) in reactions that require O2 (Figure 2C–E; [68,69]. In addition, in the absence
of O2, Cat catalyzes the release of H2S from thioredoxin (Trx) or sulfite (SO3

2−) while
consuming NADPH. This switch of Cat from an oxidase to a reductase is O2-dependent
with a P50 similar to the oxyhemoglobin dissociation curve. Catalase is notably abundant
in red blood cells and the O2-sensitivity of H2S production is suggestive of an O2-sensing
process designed to couple H2S-mediated vasoactivity to O2 availability.

We have also shown that numerous polyphenols commonly found in a variety of
nutraceutical ‘antioxidants’ (e.g., green tea, berries, grapes and spices) readily oxidize H2S
to polysulfides and thiosulfate. This activity is the result of O2-dependent catalytic redox
cycling of the quinone in the B ring of the polyphenol [70–72]. Oxidized (ferric) hemoglobin
and myoglobin will also oxidize H2S to Fe-bound polysulfides and thiosulfate [73,74].

5. Inverse and PO2-Dependent Relationship between O2 and H2S

Oxygen and H2S do not typically coexist, either in tissues or in the environment.
Early studies showed that in a variety of organisms from the mussel, Geukensia demissa,
to rats that H2S is either rapidly consumed in the presence of O2 or increases in its ab-
sence [75–77]. The use of rapid responding H2S-selective amperometric electrodes or
H2S-sensitive fluorophores that provide a long historical perspective of cellular H2S pro-
duction and metabolism has extended these observations to include a variety of tissues
and cells from one or more species in all vertebrate classes. It is evident from these studies
that the effects of O2 on cellular H2S can occur within seconds and they may persist for
days (Figure 3; [10,48,78–84]).
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In order for an oxygen-sensing mechanism to be effective it must also be responsive
to changes in oxygen tension (PO2) experienced by tissues under physiological conditions.
Indeed, this appears to be the case as PO2-dependent inactivation of H2S appears to corre-
late better with hypoxic vasoconstriction and activation of carotid body chemoreceptors
than does the more commonly accepted O2-sensing mechanisms (Figure 4). Using ampero-
metric H2S sensors we measured the rate of H2S oxidation by bovine lung homogenate,
bovine pulmonary arterial smooth muscle cells, or purified bovine heart mitochondria
as a function of Po2 (Figure 4A; [10]). H2S oxidation in tissue homogenates begins to fail
when Po2 falls below 30 mmHg and the Po2 at which oxidation is halved (P50) occurs in
tissues around 4–7 mmHg and in isolated mitochondria below 1 mmHg. These P50s are
physiologically relevant as they are encountered during hypoxia [85] and they are similar
to the P50s for hypoxic pulmonary vasoconstriction. It is also noteworthy that the Po2 for
H2S oxidation by isolated mitochondria is strongly left-shifted commensurate with their
in-situ environment. The carotid body has a high metabolic rate and a commensurate
oxygen sensitivity [86]. O2-dependent H2S production [87], a corollary of O2-dependent
H2S metabolism, also correlates with O2 sensitivity (Figure 4B). Collectively, it is evident
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from these studies that the reciprocal relationship between O2 and H2S provides a con-
venient yin and yang mechanism for oxygen sensing with the caveats that it functions at
physiological O2 tensions, it responds within seconds, and its effects can be sustained for
days.

Antioxidants 2021, 10, x FOR PEER REVIEW 9 of 30 
 

these studies that the reciprocal relationship between O2 and H2S provides a convenient 
yin and yang mechanism for oxygen sensing with the caveats that it functions at physio-
logical O2 tensions, it responds within seconds, and its effects can be sustained for days. 

 
Figure 4. (A) Oxygen sensitivity of putative O2-sensing systems as a function of approximate range of oxygen tension (PO2) 
in blood, tissues, and intracellular compartments (arrows). These are compared to O2 sensitivity of H2S oxidation (inacti-
vation) by homogenized bovine lung (Lung), pulmonary arterial smooth muscle cells (PASMC) and bovine heart mito-
chondria (Mito) indicated by dashed lines. Solid colored lines show physiological responses (hypoxic vasoconstriction) of 
bovine pulmonary arteries (BPA), lamprey dorsal aorta (LDA), and dorsal aortas from New Zealand and Pacific hagfish 
(NZDA and PDA, respectively) as a function of PO2. The H2S oxidation and O2 sensitivity of tissue H2S consumption is 
similar to O2 sensitivity in vessels from oxygen sensitive vertebrates (bovine, lamprey and New Zealand hagfish), whereas 
O2 sensitivity in Pacific hagfish aortas is considerably lower commensurate with their tolerance to hypoxia. The PO2 values 
at which H2S metabolism is impaired are at the low end of cytosolic and mitochondrial PO2s and would be expected during 
hypoxia. It is evident that the efficacy of H2S oxidation mechanisms correlates well with physiological responses. (B) Com-
parison of the O2 sensitivity of afferent sinus nerve activity from the carotid body (SNA) to H2S production (H2S; or its 
calculated inverse, 100%-H2S) and components of intracellular signaling in the carotid body (solid lines). The PO2 of the 
half-maximal response (P50) for activation of the carotid is essentially identical to the P50 for H2S production which is more 
evident when the latter is expressed as the inverse (100%-H2S). The P50 for intracellular excitation events such as, mito-
chondrial NADH, intracellular calcium ([Ca2+]I), mitochondrial transmembrane potential (Ψ) or activation of sympathetic 
neurons (Neuron; dashed lines) are well below the P50s of the intact carotid body or H2S production. (A) Adapted from 
[10,88], with permission. (B) Adapted from [86], with permission and drawn from data in [87]. Reproduced with permis-
sion from Kenneth R. Olson et al. [10]. Reproduced with permission from Kenneth R. Olson et al. [88]. 

6. Multiple Effectors of H2S Metabolism and Signaling Provide a Broad Timeline for 
O2 Sensing 

H2S and its numerous metabolites arguably comprise one of the most extensive and 
complex biological signaling systems. This is due in part to the high reactivity of sulfur 
with itself, as well as oxygen and nitrogen, and in part due to the central and extensive 
role that receptive cysteines play in a myriad of regulatory proteins that are susceptible to 
these S/N/O moieties. The chemistry and biology of these signaling process have been the 
subject of numerous and comprehensive reviews [89–102] and are only briefly summa-
rized below. 

  

Figure 4. (A) Oxygen sensitivity of putative O2-sensing systems as a function of approximate range of oxygen tension
(PO2) in blood, tissues, and intracellular compartments (arrows). These are compared to O2 sensitivity of H2S oxidation
(inactivation) by homogenized bovine lung (Lung), pulmonary arterial smooth muscle cells (PASMC) and bovine heart
mitochondria (Mito) indicated by dashed lines. Solid colored lines show physiological responses (hypoxic vasoconstriction)
of bovine pulmonary arteries (BPA), lamprey dorsal aorta (LDA), and dorsal aortas from New Zealand and Pacific hagfish
(NZDA and PDA, respectively) as a function of PO2. The H2S oxidation and O2 sensitivity of tissue H2S consumption
is similar to O2 sensitivity in vessels from oxygen sensitive vertebrates (bovine, lamprey and New Zealand hagfish),
whereas O2 sensitivity in Pacific hagfish aortas is considerably lower commensurate with their tolerance to hypoxia. The
PO2 values at which H2S metabolism is impaired are at the low end of cytosolic and mitochondrial PO2s and would be
expected during hypoxia. It is evident that the efficacy of H2S oxidation mechanisms correlates well with physiological
responses. (B) Comparison of the O2 sensitivity of afferent sinus nerve activity from the carotid body (SNA) to H2S
production (H2S; or its calculated inverse, 100%-H2S) and components of intracellular signaling in the carotid body (solid
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R. Olson et al. [88].

6. Multiple Effectors of H2S Metabolism and Signaling Provide a Broad Timeline for
O2 Sensing

H2S and its numerous metabolites arguably comprise one of the most extensive and
complex biological signaling systems. This is due in part to the high reactivity of sulfur
with itself, as well as oxygen and nitrogen, and in part due to the central and extensive
role that receptive cysteines play in a myriad of regulatory proteins that are susceptible to
these S/N/O moieties. The chemistry and biology of these signaling process have been the
subject of numerous and comprehensive reviews [89–102] and are only briefly summarized
below.
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6.1. H2S Signaling via Persulfidation

Cysteine sulfur is one of the most reactive sulfur-containing small molecules nucle-
ophiles in the cell and as the most highly conserved amino acid, its function in protein
(and peptide) structure, catalytic activity and signaling, i.e., the cysteine proteome, is
well known [95]. Perhaps the broadest and most extensive mechanism of H2S signaling
is through persulfidation (also known as S-sulfuration and sulfhydration) of thiols on
regulatory protein cysteines. The sulfurs in both H2S and protein thiols (Prot-SH) are in
their most reduced state and will not react unless one or the other is oxidized. This can
occur through a direct reaction between H2S and protein cysteine sulfenic acids or protein
disulfides, by oxidation of H2S to a polysulfide (the oxidized sulfur is referred to as sulfane)
that then reacts with a reduced protein cysteine, or by transfer of a sulfane sulfur from a low
molecular weight persulfide to the protein thiol (Figure 5A–D). Typically, these reactions
inhibit protein function. There are numerous examples of protein persulfidation and it is
estimated that at least 30% of cellular proteins are endogenously persulfidated, leaving the
opportunity for activation of these proteins by removing the sulfane sulfur with cellular
reductants [103]. As more than one sulfur may be attached to these persulfides some
protein/peptides may also serve as sulfur reservoirs from which sulfane can be removed
and transferred to other proteins by mobile carriers such as cysteine and glutathione. The
extent of these processes is an active area of investigation. H2O2 signaling is essentially
similar to persulfide signaling with the caveat that H2O is produced when the protein
sulfenyl is reduced, whereas the sulfur can be transferred from the protein to another thiol
(usually Cys or GSH) and it can be stored or recirculated or reduced to H2S which can also
be recycled [104].
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As oxygen falls, cellular pH decreases and H2S and NO increase leading to accumulation of a variety of bioactive products.
(F) Effector pathways for H2S (more appropriately per- and polysulfides) signaling in the cardiovascular system. Abbre-
viations: ATP5A1, ATP synthase subunit α; Cys, cysteine; GSH, glutathione; IRF-1, interferon regulatory factor-1; Keap1,
kelch-like ECH-associating protein 1; MEK1, mitogen-activated extracellular signal-regulated kinase 1; NF-κ, nuclear factor
κB; Nrf2, nuclear factor E2-related factor 2; PTP1B, protein tyrosine phosphatase 1B; SNO, S-nitrosocysteine; SOH, sulfenyl
cysteine; SP-1, specific protein-1; TFAM, mitochondrial transcription factor A; VEGFR, VEGF receptor. (E) from [105],
with permission. (F) From [98], with permission. Reproduced with permission from [98], copyright 2017 The British
Pharmacological Society.

6.2. H2S Signaling via Reactions with Nitrogenous Compounds

H2S reacts with nitric oxide (NO) to produce a variety of bioactive compounds, some
with and some without sulfur including polysulfides, S-nitrosothiols (RSNO, where R = H,
Cys, GSH), nitrosopersulfide (SSNO−), and nitroxyl (HNO; Figure 5E). Other compounds
are likely produced as well, the identity of which is still being actively investigated and
debated. NO can also be released from nitrosothiols by H2S thereby initiating the NO
signaling cascade [106]. Peroxynitrite reaction with H2S can form thionitrite (HSNO2) and
under anaerobic conditions produce HSO and NO or under aerobic conditions, sulfinyl
nitrite (HS(O)NO; [107]). H2S can react with sulfinyl nitrite to form thiosulfate and nitrite
(NO2

−) and the latter may then be reduced by H2S, catalyzed by heme iron, and produce
NO and nitroxyl (HNO). H2S may also directly activate endothelial nitric oxide synthase
(eNOS). The production and/or activity of many of these compounds becomes increasingly
apparent in hypoxia or as pH falls (Figure 5E), the latter being a common feature of cellular
hypoxia [105]. Furthermore, H2S and the polysulfide, garlic derivative diallyl trisulfide
(DATS) stimulates xanthine oxidoreductase conversion to nitrite reductase with subsequent
formation of NO [108]. H2S also potentiates the response of soluble guanylyl cyclases to
NO and it inhibits phosphodiesterase activity [109].

6.3. H2S Signaling via Carbon Monoxide

Carbon monoxide (CO) has been shown to inhibit CSE via protein kinase G (PKG)-
dependent phosphorylation of Ser377 on CSE, thereby inhibiting the production of H2S [110].
Hypoxic inhibition of hemeoxygenase-2 (HO-2) can relieve this inhibition and increase
H2S. In this mechanism H2S is proposed to serve as a downstream mediator of the hy-
poxic response in the carotid body glomus cells, adrenal medulla, and cerebral cortical
vessels [111–114].

6.4. Timescale of H2S/O2 Signaling

As described above, the timescale for H2S-mediated stimulus-effector coupling ranges
from seconds to days. These responses will depend on factors that are directly involved in
affecting cellular H2S metabolism as well as those that depend on activating downstream
effectors of the hypoxic response. The following sections describe metabolic regulation of
H2S signaling as well as a few of the downstream effectors with various response rates.
In the context of this discussion ‘responders’ refers to those factors that are influenced by
hypoxia, ‘regulators’ are those factors that regulate the response and ‘effectors’ are the
downstream factors that bring about the desired homeostatic effect.

6.4.1. Rapid Responders

The most rapid H2S signaling is expected to be achieved through factors that directly
affect H2S metabolism and downstream effectors that mediate ion channels.

H2S Metabolism

(1) Arguably, the fastest of these affect electron transport down the ETC, i.e., de-
creased availability of the terminal electron acceptor, O2 which slows the removal of the
constitutively produced H2S; our hypothesis of H2S-mediated O2 sensing [22].
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(2) ETHE1, the mitochondrial dioxygenase, ETHE1, catalyzes the oxidization of the
mobile persulfide from SQR to form sulfite in a reaction that uses O2 and H2O. Inhibi-
tion of this pathway prevents H2S binding to SQR and allows H2S and thiosulfate to
accumulate [115–117].

(3) The other O2-dependent reaction, catalyzed by sulfite oxidase (SO), transfers an
atom of oxygen from water to sulfite, forming sulfate and reducing SO [118]. The two
electrons from SO are delivered to the ETC at cytochrome c thereby inversely coupling
sulfite concentration to O2 availability. Elevated urinary thiosulfate is common in humans
with SO deficiencies [119].

(4) H2S can also be ‘regenerated’ from thiosulfate by endogenous reductants in re-
actions catalyzed by 3-MST or thiosulfate reductase [30,46]. This has been demonstrated
in a variety of vertebrate tissues [45]. H2S would be expected to increase during hypoxia
when thiosulfate accumulates in the mitochondria and the mitochondrial matrix becomes
reduced [120]. Thiosulfate also produces KATP channel-mediated vasodilation which is
consistent with the effector of H2S vasodilation as discussed below.

Rapid Responding Effectors

The variety of effectors of H2S signaling is only beginning to be unraveled. Arguably,
the best known rapid responding systems are numerous ion channels found in the car-
diovascular system and elsewhere. As with most instances of H2S signaling, most of the
effects are produced by polysulfides. Zhao et al. [121] were the first to demonstrate that
H2S opened ATP-sensitive potassium (KATP) channels resulting in vasodilation. Subse-
quent studies have shown that H2S also dilates by opening voltage gated Kv7 potassium
channels [122]. We initially reported that H2S has concentration-dependent multiphasic
effects on a variety of blood vessels that are virtually identical to the effects of hypoxia [22].
Furthermore, the degree of hypoxia can further affect H2S responsiveness [123]. This
effect appears to be explained in part by different effectors, at low concentrations H2S
constricts systemic vessels by activating Na+-K+-2Cl− cotransport and opening L-type Ca2+

channels, whereas at higher concentrations vasodilation is mediated by K+ channels [124].
H2S has also been shown to affect a variety of other channels (Figure 5F) including large
conductance calcium channels (BKCa) and smooth muscle Ca2+ sparks [125,126]. Other
effectors include phosphodiesterase inhibition which augments NO responses [127] and
decreasing intracellular pH by activation of the Cl−/HCO3

− exchanger [128]. Many of
these systems are found in vascular smooth muscle and/or endothelial cells and can result
in complex vasoactive effects.

Interactions between H2S and NO, described above provide additional examples of
rapid activation responses such as activation of TRPA1 channels [129]. These, and other
actions of H2S in the cardiovascular system have been extensively reviewed [130–135].

6.4.2. Medium and Long-Term Responders

Medium to long-term responses include enzymes involved in H2S metabolism, ef-
fectors that require subsequent catalytic activity. Many also exert action via genomic
effectors.

H2S Metabolism

CBS is transported from the cytosol into the mitochondrial matrix by mitochondrial
heat shock protein (mtHsp 70). Under normoxic conditions the prosthetic heme group in
CBS is oxygenated which targets it for degradation by Lon protease [36]. Hypoxia prevents
this and CBS concentration can double within 10 min and increase sixfold in one hour.
CBS is also restored to control levels within 5 min of normoxia. Mitochondrial cysteine
concentration is three times that of the cytosol [37]. This CBS-generated H2S prevents Ca2+-
mediated cytochrome C release from mitochondria and prevents mitochondrial swelling
while decreasing ROS production. Teng et al. [36] proposed this as a protective effect of
H2S in myocardial and hepatic ischemia/reperfusion injury.
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CSE translocation from the cytosol into the mitochondria is also stimulated by hy-
poxia in vascular smooth muscle cells. This has been proposed to provide protection
from hypoxia by increasing ATP generation from H2S [37]. However, this hypothesis
is problematic as hypoxia will also decrease electron flux from H2S down the ETC, as
described above, and vascular smooth muscle can obtain sufficient energy from anaero-
bic metabolism [136]. Nevertheless, this process could contribute to O2 sensing and the
resultant hypoxic vasodilation.

Cytosolic cysteine dioxygenase (CDO) uses O2 to irreversibly catalyze cysteine ox-
idation to cysteine sulfinate which prevents cysteine from entering the transsulfuration
pathway [137]. Although not directly examined, it is likely that hypoxia will also impair
cysteine oxidation and favor H2S production. The corollary, CDO deficiency, does, in
fact redirect cysteine through this pathway and increases thiosulfate and H2S produc-
tion [138,139], providing some anecdotal support to this hypothesis.

Delivery of substrate may also be affected by hypoxia. Hypoxic preconditioning
upregulates the cystine/glutamate antiporter, system Xc-, in murine neural stem cells, a
process that may take from 45 min to 4 h [56].

Slow-Responding Effectors

Some of the known reactive thiols on regulatory proteins in the cardiovascular system
and their downstream effectors are shown in Figure 5F. Many of them could potentially be
affected by per- and polysulfides that result from hypoxia, but this is yet to be thoroughly
examined.

7. Evidence for H2S Mediated O2 Sensing in Various Organ Systems and Tissues

Technical note: There are numerous reports of H2S concentration exceeding 1 µM in
body fluids and tissues. These are unphysiologically high [140]. The reader is urged to use
caution in interpreting results and conclusions from these studies.

7.1. Cardiovascular System
7.1.1. Blood Vessels

Numerous studies on all classes of vertebrates have shown that mono- and multiphasic
responses of blood vessels, perfused organs, and intact animals to exogenous H2S are
similar, if not identical, to those initiated by hypoxia [10,22,81,88,141–144]. Arguably, the
strongest argument for this association, and H2S as an oxygen-sensing mechanism, is
the comparison of the vasoactive responses of bovine and sea lion pulmonary arteries to
hypoxia and H2S. Both treatments constrict bovine vessels, but they dilate sea lion vessels,
whereas hypoxia increases H2S production by both tissues [10].

The effects of compounds that augment or inhibit H2S production on vascular re-
sponses to hypoxia have had mixed results. Sulfur donors, such as L-cysteine, D-cysteine,
3-mercaptopyruvate and glutathione are reported to augment hypoxic responses of rat aor-
tas [127,145,146], bovine pulmonary arteries [10,22] lamprey aortas [22] and the perfused
rat lung [81] and perfused trout gills [143]. Cysteine plus α-ketoglutarate (presumably via
the CAT/3-MST pathway) also increases hypoxic vasoconstriction in bovine pulmonary
arteries [10,81].

Although inhibitors of H2S biosynthesis have inherent problems [147,148], in a number
of studies they have been shown to inhibit hypoxic responses in a variety of vessels
including the lamprey and rat aorta, bovine pulmonary arteries, perfused trout gills
and perfused rat lungs [22,81,143,145,146]. The major pathway for H2S production by
systemic vessels appears to involve CSE, whereas CBS and CAT/3-MST are involved in
H2S production in bovine pulmonary vessels; CSE may also be involved in the rat lung [81].

There are a number of studies that suggest additional levels of hypoxic regulation
of H2S and homeostasis in the vasculature. Intermittent hypoxia associated with sleep
apnea decreases CSE and H2S in resistance arterioles resulting in increased vascular resis-
tance [149]. Administration of H2S to rats with hypoxic pulmonary hypertension (HPH)
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inhibits the expression of elastin in its extracellular matrix, which also has remarkable
regulatory function in forming HPH and remodeling hypoxic pulmonary vascular struc-
ture [150]. Furthermore, inhibition of various components of the electron transport chain
may also inhibit both hypoxia- and H2S-mediated response. The roles of H2S in regulation
of vascular tone have been recently reviewed [151,152].

7.1.2. Heart

Using a newly developed mitochondria-targeted mass spectrometry probe,
Arndt et al. [153] demonstrated that mitochondrial H2S was increased in murine hearts
after 30 min occlusion of the left anterior descending coronary artery followed by 45 min
of reperfusion. Similar results were observed in ischemic liver, supporting the hypothesis
that hypoxia increases cellular H2S in a variety of tissues and that this has a mitochondrial
origin.

CSE has long been presumed to be the primary enzymatic mechanism for H2S biosyn-
thesis in the heart [154]. However, recent work suggests important roles for 3-MST. 3-MST
is more abundant in cardiomyocytes and smooth muscle than CSE and, curiously, deletion
of 3-MST protects young mice from reperfusion injury but exacerbates in in older 3-MST-/-

mice and predisposes them to hypertension and cardiac hypertrophy [155]. Additional
information can be found in recent reviews [156–158].

7.1.3. Central Cardiovascular Regulation

A number of studies have shown that H2S modulates the brain cardiovascular centers,
and these effects are exacerbated in spontaneously hypertensive animals (e.g., [158–161]).
Several studies have shown an association between H2S and brain oxygenation.
Sabino et al., [162] reported that microinjection of aminooxyacetate (AOA) into the fourth
ventricle of Wis-tar normotensive rats (WNR) did not affect the cardiovascular responses to
hypoxia (30 min of 10% inspired O2), whereas it blunted the ventilatory and cardiovascular
responses in SHR rats. The same group also demonstrated that H2S modulates hypoxia-
induced hypothermia in rats, and this is also exacerbated in spontaneously hypertensive
(SHR) rats due to excess H2S production in the caudal nucleus of the solitary tract [163].
These findings support a link between H2S and O2.

7.1.4. Ischemia/Reperfusion Injury

There is an extensive body of literature on the protective effects of H2S and H2S
donors against ischemia and the efficacy of these compounds to pre- and post-condition
the myocardium as well as the central nervous system, liver, kidney and other organs and
tissues. While this implies that ischemic conditioning increases cellular H2S, which then
initiates appropriate effector responses, this is rarely examined and results are on occasion
contradictory (e.g., [164,165]). Nevertheless, these studies are indicative of the importance
of the O2/H2S axis in health and disease and are suggestive of the role of H2S in O2 sensing.
The connection between O2 and H2S is especially important in ischemia and reperfusion
injury in the central nervous system, and this is examined in Section 7. Pathophysiological
consequences of the H2S/O2 axis. Additional details can be found in a number of recent
reviews [166–177].

7.2. Respiratory System
7.2.1. General Effects on Respiration

It is well known that high levels of H2S inhibit respiration in vertebrates, intravascular
injection or inhalation of lower levels of H2S will mimic hypoxic hyperventilation in fish,
birds and mammals [82,178–185]. These responses appear to be mediated by both central
and peripheral mechanisms.
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7.2.2. H2S and Central Respiratory Centers

H2S injected into cerebral ventricles produces a concentration-dependent bradycardia
and hypotension, mimicking the diving reflex in mammals [186]. A number of respiratory
centers including the pre-Bötzinger (pB) dorsal inspiratory respiratory group, the parafacial
respiratory group and hypoglossal rootlets are stimulated by H2S [187,188] and H2S helps
protect the medullary respiratory centers from hypoxic injury [189,190]. 3MST mRNA and
protein are expressed in neurons of pre-Bötzinger complex (pre-BotC), hypoglossal nucleus
(12N), ambiguous nucleus (Amb) in rats. These 3MST-positive neurons are significantly in-
creased in animals exposed to chronic intermittent hypoxia (CIH) suggesting that adaption
to CIH is mediated, at least in part, by H2S [191]). Conversely, it has also been reported that
microinjection of AOA into the rostral ventrolateral complex (RVLM)/Bötzinger complex
increases hypoxia-induced hyperventilation and mitigates hypoxic hyperthermia while
injection of H2S does not affect ventilation; hypoxia also decreases H2S production in rat
medullary homogenates [192,193]. Clearly, additional studies are necessary to resolve these
issues.

The first pair of gill arches are peripheral chemoreceptors in fish, and they are sensitive
to H2S (see below). Hypoxic bradycardia is inhibited by removing these arches, but
their removal does not affect hypoxic hyperventilation, and inhibitors of H2S production,
AOA or propargyl glycine (PPG) are also ineffective [82]. This suggests that central
chemoreceptors are involved, but it remains to be determined if H2S contributes to the O2
sensing process in the fish central nervous system.

7.2.3. H2S Mediation of Peripheral Chemoreceptors, Carotid Body and
Neuroepithelial Cells

Exogenous H2S depolarizes carotid glomus cells, it increases afferent nerve activity
from the carotid, and it mimics or augments hypoxic hyperventilation while accelerating
sinus nerve response to hypoxia [87,194–197]. Although excess exogenous H2S has been
reported to inhibit hypoxic responses and to inhibit acetylcholine and ATP release by the
carotid body [195,196,198], these are likely to be toxicological, rather than physiological
effects.

CBS and CSE immunoreactivity have been identified in glomus cells from cats, rats
and mice [87,195,196,198]. In vitro and in vivo studies have provided evidence for CSE,
CBS and 3MST-mediation of hypoxia-induced release of H2S [87,195–197] and hypoxia
(PO2 ~ 30 mmHg) increases H2S production rat carotid bodies [87,196]. Breathing 100% O2
will suppress H2S-induced hyperventilation suggesting that enhanced O2 increases H2S
metabolism by the glomus cells [185].

Arguably the most extensive studies on H2S and O2 sensing by the carotid body have
been done by Prabhakar’s group (reviewed in; [199–202]. These authors make the case that
H2S is a downstream effector of the O2 sensing process. They describe two mechanisms,
both of which involve relieving tonic inhibition of CSE by carbon monoxide (CO) or nitric
oxide (NO) in normoxic conditions. In the primary mechanism, hypoxia inhibits heme
oxygenase-2 (HO-2) thereby decreasing carbon dioxide (CO) which relieves CSE inhibition
and increases H2S synthesis. A backup mechanism has also been proposed where, in the
absence of HO-2, neuronal nitric oxide synthase (nNOS) is upregulated and CSE is now
inhibited by nitric oxide (NO). As NO synthesis is also O2-dependent, H2S production will
increase as O2 falls. The effects of H2S on glomus cells have been attributed to inhibition
of BKCa channels [195,203,204], or TASK channels [194], KATP channels do not seem to be
involved [87]. Inhibiting K channels depolarizes the glomus cells, and the resulting influx
of calcium initiates release of neurotransmitters. Conversely, it should be noted that other
studies have found that chemical inhibition of CSE or genetic deletion of the enzyme had
no effect on the hypoxic response [205,206] and clearly additional work is needed.

Peripheral chemoreceptor cells (neuroepithelial cells; NEC), especially prevalent on
the first pair of gill arches in many fish, are the antecedents of mammalian carotid glo-
mus cells [4]. NEC contain both CBS and CSE [207]. H2S injected into the buccal cavity
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(mouth) stimulates NEC in the trout gill and produces classic hypoxic bradycardia which
is prevented by ablation of the first pair of arches. Both hypoxia and H2S depolarize NEC
isolated from zebrafish gills, as does hypoxia [82]. NEC are also found on the skin of
larval (4-day post hatching) zebrafish, where the gills are relatively undeveloped. Hypoxic
responses can be attenuated by chemical inhibition of CBS and CSE in adult zebrafish or
by morpholino knockdown of these enzymes in larval forms [207], further implicating H2S
in O2 sensing.

7.2.4. H2S Mediation of O2 Sensing by Adrenal Medulla

Mammalian adrenal medullary chromaffin cells function as O2 sensors during neona-
tal development [4]. CSE immunoreactivity has been identified neonatal chromaffin cells
in both rats and mice and H2S appears to mediate hypoxic stimulation of catecholamine
secretion in these animals. This likely involves HO-2/CO/CSE and BKCa channels, similar
to those described in the carotid glomus cells [87,111,208].

Fish do not have adrenal glands; however, homologous chromaffin cells line the
posterior cardinal vein and anterior kidney, and these cells possess both CBS and CSE; they
also release H2S and epinephrine into the systemic circulation in response to hypoxia by a
CBS-mediated mechanism [209]. Catecholamines are also released by exogenous H2S, a
process that requires extracellular calcium indicative of chromaffin cell depolarization. It
has not been determined if HO-2 and CO are involved in the O2 sensing process in these
cells.

7.2.5. Airway Receptors

Neuroepithelial bodies in airways sense changes in inspired O2 and initiate appro-
priate cardiorespiratory reflexes [5,210]. These responses are initiated by inhibition of
potassium channels, suggestive of a H2S-activated response. This is supported by ob-
servations that H2S enhances airway reflex responses in part, through action on TRPA1
receptors [211]. Low concentrations (0.2%) of inhaled H2S also stimulate ventilation in
chickens, which has been proposed to be mediated in part by airway receptors [178]. How-
ever, a hypoxia-mediated increase in H2S in airway receptors has yet to be demonstrated.

7.2.6. Mechanical Effects on Airway Smooth Muscle

Hypoxia and H2S relax tracheal and bronchiolar airway smooth muscle, which is
mediated, at least in part, by BKCa channels [212–214]. Small airways appear considerably
more sensitive to H2S than larger ones [215]. Conversely, guinea pig main bronchi and
distal trachea are contracted by high concentrations of H2S, a response that appears to
be mediated by activation of vanilloid neurons [216]. As with airway receptors the direct
coupling between hypoxia and an increase in H2S remains to be demonstrated.

7.3. Kidney

The physiological activities of H2S in the kidney have been extensively
reviewed [174,217,218]. Low oxygen tensions in the renal medulla have been proposed to
necessitate H2S responses to help maintain renal blood blow and reduce energy require-
ments for tubular transport [219] and this is supported by beneficial effects of H2S observed
in acute kidney injury which occurs during hypoxia or ischemia-reperfusion injury [174].
Additional work on H2S/O2 coupling is needed to confirm these hypotheses.

7.4. Genitourinary Tract

H2S has multiple functions in the genitourinary tract [220–222]. There are numerous
examples where hypoxia and H2S relax non-vascular smooth muscle in the genitourinary
systems of mammalian and non-mammalian vertebrates [78,223–225]. We have recently
shown that hypoxia initiates both transient and long-term (days) increases in H2S pro-
duction in HTC116 human colonic epithelial cells [48], suggestive of H2S/O2 coupled
signaling.
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7.5. H2S-HIF Interactions

It is not surprising that H2S would interact with hypoxia inducible factors (HIF) in
oxygen sensing mechanisms, although the extent and nature of these interactions are still
being resolved. H2S has been shown to both inhibit HIF-1α expression and stabiliza-
tion [56,226–229] and augment it [230–236]. HIF-1α stabilization also inhibits colonic H2S
production and may represent a negative feedback mechanism to prevent prolonged HIF-
1α stabilization [231]. Recently, polysulfides were shown to inhibit HIF-1α gene expression,
protein accumulation and subsequent stabilization with the potency correlated with the
number of sulfur molecules, i.e., S4 > S3 > S2; with S1 (H2S) showing relatively low activity.
The main effect of these polysulfides appeared to enhance degradation rather than affect
synthesis. The study by Uba et al. [237] is key to our further understanding of H2S-HIF
regulation as most physiological effects of H2S are only initiated after H2S is oxidized to
polysulfides.

8. Pathophysiological Consequences of the H2S/O2 Axis

Too much of a good thing is not necessarily a good thing and there are a number of
instances where hypoxia-initiated increases in H2S may be detrimental. The following are
three such examples.

8.1. Cerebral Ischemia and Stroke

It is well known that the central nervous system is especially sensitive to hypoxic
insult. A number of studies have shown that administration of exogenous H2S or H2S
donors or upregulation of endogenous H2S production can protect the central nervous
system from ischemia and ischemia-reperfusion injury and that the latter is exacerbated by
inhibition of endogenous H2S production [238–247]. This would imply that both ischemia
and reperfusion injury are associated with a decrease in endogenous H2S production. This
is supported by several studies that have shown that hypoxia decreases CBS [245,246].

Conversely, other studies have shown that H2S worsens the ischemic insult [248,249]
and that this is the cause of neuronal death. Although a low Po2 has been assumed to
be the direct cause of the collapse of the electron transport chain and energy production,
Marutani et al. posit that the collapse occurs long before Po2 falls to levels that jeopardize
O2 binding to cytochrome c oxidase (CCO; [249]). Furthermore, they suggested that
the relative inability of neurons to metabolize H2S may explain this conundrum and,
indeed, this seems to be the case. SQR levels in neurons are extremely low, or even
non-existent [67,80,250] and CCO is especially sensitive to inhibition by H2S with a Ki of
~0.2 µM [251]. In a series of elegant experiments Marutani et al. [249] demonstrated in mice,
rats, and naturally hypoxia-tolerant ground squirrels that increasing expression of neuronal
SQR decreased H2S accumulation in the hypoxic brain, sustained energy production and
prevented ischemic brain injury. Similar results were observed after administration of
exogenous H2S scavengers. Conversely, decreasing SQR expression in the brain, heart and
liver exacerbated the sensitivity of these tissues to hypoxia. These findings show why the
brain is comparatively more sensitive to hypoxia than other tissues and they may offer a
therapeutic opportunity in ischemic injury and RPI.

These somewhat contradictory observations may be due to the level and/or the
duration of hypoxia or other methodological differences. Clearly, sorting this out and
targeting the appropriate H2S-metabolizing pathways will have considerable therapeutic
value.

8.2. High Altitude Pulmonary Edema (HAPE)

High altitude pulmonary edema (HAPE) occurs in un-acclimatized individuals upon
rapid ascent to altitudes over 2500 m. HAPE is noncardiogenic and generally attributed
to pulmonary vasoconstriction-mediated exudate as a result of sympathetic stimulation,
reduced nitric oxide (NO) bioavailability or increased endothelin; inflammatory mediators
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such as C-reactive protein (CRP) and interleukin (IL-6) may further modulate the disease
but do not appear to be the cause [252,253].

Fluid balance across a healthy respiratory epithelium is governed by the rate of salt
secretion and reabsorption. Epithelial sodium channels (ENAC) and a basolateral Na+, K+

ATPase create a alveolar lumen-to-blood trans-epithelial osmotic gradient that reabsorbs
fluid which keeps the lung ‘dry’ and ensures a relatively minimal diffusion barrier for
respiratory gases. H2S inhibits fluid reabsorption by alveolar cells by inhibiting both ENAC
and Na+, K+ ATPase and produces pulmonary edema [254–256]. As hypoxia also increases
H2S production by the respiratory epithelium [254,256], it seems reasonable to assume that
this contributes to HAPE. Not surprisingly, pulmonary edema is also a hallmark of H2S
poisoning in humans (https://www.osha.gov/hydrogen-sulfide/hazards, accessed on
date/month/year, accessed on 18 October 2021).

8.3. HAPE and Down Syndrome

Down syndrome (DS), the result of trisomy of chromosome 21, results in over-
expression of CBS, one of the enzymes encoded on this chromosome [257]. This results in
increased H2S production in these individuals. In a meta-analysis, Pecze et al. [258] found
that there were significantly decreased levels of ATP, CoQ10, homocysteine, serine, arginine
and tyrosine; slightly decreased ADP; significantly increased uric acid, succinate, lactate
and cysteine; slightly increased phosphate, pyruvate and citrate in DS individuals. They
concluded that the levels of metabolites involved in bioenergetic pathways was suggestive
of a “pseudohypoxic state” even though arterial gases were normal. With an already
elevated titer of H2S, one might expect that DS individuals would be especially susceptible
to HAPE, at even moderate altitudes, and, indeed, this appears to be the case [259,260].

9. Resolving Differences between Competitive Theories of O2 Sensing; Reactive
Oxygen Species (ROS) vs. Reactive Sulfur Species (RSS)

O2 sensing by ROS is arguably the most prevalent theory of an O2 sensing mechanism,
especially in the case of hypoxic pulmonary vasoconstriction (HPV; [261]). In the ROS
hypothesis (Figure 6A), hypoxia decreases forward electron transport (FET) down the
electron transport chain and as electrons begin to build up they leak from complexes I and
III and reduce O2 to superoxide (O2

•−). Dismutation of superoxide, either spontaneously,
or catalyzed by superoxide dismutase (SOD), produces hydrogen peroxide (H2O2) which
then diffuses out of the mitochondrion and oxidizes cysteine residues on the appropriate
regulatory proteins [262]. In reverse electron transport (RET), electrons may be delivered
retrograde from complex III to complex I, however, there is little evidence that that this
contributes to HPV [263]. In the RSS hypothesis (Figure 6B), hypoxia also decreases FET, but
this decreases H2S oxidation by (SQR) which then allows mitochondrial H2S concentrations
to increase. This excess H2S is oxidized by SOD, or by electrons from RET, to hydrogen
persulfide, H2S2, which then diffuses out of the mitochondrion and persulfidates cysteine
residues on regulatory proteins that are essentially identical to those oxidized by H2O2.

Many of the arguments in support of ROS in biological signaling can also be made for
RSS and it is becoming increasingly difficult to distinguish between the two. Comparisons
and distinctions between ROS and RSS have detailed in a recent review [104] and references
therein and are only briefly described in the following paragraphs.

https://www.osha.gov/hydrogen-sulfide/hazards
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•−). Dismutation of superoxide, either spontaneously, or catalyzed
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9.1. Chemical Similarities between ROS and RSS

Both oxygen and sulfur have six valence electrons, but sulfur’s electrons are farther
from the positive nucleus which favors electron transfer reactions. Single-electron reduction
of O2 produces superoxide (O2

•−), hydrogen peroxide (H2O2), the hydroxyl radical (HO•)
and water (Equation (1)), whereas single electron oxidation of H2S produces a thiyl radical
(HS•), hydrogen persulfide (H2S2) and a persulfide “supersulfide” radical (S2

•−) before
terminating in elemental sulfur (S2; Equation (2)), the latter often cyclizes to S8.

H2O < +e− HO• < +e− H2O2 < +e− O2
•− < +e− O2 (1)

H2S −e− > HS• −e− > H2S2
−e− > S2

•− −e− > S2 (2)

Most ROS and much, but certainly not all, RSS signaling is mediated by H2O2 and
H2S2, respectively; the advantages of the latter over the former were described in Section 6.1
H2S signaling via persulfidation.
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9.2. ROS or RSS?

In addition to their redox similarities there are a number of other disconcerting aspects
that hamper evaluation of the relative contributions of ROS and RSS in biological signaling.
(1) It can be difficult to analytically distinguish between the two. The redox-sensitive green
fluorescent protein (roGFP), arguably, the gold standard for intracellular ROS measure-
ment, is up to 200-fold more sensitive to RSS than ROS; H2O2 amperometric electrodes are
25 times more sensitive to RSS as well. Other fluorescent ROS probes may also respond to
RSS. (2) Most biochemical and physiological experiments are conducted in room air (21%
O2, or 18.5% O2 for cell culture). These conditions well above physiological O2 tensions in
cells (physioxia) and greatly exceed those in the mitochondrion. This undoubtedly favors
ROS over RSS. (3) Life originated in an anoxic and sulfidic world and much of subsequent
evolution occurred in these conditions. Many homeostatic pathways were developed
under these conditions and likely will become more evident as more experimentation is
performed under more physioxic conditions. The reader is referred to the excellent mono-
graph Martin et al. [264] on the evolution of anaerobic energy metabolism in eukaryotic
mitochondria.

10. Conclusions

H2S and polysufide signaling is a relatively new, yet rapidly expanding field. Because
of the lability of these sulfur moieties in oxic environments, many challenges remain in
identifying relevant signaling species and their metabolism under physioxic conditions.
Nevertheless, it is this nearly mutually exclusive relationship between H2S and O2 that
forms the basis for an O2 sensing mechanism that is exquisitely tuned to respond to O2
availability without the need for complex, highly evolved, and sophisticated sensors. This
bespeaks of a mechanism that likely appeared early in evolution and one that has persisted
up to the present because of its simplicity and utility.
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ATP-dependent potassium channels; KCa—Ca2+-dependent K+ channels; Kv—voltage-gated potas-
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SNA—sinus nerve activity; SO—sulfite oxidase; SQR—sulfide-quinone oxidoreductase; TASK—
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Ψ—mitochondrial transmembrane potential.
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