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Transcriptome analysis of G protein-coupled receptors in
distinct genetic subgroups of acute myeloid leukemia:
identification of potential disease-specific targets
A Maiga1, S Lemieux1,2, C Pabst1, V-P Lavallée1,3, M Bouvier1,4, G Sauvageau1,3,5,6 and J Hébert1,3,5,6

Acute myeloid leukemia (AML) is associated with poor clinical outcome and the development of more effective therapies is
urgently needed. G protein-coupled receptors (GPCRs) represent attractive therapeutic targets, accounting for approximately 30%
of all targets of marketed drugs. Using next-generation sequencing, we studied the expression of 772 GPCRs in 148 genetically
diverse AML specimens, normal blood and bone marrow cell populations as well as cord blood-derived CD34-positive cells. Among
these receptors, 30 are overexpressed and 19 are downregulated in AML samples compared with normal CD34-positive cells.
Upregulated GPCRs are enriched in chemokine (CCR1, CXCR4, CCR2, CX3CR1, CCR7 and CCRL2), adhesion (CD97, EMR1, EMR2 and
GPR114) and purine (including P2RY2 and P2RY13) receptor subfamilies. The downregulated receptors include adhesion GPCRs,
such as LPHN1, GPR125, GPR56, CELSR3 and GPR126, protease-activated receptors (F2R and F2RL1) and the Frizzled family receptors
SMO and FZD6. Interestingly, specific deregulation was observed in genetically distinct subgroups of AML, thereby identifying
different potential therapeutic targets in these frequent AML subgroups.
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INTRODUCTION
G protein-coupled receptors (GPCRs) represent the largest
family of membrane receptors with an estimated number of
800 members in human. They are key transducers that bind a vast
diversity of ligands allowing the cells to adapt to their environ-
ment by regulating a wide variety of physiological processes
including the control of blood pressure, heart rate, digestive pro-
cesses, hormone secretion, cell growth and migration as well as
vision and olfaction. Binding to their ligands leads to conforma-
tional rearrangements promoting the engagement and modula-
tion of many distinct downstream signaling effectors that are both
G protein-dependent and independent.1,2

Several GPCRs are critical for cell proliferation and survival, and
can be aberrantly expressed in cancer cells.3,4 For example, PAR1 is
overexpressed in invasive breast carcinomas5 or advanced-stage
prostate cancer.6,7 Likewise, the chemokine receptor CXCR4 has an
important role in tumor metastasis and angiogenesis.3,4 Moreover,
the Wnt target gene, Lgr5, identified as a marker of intestinal stem
cells, is implicated in mouse intestinal tumorigenesis8,9 and
its expression is also associated with poor clinical outcome in
colorectal cancer.10

Although GPCRs are targets for approximately 30% of all
marketed drugs,11 only a very limited number of agonists or
antagonists acting through these receptors are currently used for
cancer therapy.12 Notable exceptions include peptide antagonists
of gonadotropin releasing-hormone receptor in prostate cancer,12

a somatostatin receptor agonist (Octreotide) and a growth
hormone receptor antagonist (Pegvisomant) for neuroendocrine
tumors,12 as well as Vismodegib, an antagonist of smoothened

(SMO), approved by the US Food and Drug Administration (FDA)
to treat advanced basal cell carcinoma.13

In acute myeloid leukemia (AML), CXCR4 overexpression has
been associated with poor outcome.14–16 Moreover, in vivo studies
have shown that the use of AMD3465, a small molecule antagonist
of CXCR4, increases the mobilization of AML cells into the
peripheral blood and improves the efficacy of chemotherapy.17

This activity has been explored in a phase 1/2 clinical study
showing that the addition of CXCR4 antagonists to chemotherapy
is possible in AML and might improve the remission rate.18

The role of GPCRs in mouse leukemic cells was also suggested
in a transcriptome analysis of two related leukemia clones which
differ in their stem cell frequency.19 This study revealed that genes
encoding GPCRs were the most differentially expressed between
the two clones compared with other classes of genes (~22%
versus ~ 5%).
Despite these punctual observations, an exhaustive assessment

of GPCR expression in human AML is lacking. To address this issue,
we sequenced the transcriptome of a large cohort of AML samples
and herein report the expression pattern of GPCRs in 148 AML
samples.

MATERIALS AND METHODS
Human primary leukemic and cord blood cells
The 148 AML samples of the Leucegene cohort used for this study
(described in Supplementary Table 1) were collected by the Banque de
cellules leucémiques du Québec (BCLQ) with an informed consent and
approval of the project by the Research Ethics Board of the Maisonneuve-
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Rosemont Hospital and Université de Montréal. The genetic subgroups
of the AML samples included in this study are listed in Supplementary
Table 2. Cord blood samples (n= 12) collected with an informed consent
were provided by Héma-Québec and pre-enriched for CD34+ cells before
being sorted for the CD34 APC+/CD45RA PE− cell population as previously
described.20 The Cancer Genome Atlas (TCGA) RNA-Seq AML dataset has
been downloaded from the TCGA website (https://tcga-data.nci.nih.gov/
tcga/tcgaDownload.jsp) in November 2013 and the associated clinical
informations obtained from Cancer Genome Atlas Research Network.21

Sorting of normal bone marrow and peripheral blood cell
populations
Three unsorted fresh bone marrow samples from healthy donors were
purchased from Lonza (Lonza 1M-125; Basel, Switzerland). Red blood cell
lysis was performed prior to resuspending the cells in phosphate-buffered
saline, 0.1% bovine serum albumin and DNase 10 μg/ml. Subpopulations
were sorted on a BD Aria II sorter (BD Biosciences, San Jose, CA, USA) based
on published surface marker combinations (Supplementary Methods and
Supplementary Table 3). Peripheral blood was collected from healthy
donors with informed consent, subjected to red blood cell lysis and
subsequently sorted on the basis of the following sorting strategy:
Granulocytes (SSChigh, CD33+), B cells (Lymphocyte gate FSClow, SSClow,
CD19+), T cells (Lymphocyte gate FSClow, SSClow, CD3+), Monocytes
(Monocyte gate FSChigh, SSClow/med, CD14bright, CD33med), total white
blood cells (WBC). Sorting purity was checked on aliquots after sorting, and
cells were counted, resuspended in TRIzol reagent and stored at − 80 °C
until RNA isolation was performed according to the manufacturer's
instructions. An additional purification step on RNeasy mini columns
(Qiagen 74104; Hilden, Germany) was performed to optimize RNA
quality, which was subsequently tested on an Agilent bioanalyzer
2100 (Agilent, Santa Clara, CA, USA). A minimum of 50 000 cells was
used for RNA Sequencing (RNA-Seq), which was performed as
described below.

Sequencing and RNA-Seq data analysis
RNA-Seq was performed using an Illumina HiSeq 2000 instrument
(Illumina, San Diego, CA, USA). Libraries were prepared according to the
manufacturer’s recommendations (Illumina). RefSeq annotations were
based on the UCSC January 27th 2011 version. The alignment to reference
genome (hg19) was carried out using the CASAVA 1.8.2 package and Eland
v2 mapping software and bioinformatic analyses were performed as
described earlier.22

Statistical analysis
RNA-Seq data in Reads Per Kilobase per Million mapped reads (RPKM)
were transformed to lRPKM (log2(RPKM+1)), where +1 was added to avoid
excessive variations due to very small values. Log transformation
was performed to avoid overrepresentation of extreme values. Highly
expressed GPCRs were selected using a threshold of 3.5 lRPKM (or 10.35
RPKM) as shown in Supplementary Figure 1A. The variability of expression
between samples was determined by calculating the coefficient of
variation, a ratio between the standard deviation and the mean expression
value. As illustrated in Supplementary Figure 1B, genes with a coefficient of
variation smaller than the threshold (50%, gray area) are considered as
GPCRs with low variability in their expression. Upregulated and down-
regulated GPCRs were described as those having a difference in median
expression between AML and normal CD34+ cells greater than 1 and less
than − 1, respectively.

GPCR subfamily enrichment analysis
Grouping of GPCR subfamilies was based on the International Union of
Basic and Clinical Pharmacology (IUPHAR) database classification down-
loaded from the website in July 2014 (http://www.guidetopharmacology.
org/). To complete the classification and subdivide the class A group
into further subgroups, the GRAFS phylogenetic classification of GPCRs was
also used.23 Taste receptors have been added along with vomeronasal
receptors, opsins and three orphan GPCRs (GPR137B, TAPT1 and XPR1).
Overall, GPCRs were classified into 18 subfamilies (Supplementary Table 4).
The GPCR subfamily enrichment analysis in the upregulated or

downregulated groups was performed using a Fisher’s exact test.
Significance (two-tailed P-value) was calculated using the function FET of
the add-in Fisherexact downloaded from http://www.obertfamily.com/

software/fisherexact.html. The receptors associated with a specific AML
genetic subgroup were identified by calculating a difference in mean
expression level (lRPKM) between samples with and without the genetic
abnormality. An arbitrary difference of 1.5 lRPKM and a significant
Student's t test (P-valueo0.05) were used as cutoff levels to identify
differentially expressed GPCRs in the different genetically defined
subgroups of the studied AML cohort.

RESULTS
GPCRs expression in human AML and normal CD34-positive cells
Using RNA-Seq, we have evaluated the expression of GPCRs in
148 AML samples and compared it with that observed in normal
cord blood-derived CD34+CD45RA− hematopoietic stem and
progenitor cells (hereafter called CD34+ cells) and in normal bone
marrow and peripheral blood cell populations. The 772 GPCRs
analyzed in this study comprise all GPCRs included in the IUPHAR
database, as well as 370 olfactory, 24 taste and 4 vomeronasal
receptors. Information about the receptor subfamilies and the 18
subgroups based on their ligands is provided in Supplementary
Tables 4, 5 and 6. Overall, 240 GPCRs were expressed at ⩾ 1 lRPKM
(used as an arbitrary threshold) in at least one AML sample
(Supplementary Table 5). Expression was above 3.5 lRPKM (highly
expressed) for 111 and above 6.7 lRPKM (very highly expressed)
for 19 receptors.
We first ranked the various GPCRs according to their median

expression level from highest to lowest in AML (Figure 1) and in
CD34+ cells (Supplementary Figure 2). Using the threshold of 3.5
lRPKM, the most highly expressed GPCRs in AML cells are in
decreasing order: CXCR4, CD97, PTGER4, GPR183, PTGER2, S1PR4,
FPR1, EMR2, C3AR1, LTB4R, TPRA1, C5AR1, LPAR2, LTB4R2 and
GPR107. This contrasts with the expression profiles observed in
normal CD34+ cells where the rank order of expression is: GPR56,
CXCR4, S1PR4, HTR1F, F2R, TAPT1, PTGER4, CD97, GABBR1, TPRA1,
LPAR2, SMO, P2RY11, LPHN1, GPR107 and GPR126. In addition to
the different order of expression levels observed among highly
expressed GPCRs, some receptors that are not found in the most
highly expressed ones in normal CD34+ cells are clearly over-
expressed in AML (Figure 1).
Real-time quantitative RT-PCR studies confirmed RNA-Seq

results for 10 selected GPCRs and revealed a robust correlation
between both methods (Supplementary Figure 3 and Supple-
mentary Table 7). We also confirmed high protein expression
levels of selected GPCRs for which validated antibodies were
available, using flow cytometry as shown in Supplementary
Figures 4 and 5. With the exception of CD97, which is uniformly
highly expressed in all samples tested, GPCR expression was
distributed unequally within each patient sample highlighting the
possibility of defining AML subpopulations with these protein
markers (Supplementary Figure 5).

Deregulated GPCRs in AML belong to specific receptor subfamilies
When compared with normal cord blood-derived CD34+ cells, 30
GPCRs are upregulated in AML specimens (blue dots in Figure 2).
The most highly expressed GPCRs in AML are CXCR4, CD97,
PTGER4, PTGER2, EMR2, GPR183, FPR1, C3AR1 and C5AR1. Except for
FPR1 and C5AR1, these GPCRs show little inter-specimen variability
(Figure 1 and Supplementary Table 5). Likewise, 19 GPCRs are less
expressed in AML cells (green dots in Figure 2). GPR56, HTR1F,
SMO and GPR126 are most discriminatory of normal CD34+ cells.
Most GPCRs are equally expressed in AML and normal CD34+ cells
(black dots in Figure 2).
Class enrichment analyses showed that both AML upregulated

and downregulated GPCRs are enriched in adhesion GPCRs
compared with their representation in the genome indicating
that this subfamily of receptors is highly deregulated in AML
compared with the overall GPCR family. Chemokine and purine
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receptors were overrepresented in AML upregulated genes,
whereas protease-activated GPCRs and Frizzled family members
were overrepresented among the AML downregulated transcripts
indicating that these subclasses of receptors are disproportionally
affected in the disease state (Figure 3).

GPCRs are differentially expressed in distinct AML genetic
subgroups
We next studied GPCR expression levels in relation to the most
frequent AML genetic subgroups represented in this cohort, that
are AML with t(8;21)(q22;q22), inv(16)(p13.1q22) or MLL transloca-
tions, and normal karyotype AML with NPM1, DNMT3A or FLT3-ITD
mutations (Supplementary Table 2).
A GPCR expression fingerprint was observed for AML samples

with t(8;21), inv(16) and MLL translocations (Figure 4a and
Supplementary Figure 6A). For example, eight GPCRs were
specifically upregulated or downregulated in the AML subgroup
with the t(8;21) translocation. These included the adrenergic
receptor ADRA2C, the orphan receptor GPR153 and the lipid
receptors LPAR5, LPAR6 and PTGIR (all upregulated) as well as the
adhesion GPCRs, EMR1 and GPR114 and the oxysterol-binding
receptor, GPR183 (downregulated). Overexpression of eight other
GPCRs occurs in the inv(16) AML subgroup. These are C5AR1, CCR2,
CXCR7/ACKR3, FPR1, GPR183, RXFP1, PTGIR and LPAR6 (Figure 4a).

AML with MLL translocations were associated with an upregula-
tion of GPR126 and a downregulation of GPR174, SUCNR1 and
LPAR6 (Figure 4a, bottom panel). In addition, GPR126 expression
differed between subtypes of MLL rearranged leukemias accord-
ing to the translocation partners, being overexpressed at a high
level in AML samples with the MLL-MLLT4, MLL-ELL
and MLL-SEPT9 fusions and not expressed in the majority of
AML samples with the MLL-MLLT3 and MLL-MLLT1 fusions
(Supplementary Figure 7). FLT3-ITD mutated samples revealed
an upregulation of CYSLTR2, also observed in NPM1-mutated
samples, and of the adhesion GPCRs, GPR114 and GPR56
(Figure 4b and Supplementary Figure 6B). These results were
validated in an independent AML dataset of 160 samples available
from The Cancer Genome Atlas (TCGA) project which comprised 7
samples with t(8;21), 12 with inv(16), 11 with MLL translocations
and normal karyotype AML with FLT3-ITD (n= 22), NPM1 (n= 43) or
DNMT3A mutations (n= 30) (Figure 4c). DNMT3A-mutated samples
did not reveal any significant GPCR expression fingerprint when
analyzed in the TCGA cohort.
Ideal therapeutic targets should be expressed on leukemic cells

but not on normal bone marrow and blood hematopoietic
cells. Accordingly, we analyzed the genes upregulated in genetic
subgroups by comparing their expression in AML cells with
expression levels in normal mature blood cells and bone marrow

Figure 1. Identification of overexpressed GPCRs in AML. RNA-Seq was used to determine expression levels of 772 GPCRs in 148 AML samples
of the Leucegene cohort and 12 samples of normal cord blood-derived CD34+ CD45RA− cells. The 50 GPCRs with the highest median
expression levels in AML samples are presented in the heatmap. The 15 GPCRs that have a higher expression level as defined in
Supplementary Figure 1A are in bold. NK, normal karyotype; Int.abn., Intermediate abnormal karyotype; MLL+, AML with MLL translocations;
EVI1+, AML with EVI1 rearrangements; Complex, AML with three or more unrelated clonal chromosomal abnormalities. Boxes in green, blue or
gray represent one sample with NUP98-NSD1 fusion, 17p deletion or an insufficient number of metaphases respectively. RNA-Seq data were
transformed to lRPKM (log2(RPKM+1)).
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Figure 2. Relation between GPCR expression in AML and in normal cord blood-derived CD34+ cells. The median gene expression level of 772
GPCRs in AML cells (y axis) is represented against their expression in normal cord blood-derived CD34+ cells (x axis). The 30 upregulated GPCRs
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erythroid, myeloid and B-cell precursors. Interestingly, ADRA2C,
GPR126, CYSLTR2, RXFP1, GPR153 and CXCR7/ACKR3 maintained
their significant overexpression in specific AML genetic subgroups
when compared with normal cell populations (Figure 5 and
Supplementary Table 9).

DISCUSSION
Our results revealed that 30 GPCRs are overexpressed in AML
samples compared with normal CD34+ cells. These receptors are
enriched in the chemokine (CCR1, CXCR4, CCR2, CX3CR1, CCR7
and CCRL2), adhesion (CD97, EMR1, EMR2 and GPR114) and
purine (including P2RY2 and P2RY13) receptor subfamilies.
This list includes GPCRs previously described as important
for AML cell biology, such as CXCR4,24 as well as GPCRs that
have a role in hematopoietic stem cell engraftment, such as C3AR1
and PTGER2.25,26 In addition, 19 receptors are downregulated in
AML cells including adhesion GPCRs like LPHN1, GPR125, GPR56,
CELSR3 and GPR126, protease-activated receptors (F2R and F2RL1)
and the Frizzled family members SMO and FZD6.
Among these deregulated GPCRs, prostaglandin receptors are

of particular interest. Indeed, both PTGER4 and PTGER2 are among

the most highly expressed GPCRs differentiating AML from normal
CD34+ cells. Preliminary results have shown that PGE2 can
increase cyclic AMP production by human leukemic cells through
EP2 (encoded by PTGER2) but not EP4 receptors. Further
functional studies are needed to confirm these observations.27

Interestingly, highly selective EP2 antagonists (TG4-155 and
TG6-10-1) have recently been developed and might therefore be
available for pre-clinical studies.28 It is worth noting that different
studies have highlighted the importance of PGE2, acting through
four GPCRs, PTGER1–4, in the progression of many cancers
including colorectal, gastric, lung or breast cancers.29

Chemokine receptors found to be overexpressed in AML
specimens such as CXCR4, CCR7, CCR1, CCR2, CX3CR1 and CCRL2
are also of potential interest. Except for CXCR4,24 their role in
AML has never been invoked. In other hematological cancers,
CX3CR1 and its ligand, CX3CL1, have been proposed to be
involved in the interaction between chronic lymphocytic leukemia
cells and their microenvironment,30 and CCR1 has a crucial role in
the pathogenesis of myeloma-associated bone disease. Interest-
ingly, CCX721, a selective CCR1 inhibitor, improves osteolytic
bone lesions in a preclinical mouse model of this disease.31 This
compound is analogous to CCX354-C, an oral CCR1 antagonist
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that has been evaluated in clinical trial for human rheumatoid
arthritis.32

The purine receptor family members overexpressed in AML
include GPR109A, GPR109B, SUCNR1, P2RY2, P2RY13 and GPR65.
To our knowledge, none of these receptors have been involved
previously in hematologic malignancies. However, GPR109A is
silenced in colon cancer and primary breast tumor tissues where it
acts as a tumor suppressor.33 In contrast to these findings, the

receptor is overexpressed in squamous cell cancers compared
with normal keratinocytes.34 P2RY2 mediates prostate cancer cell
migration and metastasis,35 and its activation leads to increased
proliferation of melanoma36 and lung tumor cells.37 This
observation is context-dependent because P2RY2 activation
induces apoptosis in human colorectal carcinoma cell lines.38 The
pH-sensing receptor GPR65 has also been reported to be
overexpressed in a significant proportion of kidney, ovarian, colon
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Figure 5. Expression levels of GPCRs overexpressed in specific AML genetic subgroups in AML, normal blood and bone marrow cells.
Expression levels of GPCRs previously identified as overexpressed in specific genetic subgroups of AML are compared with their expression in
normal blood and bone marrow cell populations. Represented GPCRs, i.e., ADRA2C and GPR153 in AML with t(8;21), GPR126 in AML with
MLL translocations, CYSLTR2 in normal karyotype AML with NPM1 or FLT3-ITD mutations, and RXFP1 and CXCR7/ACKR3 in AML with inv(16),
show a significant difference in mean expression between the specific AML genetic subgroup and each normal cell population identified
(Student's t test (Po0.05)). AML samples are represented by red dots and normal cell samples by green, blue or gray dots. Data are expressed
as individual sample expression value and means for all samples. Normal blood and bone marrow cell populations were prepared as
described in the Materials and methods section. RNA-Seq data were transformed to lRPKM (log2(RPKM+1)). NK, normal karyotype; WBC, white
blood cells; nBM, normal bone marrow.
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and breast tumors.39 Recent findings have also highlighted
that a member of this GPCR family, P2Y14, is critical for stress
hematopoiesis.40

Adhesion GPCRs are a family of receptors characterized by a
long extracellular domain and an autoproteolytic site leading to
an extracellular N-terminal fragment and a transmembrane
C-terminal fragment that remain noncovalently associated after
cleavage. These receptors have been shown to have a crucial role
in development, cell migration and are increasingly being invoked
as deregulated in numerous cancers.41 They represent another
group of GPCRs for which we observed a strong expression in
AML. Notably, CD97 is expressed at high levels in 100% of AML
studied to date at a much higher level than found in normal
CD34+ cells. CD97 is upregulated in a variety of other malig-
nancies, including glioblastoma,42 digestive and thyroid cancers.43

GPR56 and GPR114 are specifically overexpressed in FLT3-ITD-
mutated samples and GPR126 is most specific to AML with MLL
translocations. Notably, GPR56 has recently been identified as a
leukemia stem cell marker, and its expression correlates with poor
prognosis in AML.44,45

Two protease-activated GPCRs F2R or PAR1 and F2RL1 or PAR2
are downregulated in AML. PAR1 has a well-established role in
thrombosis, hemostasis and inflammatory diseases. It is
also involved in promoting growth and in the angiogenesis and
metastasis processes of several malignancies.4 Unlike AML
samples, most solid tumors show an upregulation of PAR1
expression. Our findings are in accordance with the results of a
recent study that demonstrated that PAR1 expression is down-
regulated in primary AML cells.46 Furthermore, Par1 homozygous
null mutant mice develop leukemia with a shorter latency than
control animals in secondary transplantation experiments.46 PAR2
is involved in migration and/or proliferation of many cancer cells,
including breast,47 pancreatic48 or colon49 cancer and seems to
have a role in tumor angiogenesis through vascular endothelial
growth factor production in cancer cells.50

Two frizzled class receptors SMO and FZD6 are also down-
regulated in all AML samples except AML with EVI1 rearrange-
ments, which have a FZD6 median expression close to CD34+ cells.
SMO and Patched are two receptors mediating Hedgehog
signaling. This pathway is aberrantly activated in many solid
tumors including basal cell carcinoma.51 This feature has been
exploited for the development of Vismodegib, an antagonist of
SMO.13 However, in contrast to several other cancers,
SMO expression in AML cells is five times lower than in CD34+

cells in our study. Vismodegib is currently being investigated in a
phase II clinical trial (www.clinicaltrials.gov, NCT02073838) in AML
patients in combination with ribavirin, because it could potentially
overcome the resistance of leukemic cells to ribavirin.52

It is tempting to speculate that the GPCR members that are
differently expressed in frequent AML genetic subgroups and
more specifically expressed in AML cells compared with normal
hematopoietic cells could be exploited for the development of
novel therapeutic approaches. In this context, ADRA2C, which is
upregulated in AML with t(8;21), could be an interesting target to
explore, because many agonists and antagonists of this receptor
are available, including several FDA-approved drugs such as the
antihypertensive drug clonidine and the antidepressant Mirtaza-
pine. CYSLTR2, a receptor for the inflammatory mediators
cysteinyl leukotrienes, is also overexpressed in FLT3-ITD- and
NPM1-mutated samples. In aggressive breast tumors, this gene
has been described as an independent prognostic factor in
combination with CYSLTR1.53 Selective agonist (NMLTC4)54 and
antagonists, such as HAMI3379(ref. 55) or BayCysLT2,56 have been
developed for CYSLTR2. Other interesting targets are the GPCR
members that are overexpressed in AML with inv(16) or AML M4
(Supplementary Table 8). For example, selective antagonists of the
chemokine receptor CCR2, such as CCX140-B, studied in diabetic
mice and tested in clinical trials for patients with diabetic

nephropathy (www.clinicaltrials.gov, NCT01447147 and
NCT01440257) might be explored for anti-leukemic activity.57

In conclusion, we provide the first comprehensive transcrip-
tome analysis of GPCRs in AML, which reveals that these
surface receptors are potential novel therapeutic targets in AML.
Using available agonists/antagonists to leukemia-enriched GPCRs,
specific drugs can now be tested in preclinical models and, when
active, in clinical trials for AML therapeutics.
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