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Multiple aneurysms in subarachnoid
hemorrhage - identification of the ruptured
aneurysm, when the bleeding pattern is
not self-explanatory - development of a
novel prediction score
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Abstract

Background: In aneurysmal subarachnoid hemorrhage (SAH) and multiple intracranial aneurysms (MIAs) identification
of the bleeding source cannot always be assessed according to the hemorrhage pattern. Therefore, we developed a
statistical model for the prediction of the ruptured aneurysm in patients with SAH and multiple potential bleeding
sources at the time of ictus.

Methods: Between 2012 and 2015, 252 patients harboring 619 aneurysms were admitted to the authors’ institution.
Patients were followed prospectively. Aneurysm and patient characteristics, as well as radiological findings were
entered into a computerized database. Gradient boosting techniques were used to derive the statistical model for the
prediction of the ruptured aneurysm. Based on the statistical prediction model, a scoring system was produced for the
use in the clinical setting. The aneurysm with the highest score poses the highest possibility of being the bleeding
source. The prediction score was then prospectively applied to 34 patients suffering from SAH and harboring MIAs.

Results: According to the statistical prediction model the main factors affecting the rupture in patients harboring
multiple aneurysms were: 1) aneurysm size, 2) aneurysm location and 3) aneurysm shape. The prediction score
identified correctly the ruptured aneurysm in all the patients that were used in the prospective validation. Even in the
five most debatable and challenging cases assessed in the period of prospective validation, for which the score was
designed for, the ruptured aneurysm was predicted correctly.

Conclusions: This new and simple prediction score might provide additional support for neurovascular teams for
treatment decision in SAH patients harboring multiple aneurysms. In a small prospective sample, the prediction score
performed with high accuracy but larger cohorts for external validation are warranted.
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Background
Up to 20% of patients suffering from aneurysmal sub-
arachnoid hemorrhage (SAH) are harboring multiple
intracranial aneurysms (MIAs) [1, 2]. The bleeding source
can be assessed by cranial imaging findings, e.g. according
to the pattern of the hemorrhage in computed tomog-
raphy (CT) in most cases. Nehls et al. described an algo-
rithm in 1985 helping to identify the ruptured aneurysm
according to mainly imaging findings [3]. However, ac-
cording to this algorithm the ruptured aneurysm was
identified with the highest accuracy when focal accumula-
tion of blood in CT was seen in proximity to the ruptured
aneurysm. While in such cases treatment decision of the
ruptured aneurysm is unambiguous, in some cases with
no definite hemorrhage pattern the identification of the
ruptured aneurysm can be challenging, for example, when
the hemorrhage pattern has no lateralization and two or
more aneurysms are in immediate proximity. As a result
of this issue, we developed a statistical model for the pre-
diction of the ruptured aneurysm, which could provide
support in daily clinical routine for neurovascular teams.

Methods
Study population
Between 2012 and 2015, 252 patients harboring 619 aneu-
rysms were admitted to the authors’ institution. SAH was
diagnosed by CT or lumbar puncture. CT-angiography
(CT-A) and additional digital subtraction angiography
(DSA) were performed in order to identify the bleeding
source. Information, including patient characteristics on
admission and during treatment course, treatment modal-
ity, aneurysm size, shape, location and further radiological
features, were collected prospectively and entered into a
computerized database. Exclusion criteria were (1) insuffi-
cient quality of CT-A/DSA to evaluate aneurysm shape or
size, and (2) the presence of fusiform, mycotic or partially
thrombosed aneurysms. Follow up was standardized for
all patients with clinical follow ups at 6, 12months and
then annually. At 6months the first follow up was com-
bined with DSA and MRI (magnetic resonance imaging),
which was then repeated annually. All aspects of this study
were approved by the local ethics committee and because
of the character of the study, patient consent was not
required.

Identification of the ruptured aneurysm
The ruptured aneurysm was treated in all patients with SAH.
The neurovascular team at the authors’ institution identified
the aneurysm with the highest rupture probability according
to the CT findings (i.e. pattern of hemorrhage, intracerebral
hemorrhage (ICH)) and aneurysm characteristics (shape, size,
location) on patient admission. In order to standardize the
definition of aneurysm shape, all multilobulated aneurysms
or aneurysms with a bleb were considered as irregularly

shaped; all others were considered as regularly shaped. In un-
certain cases, the aneurysm shape was decided in an interdis-
ciplinary meeting of the neurovascular team.
According to the findings, treatment of the presum-

ably ruptured aneurysm was performed.
After treatment, validation of the prediction score was

performed in two ways: surgically treated aneurysms
were directly inspected, and the bleeding source was
identified. In endovascularly treated aneurysms the iden-
tification of the ruptured aneurysm in the prospective
cohort was made according to the bleeding pattern or
further CT findings, e.g. ICH and long-term follow-up.
The bleeding source, i.e. the ruptured aneurysm, was un-
ambiguous in all aneurysms treated endovascularly.

Evaluation of the prospective cohort after development
of the score
Independent of the decision of the neurovascular team,
and independent to the aneurysm treatment, informa-
tion of all aneurysms (aneurysm size, location and shape)
included in the prospective validation were transferred
from the neuroradiologist to an author (AH) in written
form for the calculation of the prediction score.

Data
Aneurysm location was divided into five regions in order
to simplify the scoring system: anterior cerebral artery
(AA) including anterior communicating artery (AcomA),
internal carotid artery excluding posterior communicating
artery (ICA), posterior communicating artery (PcomA),
middle cerebral artery (MCA), and the posterior circula-
tion. The maximum aneurysm diameter was defined as
aneurysm size. Furthermore, aneurysm shape was catego-
rized in regular and irregular shape. Irregular shape was
defined if the aneurysm was lobulated or a bleb was found.
All other cases were defined as regular shaped aneurysms.
For statistical analysis each aneurysm was treated as a

separate observation, implying that each of the patients
could contribute several observations (= aneurysms) to
the analysis data set. The outcome variable for each ob-
servation was binary (rupture / no rupture). Some of the
predictor variables, namely size, shape and location, var-
ied across the aneurysms. Additionally, patient-specific
predictor variables were considered, e.g., age, smoking
status, hypertension (AHT), number of aneurysms per
patient and number of additional aneurysms per region.
Only one variable (namely the shape of aneurysm) con-
tained missing values. The number of missing values in
this variable was 23 (2.91%). Due to this very low num-
ber, and since all other variables were completely ob-
served, we did not apply multiple imputation but choose
the more straightforward approach of imputing missing
aneurysm shapes by single logistic regression conditional
on all other variables (imputed values: 18 regular and
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five irregular). After derivation of the score, the score
was prospectively validated in a consecutive cohort of
patients with SAH and MIAs.

Statistical analysis
A component-wise gradient boosting algorithm with lin-
ear base learners [4] was used to derive the prediction
score. This modeling approach simultaneously selects
variables that are relevant for prediction and estimates
the relationship between the outcome and the predictor
variables. A binomial distribution with logistic link func-
tion was used to account for the binary structure of the
outcome. Of note, the statistical model underlying the
gradient boosting approach is defined in terms of a score
that has exactly the same structure and interpretation as
the linear score of a classical logistic regression model.
Compared to the latter approach, the main difference
(and advantage) of the gradient boosting approach is the
algorithmic procedure that is used to fit the logistic
model (i.e., to estimate its coefficients). In particular,
gradient boosting contains the aforementioned built-in
procedure for data-driven variable selection. We note
that major overfitting issues due to variable selection are
unlikely in this case, as the number of patients (n = 252)
is sufficiently large compared to the number of candi-
date variables (10, i.e. 25 patients per variable). In
addition, to counteract the variability induced by variable
selection, the coefficient estimates obtained from gradi-
ent boosting are regularized such that they automatically
improve predictive performance and reduce overfitting.
The coefficients of logistic regression are included in the
search space as a special case of the more flexible gradi-
ent boosting model. By definition, the prediction func-
tion of our model included an aneurysm-specific part
(“prediction score”), which was given by a linear combin-
ation of the variables size, shape and location of the
aneurysm. It also included a patient-specific part that
was given by a linear combination of age, smoking sta-
tus, AHT, number of aneurysms per patient and number
of additional aneurysms per region. To account for the
fact that some patients had multiple aneurysms whose
measurements may be dependent, a patient-specific ran-
dom effect was included in the boosting model [5].
For prediction, the boosting model was used to com-

pute the rupture probabilities for all aneurysms. These
predicted probabilities included all variables selected for
the model, i.e., aneurysm-specific and patient-specific
variables. For each patient the aneurysm with maximum
probability was predicted as the one to rupture. Note
that the probabilities of rupture directly correspond to
the magnitude of the aforementioned aneurysm-specific
part of the model’s prediction function. On the patient
level (where patient-specific variables such as age are
constant), a simplified strategy is therefore to predict the

aneurysm with maximum value of the aneurysm-specific
prediction score as the one to rupture.
To evaluate the prediction accuracy of the proposed

scoring system, ten-fold cross-validation was carried out
(Fig. 1) [6]. To this purpose, the data were subdivided into
ten mutually exclusive subsets (“folds”) of equal size. Pa-
tients in each fold were used to evaluate a boosting model
fitted to the union of the respective other nine folds
(“learning samples”). Predictions were evaluated on the
patient level by (i) selecting the aneurysm that was pre-
dicted to rupture according to the value of its aneurysm -
specific prediction score, as described above, and (ii) by
evaluating whether the selected aneurysm coincided with
the true ruptured aneurysm. Prediction accuracy was
summarized by considering the percentages of correctly
classified ruptures on the patient level. In addition, the
area under the receiver operating characteristic curve
(AUC) was calculated. The number of boosting iterations,
which is the main tuning parameter of gradient boosting,
was determined using additional ten-fold cross-validation
within each of the learning samples.
The final prediction score was obtained by fitting a

gradient boosting model to the complete data set, using
ten-fold cross validation on the complete data to select
the optimal number of boosting iterations.

Results
Summary of the retrospective data
Overall, data of 252 patients harboring 619 aneurysms
were analyzed. Detailed data on patient and aneurysm
characteristics is shown in Table 1.

Statistical prediction model
Figure 2 presents the percentages of correctly classified
ruptures obtained from ten-fold cross-validation. Results
are stratified according to patient groups having two,
three etc. aneurysms. Furthermore, Fig. 2 contains the
probabilities of identifying the true ruptured aneurysms
by random guessing. It is seen that the correct classifica-
tion rates obtained from the scoring system are substan-
tially higher on average than the respective rates that
would be obtained from random guessing. The probabil-
ity of correct findings declined as the number of aneu-
rysms increased. The only patient subgroup where the
scoring system performed worse than random guessing
is the group with six aneurysms. There was, however,
only one patient with six aneurysms in the sample, so
that the correct classification rate in this subgroup could
either take the values 0% or 100%. The average AUC
values were 80.89% on the test data (accuracy 68.58%),
81.94% on the training data (accuracy 68,37%) and
82.07% on the complete data (accuracy 68,63%), suggest-
ing very little indication of overfitting. The final
aneurysm - specific prediction score obtained from
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fitting a gradient boosting model to the complete data
set was given by.
Aneurysm - specific prediction score = A + B + C,

where.
A = 0.0427 x size of aneurysm (mm).
B = 0 if Location = AcomA and AA.

or − 0.0104 if location = PcomA.
or − 0.1831 if location = posterior circulation.
or − 0.4055 if location =MCA.
or − 0.5973 if location = ICA without PcomA.

C = 0 if shape = regular.
or 0.5387 if shape = irregular.

By definition, higher scores represent a higher risk of
rupture.
In Fig. 3 the goodness of fit of the prediction score

was evaluated. The fitted probabilities of the complete
data set were ordered and split into 15 intervals, which
each consist of 50 aneurysms except the last interval.
The total number of aneurysms is not divisible by 50
and therefore the remaining aneurysms were added to
the last interval. Overall, the prediction score model is

well calibrated, as the estimated probabilities match
closely the observed relative frequencies of rupture.
Figure 4 shows a heatmap with visual representation

of the prediction score parameters.

Clinical results and validation
After the development of the statistical prediction score,
prospective validation was performed utilizing patients
with SAH harboring MIAs and presenting with a defini-
tive SAH pattern admitted at the authors’ institution.
Cases treated endovascularly, which according to the im-
aging and hemorrhage pattern the bleeding source
remained uncertain, so that the neurovascular team de-
cided one-stage endovascular treatment of all possible
bleeding sources, were excluded from the prospective
validation. Patients with an obvious bleeding source
were also included, in order to gain a larger prospective
test sample, since the prediction score is applicable in all
cases. Overall, 34 patients were included in the valid-
ation of the prediction score. 14 (41%) patients under-
went surgical treatment, 16 (47%) patients underwent

Fig. 1 Ten-fold cross-validation
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endovascular treatment, 3 (9%) patients underwent com-
bined surgical and endovascular treatment, and 1 patient
(3%) did not underwent any treatment. Overall, 42 of 83
(50%) aneurysms were treated in the acute phase after
the ictus. In detail, 19 aneurysms were treated surgically
and 23 endovascularly (Table 2).

Challenging cases
The prediction score identified the ruptured aneurysm
in all 34 prospectively analyzed cases correctly, while the
neurovascular team was correct in 32 cases. In two sur-
gically treated patients (Pat. No. 9 and 24), the assump-
tion of the neurovascular team was incorrect, while the
prediction score was correct. In the first case, both aneu-
rysms were treated surgically in the same session (MCA
and AcomA), where the assumed ruptured aneurysm
(MCA) was inspected and identified as unruptured,
while the other aneurysm (AcomA) was identified as the
bleeding source (illustrative case). In the second case,
the bleeding source was uncertain for the neurovascular
team. Therefore, the basilar tip artery aneurysm was
treated endovascularly at first (assumed as the most
likely bleeding source), and the MCA aneurysm was

treated surgically secondarily. During surgical inspection,
the MCA aneurysm was identified as the bleeding source.
In three other cases, patients were treated in the acute

phase on their MIAs surgically. During surgical inspec-
tion the presumably ruptured aneurysm according to the
prediction score, was identified as the bleeding source
(Pat. No. 5, 26 and 33).
Patient 5 harbored seven aneurysms. The neurovascu-

lar team suspected the AcomA aneurysm as the bleeding
source. Because of the proximity of a smaller A1
aneurysm, a clear distinction of the bleeding source was
however not possible. On the other hand, the PcomA
aneurysm also could not be ruled out as probable bleed-
ing source. After coiling of the AcomA and A1 aneu-
rysms and incomplete coiling of the PcomA aneurysm,
surgical treatment of the PcomA aneurysm was decided.
During surgical inspection, the AcomA aneurysm was
identified as the bleeding source.
Patient 26 harbored two MCA aneurysms on the right

side in proximity. Even if the size of one of them was
small, surgical treatment was performed, because rup-
ture of the smaller aneurysm could not be ruled out as
bleeding source. During surgical treatment the larger
one was identified as the bleeding source.
Patient 33 harbored two aneurysms (AcomA and

MCA). After endovascular treatment of the AcomA
aneurysm, the MCA aneurysm was treated surgically in
the acute phase and did not show any sign of rupture.
Therefore, the prediction score assigned the ruptured

aneurysm correctly in overall 17 patients in whom at
least one aneurysm was treated surgically.

Endovascularly treated patients
In all 19 patients treated endovascularly, and in the one
patient without treatment, the prediction score corre-
lated with the assumption of the neurovascular team,
and the distinct bleeding pattern in the CT-scans, indi-
cating the ruptured aneurysm.
None of the patients treated surgically or endovascu-

larly, suffered from rehemorrhage throughout the
follow-up of 12 months.

Illustrative case
The patient was admitted with acute onset of headache
at the author’s institution (Fig. 5). The patient harbored
two aneurysms; one regular shaped 13 mm aneurysm at
the bifurcation of the left MCA, and one irregular
shaped 5 mm aneurysm at the AcomA. The neurovascu-
lar team assumed the rupture of the aneurysm located at
the bifurcation of the MCA, because of the pattern of
the hemorrhage in the left sylvian fissure and the size of
the aneurysm. After interdisciplinary decision, the pa-
tient was treated surgically. The intraoperative inspec-
tion revealed that the aneurysm located at the AcomA

Table 1 Patient and aneurysm characteristics

MIAs (%)

Pat. No. 252

Aneurysm No. 619

Sex (female/male) 195/57 (46/13)

Median age (y) ± SD 53 ± 12,8

AHT (%) 112 (44%)

Smoker (%) 89 (35%)

Aneurysm size (mm) 6 ± 5

Aneurysm shape Regular (%) 512 (83)

irregular (%) 107 (17)

Aneurysm localization (%)

AcomA + AA 119 (19)

PcomA 85 (14)

Posterior circulation 72 (12)

MCA 234 (38)

ICA w/o PcomA 109 (17)

Aneurysms frequency

2 174 (41%)

3 49 (11%)

4 22 (6%)

5 6 (1%)

6 1 (1%)

AHT arterial hypertension, AcomA anterior communicating artery, AA anterior
cerebral artery, ICA internal carotid artery, MIAs multiple intracranial
aneurysms, MCA middle cerebral artery, PcomA posterior communicating
artery, SAH subarachnoid hemorrhage, SD standard deviation, SIAs single
intracranial aneurysms
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was ruptured, and the MCA aneurysm was not. Both an-
eurysms were successfully treated by clipping.

Score calculation
1) AcomA: 5 (size) × 0.0427 + 0 (location) + 0.5387
(shape) = 0.7522.
2) MCA: 13 (size) × 0.0427–0.4055 (location) + 0
(shape) = 0.1496.
Therefore, the prediction score (being larger for the

AcomA aneurysm) predicted correctly the ruptured
aneurysm.

Discussion
Definite treatment of a ruptured aneurysm is of highest
priority in patients with aneurysmal SAH [7, 8]. In pa-
tients with SAH harboring MIAs, identifying the ruptured
aneurysm may be challenging. Identification of the rup-
tured aneurysm in case of MIAs is ascertained from the
pattern of hemorrhage and other parameters, such as
shape, location and size of the aneurysm [9]. Misidentifi-
cation of the ruptured aneurysm and treatment of a falsely
assumed ruptured aneurysm could have major impact on
the outcome of the patient, since rebleeding and severe
brain injury secondary to rebleeding can occur and are
known predictors of poor outcome [10, 11]. On the other
hand, treatment of additional unruptured aneurysms in

patients with MIAs in the acute phase of the SAH is dis-
cussed controversially due to the risk of additional compli-
cations, and is therefore usually performed secondarily
[12]. Depending on the size and location of the remaining
unruptured aneurysms and the clinical condition of the
patients, secondary treatment is applied in interdisciplin-
ary consensus.

Hemorrhage pattern
Orning et al. [9] showed that in cases of definite
hemorrhage pattern, where the hemorrhage is clearly lat-
eralizing or otherwise confining to an aneurysm, identifica-
tion of the ruptured aneurysm is highly accurate. However,
in the same study there was a high inaccuracy in cases of
nondefinite hemorrhage pattern. Uncertainty arises in cases
with a diffuse and symmetric hemorrhage pattern, or a lo-
calized pattern, but with multiple aneurysms in that par-
ticular area are present in the same patient.
Because this prediction score was developed for the

uncommon but usually troublesome cases, where the
hemorrhage pattern does not provide any further clues
for the identification of the bleeding source, CT findings
were deliberately not included in the score. Given the
fact that in all cases the CT findings would not provide
further information, the value of this parameter would

Fig. 2 Percentages of correctly classified ruptures obtained from ten-fold cross-validation and probabilities of identifying the true ruptured aneurysms
by random guessing
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Fig. 4 Prediction heatmap for aneurysm rupture. The risk score refers to the minimum and maximum value with colour coding in the right
legend. Each bar reflects the distribution of the risk scores from aneurysm size 0 to 40 mm adjusted by aneurysm shape and location AcomA:
anterior communicating artery, AA: anterior cerebral artery, ICA: internal carotid artery, MIAs: multiple intracranial aneurysms, MCA: middle cerebral
artery, PcomA: posterior communicating artery

Fig. 3 Goodness of fit of the prediction score
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Table 2 prospective patient cohort

Pat.
No.

Aneurysm
localisation

Aneurysm
size (mm)

Aneurysm
form

Treatment Expert opinion
before treatment

Score Surgical
Validation

Expert
Validation

Positive Score
Prediction (YES/NO)

1 MCA left 7 irregular surgical MCA 0.4321 YES YES YES

AcomA 3 regular no treatment 0.1281

2 PcomA 6 regular surgical PcomA 0.0216 YES YES YES

Basilar tip 2 regular no treatment −0.0977

3 MCA left 7 regular surgical MCA left −0.1066 YES YES YES

MCA right 5 regular no treatment −0.192

4 PcomA 6 irregular endovascular PcomA 0.7845 NO YES YES

A3 3 regular no treatment 0.1281

5 AcomA 7 irregular endovascular AcomA 0.8376 YES YES YES

PcomA 7 regular combined 0.2885 YES

MCA 6 regular no treatment −0.1493

A1 3 regular endovascular 0.1281

ICA 4 regular no treatment −0.4265

P1 2 regular no treatment −0.0977

Basilar tip 3 regular no treatment −0.055

6 Basilar tip 10 regular endovascular Basilar tip 0.2439 NO YES YES

Basilar side 3 regular no treatment −0.055

7 PcomA 6 irregular endovascular PcomA 0.7845 NO YES YES

MCA 4 regular no treatment −0.2347

8 AcomA 5 regular endovascular AcomA 0.2135 NO YES YES

MCA 2 regular no treatment −0.3201

9 AcomA 5 irregular surgical 0.7522 YES

MCA 13 regular surgical MCA 0.1496 YES NO YES

10 AcomA 3 regular endovascular AcomA 0.1281 NO YES YES

MCA 2 regular no treatment −0.3201

11 MCA left 17 regular surgical MCA left 0.3204 YES YES YES

MCA right 7 regular no treatment −0.1066

12 Basilar tip 6 irregular endovascular Basilar tip 0.6118 NO YES YES

PcomA 3 regular endovascular (staged treatment) 0.1177

13 AcomA 3 regular endovascular AcomA 0.1281 NO YES YES

PcomA 3 regular endovascular 0.1177

OpthalmicA 2 regular no treatment −0.5119

VA 2 regular no treatment −0.0977

14 A3 4 regular endovascular A3 0.1708 NO YES YES

MCA 3 regular no treatment −0.2774

MCA 1 regular no treatment −0.3628

15 PcomA right 8 regular surgical PcomA 0.3312 YES YES YES

PcomA left 4 regular no treatment 0.1604

16 MCA left 10 regular surgical MCA left 0.0215 YES YES YES

MCA right 2 regular no treatment −0.3201

17 PICA left 5 regular endovascular PICA 0.0304 NO YES YES

SCA left 2 regular no treatment −0.0977

18 VB junction 9 regular endovascular VB junction 0.2012 NO YES YES
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Table 2 prospective patient cohort (Continued)

Pat.
No.

Aneurysm
localisation

Aneurysm
size (mm)

Aneurysm
form

Treatment Expert opinion
before treatment

Score Surgical
Validation

Expert
Validation

Positive Score
Prediction (YES/NO)

AcomA 4 regular no treatment 0.1708

A2 2 regular no treatment 0.0854

19 MCA right 4 regular no treatment (aSDH right) MCA right −0.2347 NO YES YES

MCA left 2 regular no treatment −0.3201

20 MCA 8 irregular surgical MCA 0.4748 YES YES YES

ICA 4 regular no treatment −0.4265

A3 3 regular no treatment 0.1281

21 MCA left 5 regular surgical MCA left −0.192 YES YES YES

MCA right 5 regular no treatment −0.192

22 MCA left 9 irregular surgical MCA left 0.5175 YES YES YES

MCA right 9 regular surgical (2 stage treatment) −0.0212 YES YES YES

23 AcomA 9 irregular endovascular AcomA 0.923 NO YES YES

ICA 7 regular no treatment −0.2984

24 Basilar tip 6 irregular endovascular 0.6118 NO NO YES

MCA right 10 regular surgical MCA 0.0215 YES NO YES

25 MCA right 8 regular surgical MCA right −0.0639 YES YES YES

MCA left 4 regular no treatment −0.2347

ICA left 4 regular no treatment −0.4265

26 MCA right 7 regular surgical MCA right −0.1066 YES YES YES

M2 right 2 regular surgical −0.3201 YES

MCA links 3 regular no treatment −0.2774

27 PcomA left 7 regular endovascular PcomA 0.2885 NO YES YES

ICA right 7 regular endovascular −0.2984

28 M2 right 10 regular surgical M2 right 0.0215 YES YES YES

ICA left 6 regular no treatment −0.3411

M2 left 3 regular no treatment −0.2774

29 ICA 9 regular endovascular ICA −0.213 NO YES YES

MCA 3 regular no treatment −0.2774

30 PcomA 10 regular endovascular PcomA 0.4166 NO YES YES

AcomA 4 regular no treatment 0.1708

31 AcomA 11 regular endovascular AcomA 0.4697 NO YES YES

PcomA 5 regular no treatment 0.2031

32 ACA (A3) 9 regular endovascular ACA (A3) 0.3843 NO YES YES

MCA left 3 regular no treatment −0.2774

ICA left 2 regular no treatment −0.5119

SCA right 6 regular no treatment 0.0731

33 AcomA 5 regular endovascular AcomA 0.2135 YES YES YES

M3 right 3 regular surgical −0.2774 YES

34 PcomA right 9 regular surgical PcomA 0.3739 YES YES YES

ICA left 6 regular no treatment −0.3411

A1 segment 1 of anterior cerebral artery, A2 segment 2 of anterior cerebral artery, A3 segment 3 of anterior cerebral artery, AA anterior cerebral artery, AcomA
anterior communicating artery, aSDH acute subdural hematoma, ICA internal carotid artery, M2 segment 2 of middle cerebral artery, M3 segment 3 of middle
cerebral artery, MCA middle cerebral artery, OphtalmicA ophthalmic artery, P1 segment 1 of posterior cerebral artery, PcomA posterior communicating artery, PICA
posterior inferior cerebellar artery, SCA superior cerebellar artery, VB vertebrobasilar
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be constant for each aneurysm without any influence on
the score.

Aneurysm size and location
According to previous studies, size and location are pos-
tulated as independent risk factors for aneurysm rupture
[13–18]. According to the ISUIA trial, aneurysms lo-
cated at the posterior circulation including the PcomA,
have a higher possibility of rupture [15]. However, Juvela
et al. postulated that aneurysms located at the ACA were
at significant risk to rupture [1]. In patients with MIAs,
aneurysms located at the AcomA had the highest prob-
ability to rupture according to Nehls et al. [3].
According to the findings of the present study, the site

with the highest probability of a ruptured aneurysm in
patients harboring MIAs was the AA including the
AcomA. Furthermore, aneurysm size was also identified
to be a risk factor for aneurysm rupture.
Backes et al. [19] reported that the ruptured aneurysm

in patients with MIAs was not the largest aneurysm in
29% of the patients. Therefore, the use of aneurysm size
or aneurysm location alone seems not to predict the
ruptured aneurysm adequately.

Aneurysm shape
Irregular aneurysm shape is considered to be associated
with aneurysm enlargement which is a surrogate param-
eter for aneurysm rupture [20, 21]. Backes et al. [19] de-
scribed this parameter as a factor for aneurysm rupture
independent of aneurysm size, location and patient

characteristics in MIAs. Maslehaty et al. [22] investigated
the anatomical factors in cases of MCA mirror aneu-
rysms and showed that size and shape were predictive
for rupture in their series. Nehls et al. found, that irregu-
larity of the aneurysm morphology was more indicative
for the ruptured aneurysm than size [3]. In the present
study, irregular shaped aneurysms were also found to
rupture more likely compared to regularly shaped
aneurysms.

Clinical setting and use of the prediction score
Aim of the development of the scoring system was to
create a simple tool, to identify the ruptured aneurysm
in patients with MIAs and unclear bleeding pattern in
cases of SAH. We only used readily available data, that
was accessible using CT-A or DSA. Therefore, the de-
scribed prediction score can easily be assessed and used
in the clinical setting. According to our findings and ex-
perience using the prediction score, for example in the
illustrative case, it can provide additional information
and improve the treatment decision. The score is devel-
oped to be used in cases with diffuse SAH, without dis-
tinct bleeding pattern pointing out the bleeding source.
In the prospective validation dataset, five of the cases
(15%) were challenging in respect of defining the bleed-
ing source. In all these challenging cases, for which the
prediction score was initially developed, the bleeding
source was identified correctly. In contrast, the neuro-
vascular team predicted the true bleeding source in three
of the five patients correctly. Given the uncertainty in

Fig. 5 Illustrative case. A and B: axial native CT scan showing SAH at admission, C: DSA showing the AcomA aneurysm at admission, D: DSA showing
the left MCA aneurysm at admission
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some challenging cases, treatment of all possible bleed-
ings sources was performed. The true value of the pre-
diction score might be in troublesome cases, where
treatment of multiple aneurysms might not be easily
feasible due to aneurysm or patient specific characteris-
tics. The prediction model can provide additional infor-
mation for the decision-making process.

Limitations
The score was derived from a retrospective dataset of
the authors institution and was then prospectively vali-
dated at the same center. Furthermore, the prospective
validated score was conducted with a relatively small
number of patients, since patients harboring MIAs with
SAH represent just a small fraction of all SAH patients
and the troublesome cases with non-definite bleeding
pattern are infrequent. The prediction score was add-
itionally validated with endovascularly treated aneu-
rysms, in order to gain a greater number of patients. In
all patients treated endovascularly, the bleeding pattern
pointed unambiguously the ruptured aneurysm. How-
ever, if only the surgically treated aneurysms were to be
included in the validation, the correctness of the predic-
tion score would remain by 100%.
The score is not intended to replace the expert’s deci-

sion. It is supposed to be a cornerstone for further mul-
ticenter prospective studies for its validation, where
afterwards it can be used to support neurovascular
team’s decisions. Given the fact that the challenging
cases needed for prospective validation are overall rare,
multicenter independent data is necessary.

Conclusions
This simple prediction score might provide support for
neurovascular teams for treatment decision in SAH pa-
tients harboring multiple intracranial aneurysms and no
definite hemorrhage pattern in order to identify the rup-
tured aneurysm. However, larger cohorts for prospective
evaluation are warranted.
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